Commentationes Mathematicae Universitatis Carolinae

Isaac Gorelic
 On powers of Lindelöf spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 35 (1994), No. 2, 383--401

Persistent URL: http://dml.cz/dmlcz/118678

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

On powers of Lindelöf spaces

IsaAc Gorelic

Abstract

We present a forcing construction of a Hausdorff zero-dimensional Lindelöf space X whose square X^{2} is again Lindelöf but its cube X^{3} has a closed discrete subspace of size \mathfrak{c}^{+}, hence the Lindelöf degree $L\left(X^{3}\right)=\mathfrak{c}^{+}$. In our model the Continuum Hypothesis holds true.

After that we give a description of a forcing notion to get a space X such that $L\left(X^{n}\right)=\aleph_{0}$ for all positive integers n, but $L\left(X^{\aleph_{0}}\right)=\mathfrak{c}^{+}=\aleph_{2}$.

Keywords: forcing, topology, products, Lindelöf
Classification: 54D20,54B10, 03E35

Introduction

It is well-known that a product of two Lindelöf spaces need not be Lindelöf. Indeed, the product of two Sorgenfrey lines has a closed discrete subspace of size $2^{\aleph_{0}}=\mathfrak{c}$. The general problem of the degree of non-productivity of the Lindelöf property is discussed in [2] and [5].

In 1978, Shelah, Hajnal and Juhasz proved that it is consistent that there is a Lindelöf space whose square has a closed discrete subspace of size $\mathfrak{c}^{+}=\aleph_{2}$ (see [1], [2], [3]).

In 1990 we gave a consistent example of a Lindelöf space whose square has a closed discrete subspace of size $2^{\aleph_{1}}$, cardinal $2^{\aleph_{1}}$ arbitrarily large and does not depend on the size of the Continuum, see [4] and [5]. This is the best result up to this point. We conjecture that $2^{\aleph_{1}}$ is the true upper bound on the sizes of closed discrete subspaces of squares of Lindelöf spaces.

Definition. For a topological space $X, L(X)$ is the smallest cardinal κ such that every open cover of X has a subcover of size at most κ.

It is known about the higher powers of Lindelöf spaces that for each positive integer n, there is a space X such that X^{n} is Lindelöf, but $L\left(X^{n+1}\right)=\mathfrak{c}$, see [6].

The aim of the present paper is to show a consistent example of a space whose square is Lindelöf, but $L\left(X^{3}\right)=\mathfrak{c}^{+}$. It is an open problem whether $L\left(X^{3}\right)=$ $2^{\aleph_{1}}>\aleph_{2}$ is possible.

Our reference for forcing and basics is Kunen's book [7].
Theorem. $\operatorname{Con}(Z F) \Longrightarrow \operatorname{Con}(Z F C+C H+$ "There is a Lindelöf Hausdorff zerodimensional space X with all points G_{δ} sets, $|X|=\omega_{2}=\mathfrak{c}^{+}, L(X)=L\left(X^{2}\right)=\omega$, and $\left.L\left(X^{3}\right)=\omega_{2}=\mathfrak{c}^{+"}\right)$.

The proof will consist of the following:
A) Definitions,
B) Main Lemma, and
C) Facts, of which the last Corollary furnishes the space X mentioned in the theorem.

A) Definitions

0 . Let $F: \omega_{2} \times \omega_{2} \longrightarrow\{0,1,2\}$ be fixed.

1. $D(f)$ denotes the domain of the function f and if $D(f) \subset \omega_{2}$, then $\mu(f):=$ $\min D(f)$ or ω_{2}, if $f=\phi$.
2. For $x \in \omega_{2}$ and $i \in 3$, let $A_{x}^{i}:=\left\{y \in \omega_{2}: y \neq x\right.$ and $\left.F(x, y)=i\right\}$.
3. $\forall s \in \operatorname{Fn}\left(\omega_{2}, 3\right) U_{s}:=\bigcap_{x \in D(s)}\left(A_{x}^{s(x)} \cup\{x\}\right)$.
4. $\mathcal{U}_{F}:=\left\{U_{s}: s \in F n\left(\omega_{2}, 3\right)\right\}$.
5. F is flexible if $\left(\forall y \neq z\right.$ in $\left.\omega_{2}\right)(\forall i, j \in 3)\left(\exists x \in \omega_{2} \backslash\{y, z\}\right) F(x, y)=i$ and $F(x, z)=j$.
6. Define $\varphi: \omega_{2} \times \omega_{2} \longrightarrow \omega_{2}+1$ by letting

$$
\begin{aligned}
& \varphi(y, y):=\omega_{2}, \text { and for } y \neq z \\
& \varphi(y, z):=\min (\{\delta \in y \cap z: F(\delta, y) \neq F(\delta, z)\} \cup\{y \cap z\}),
\end{aligned}
$$

i.e. the least $\delta \in \omega_{2}$ s.t. $(F(\delta, y) \neq F(\delta, z)$, or $\delta=y$ or $\delta=z)$.
7. We say that $\mathcal{U}_{F} \times \mathcal{U}_{F}$ is sort-of-Lindelöf if every "cover" $c: \omega_{2}^{2} \longrightarrow\left(F n\left(\omega_{2}, 3\right)\right)^{2}$ satisfying $\left(\forall\langle y, z\rangle \in \omega_{2}^{2}\right) c(y, z)=\langle s, t\rangle \Longrightarrow$
(i) $\langle y, z\rangle \in U_{s} \times U_{t}$, and
(ii) $s \upharpoonright \varphi(y, z)=t\lceil\varphi(y, z)$
has a countable "subcover", i.e. \exists countable $A \subset \omega_{2}$ s.t.

$$
\forall\langle y, z\rangle \in \omega_{2}^{2} \exists\langle a, b\rangle \in A^{2}
$$

with $\langle y, z\rangle \in U_{c_{1}(a, b)} \times U_{c_{2}(a, b)}$ (where $c_{1}(a, b)$ is the left coordinate of $\mathrm{c}(\mathrm{a}, \mathrm{b})$, and $c_{2}(a, b)$ is the right one).
We remark that (ii) simply means that $\forall y \in \omega_{2}([c(y, y)=\langle s, t\rangle$ and $y \in$ $D(s) \cap D(t)] \Longrightarrow s(y)=t(y))$.
8. For an $S \subset \omega_{2}$, let $(S)^{0}=S$ and $(S)^{1}=\omega_{2} \backslash S$.
9. For $k \in \operatorname{Fn}\left(\omega_{2}, 2\right)$, let

$$
\begin{aligned}
V_{k}^{0} & =\bigcap_{x \in D(k)}\left(A_{x}^{0}\right)^{k(x)}, \\
V_{k}^{1} & =\bigcap_{x \in D(k)}\left(A_{x}^{1}\right)^{k(x)}, \\
V_{k}^{2} & =\bigcap_{x \in D(k)}\left(A_{x}^{2}\right)^{k(x)} .
\end{aligned}
$$

10. Let $\tau^{0}, \tau^{1}, \tau^{2}$ be topologies on ω_{2} generated, respectively, by the following bases:

$$
\begin{aligned}
& \left\{V_{k}^{0}: k \in F n\left(\omega_{2}, 2\right)\right\}, \\
& \left\{V_{k}^{1}: k \in F n\left(\omega_{2}, 2\right)\right\} \\
& \left\{V_{k}^{2}: k \in F n\left(\omega_{2}, 2\right)\right\}
\end{aligned}
$$

So, e.g., τ^{0} is generated on ω_{2} by a subbasis $\left\{A_{x}^{0}, \omega_{2} \backslash A_{x}^{0}: x \in \omega_{2}\right\}$.
11. The definition of the forcing notion $(\mathbb{P}, \leq) . p \in \mathbb{P}$ iff $p=\langle A, f, T\rangle$, and
(i) $A \subset \omega_{2}$ and $|A| \leq \omega$.
(ii) $f: A^{2} \longrightarrow 3$.
(iii) $|T| \leq \omega$ and $(\forall B \in T) B \subset(F n(A, 3))^{2}$ and $A^{2}=\bigcup\left\{U_{s} \times U_{t}:\langle s, t\rangle \in\right.$ $B\} \cap A^{2}$.
(iv) $\forall B \in T$
$\forall \delta, \delta^{\prime} \in A$
$\forall h \in F n(A \backslash \delta, 3)$
$\forall h^{\prime} \in F n\left(A \backslash \delta^{\prime}, 3\right)$
$\forall y \in A \backslash \delta$
$\forall z \in A \backslash \delta^{\prime}$
(a) $(\exists\langle s, t\rangle \in B)\left(\exists\left\langle s^{\prime}, t^{\prime}\right\rangle \in B\right)$
(α) $\langle y, z\rangle \in U_{s} \times U_{t \uparrow \delta^{\prime}}$ and $t \not \perp h^{\prime}$,
(β) $\langle y, z\rangle \in U_{s \mid \delta} \times U_{t}$ and $s \not \perp h$
(b) $(\exists\langle s, t\rangle \in B)$

$$
\langle y, z\rangle \in U_{s \uparrow \delta} \times U_{t \uparrow \delta^{\prime}} \text { and } s \not \perp h \text { and } t \not \perp h^{\prime} .
$$

(c) If $y=z$, then $(\exists\langle s, t\rangle \in B)$ and $\left(\exists\left\langle s^{\prime}, t^{\prime}\right\rangle \in B\right)$ s.t.
(α) If $\delta \leq \mu\left(h^{\prime}\right)$, then
$\langle z, z\rangle \in U_{s \upharpoonright \delta} \times U_{t \upharpoonright \delta}$
and $h \cup s \cup\left(t \upharpoonright \mu\left(h^{\prime}\right)\right) \in F n$ and $t \not \perp h^{\prime}$, and
(β) if $\delta^{\prime} \leq \mu(h)$, then
$\langle z, z\rangle \in U_{s^{\prime}\left\lceil\delta^{\prime}\right.} \times U_{t^{\prime} \upharpoonright \delta^{\prime}}$ and
$h^{\prime} \cup t^{\prime} \cup\left(s^{\prime} \upharpoonright \mu(h)\right) \in F n$ and $s^{\prime} \not \perp h$.
Let $E^{p}(\delta, y, z) \stackrel{d f}{\Longleftrightarrow} \delta, y, z \in A$ and $\delta \leq y, z$ and $(\forall x \in A \cap \delta) f^{p}(x, y)=f^{p}(x, z)$.
Let $q \leq p$ if, by definition, $A^{q} \supset A^{p}, f^{q} \supset f^{p}, T^{q} \supset T^{p}$ and $E^{q} \supset E^{p}$.

B) Main Lemma

Let $V \models Z F C+C H$ and let \mathbb{P} be defined in V by Definition 11. Then \mathbb{P} is ω_{1}-complete and has $\omega_{2}-c c$.

Let G be \mathbb{P}-generic over V, and let $F=\bigcup\left\{f^{p}: p \in G\right\}$. Then $F: \omega_{2} \times \omega_{2} \longrightarrow 3$ is a flexible total function and $\mathcal{U}_{F} \times \mathcal{U}_{F}$ is sort-of-Lindelöf.

Proof: The fact that \mathbb{P} is ω_{1}-complete (i.e. that the naturally defined infimum of a countable descending sequence of conditions belongs to \mathbb{P}) is obvious, because " $p \in \mathbb{P}$ " is a finitary property (i.e. if $p \notin \mathbb{P}$, then there is a finite collection of finite parts of p (as a structure) witnessing this).

We will prove 3 lemmas, of which Lemma 1 implies the totality, Lemma 2 implies the flexibility of F, and Lemma 3 establishes the ω_{2}-chain condition of \mathbb{P}. The final statement of the Main Lemma is proved last.
Lemma 1. Let $p=\langle A, f, T\rangle \in \mathbb{P}$. Then

$$
\begin{aligned}
& \forall \tilde{z} \in \omega_{2} \backslash A \\
& \exists \tilde{g}:(A \cup\{\tilde{z}\})^{2} \longrightarrow 3 \text { extending } f, \text { s.t. } \\
& q:=\langle A \cup\{\tilde{z}\}, \tilde{g}, T\rangle \in \mathbb{P} \text { and } q \leq p .
\end{aligned}
$$

Proof. Assume $A \backslash \tilde{z} \neq \phi$ (otherwise, use Lemma 2). So choose the least $a \in A \backslash \tilde{z}$. We will define by induction a partial function $g: A \longrightarrow 3$ such that, if $(\forall x \in A) \tilde{g}(x, \tilde{z})=g(x)$, then $q \in \mathbb{P} . g$ will be an increasing union $g=\bigcup_{i<\omega} g_{i}$. Let $g_{0}: A \cap \tilde{z} \longrightarrow 3$ be defined by $g_{0}(x):=f(x, a)$, for every $x \in A \cap \tilde{z}=A \cap a$.

Let

$$
\begin{aligned}
\mathcal{S}= & \left\{\left\langle B_{i}, \delta_{i}, \delta_{i}^{\prime}, h_{i}, h_{i}^{\prime}, y_{i}, z_{i}\right\rangle: i<\omega\right\} \\
= & \left\{B, \delta, \delta^{\prime}, h, h^{\prime}, y, z\right\rangle: B \in T, \delta, \delta^{\prime} \in A \\
& h \in F n(A \backslash \delta, 3), h^{\prime} \in F n\left(A \backslash \delta^{\prime}, 3\right), \\
& y \in(A \cup\{\tilde{z}\}) \backslash \delta, z \in\left(A \cup\{\tilde{z}\} \backslash \delta^{\prime}, \text { and }(y=\tilde{z} \text { or } z=\tilde{z})\right\} .
\end{aligned}
$$

Step $i \geq 1$. Consider $\langle\cdots\rangle_{i} \in \mathcal{S}$.
Case 1. $y_{i}=z_{i}=\tilde{z}$.
0. By (iv)-c- α applied to $\langle a, a\rangle, \delta=\delta^{\prime}=a, h=g_{i} \upharpoonright_{A \backslash a}$ and $h^{\prime}=\phi, \exists\langle s, t\rangle \in B$ s.t. $\langle a, a\rangle \in U_{s \upharpoonright a} \times U_{t \upharpoonright a}$ and $g_{i} \cup s \cup t \in F_{n}$. Let $g_{i+1}^{0}:=g_{i} \cup s \cup t$. This will guarantee that

$$
\langle\tilde{z}, \tilde{z}\rangle \in U_{s} \times U_{t} \quad \text { for } \mathrm{iii}_{q}
$$

1. Apply (iv)-b to $\langle a, a\rangle$ with $\delta=a, h=g_{i+1}^{0} \upharpoonright_{A \backslash a}, \delta^{\prime}=\delta_{i}^{\prime}, h^{\prime}=h_{i}^{\prime}$. Then $\exists\langle s, t\rangle \in B$, s.t. $\langle a, a\rangle \in U_{s \upharpoonright a} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}$ and $s \not \perp g_{i+1}^{0} \upharpoonright_{A \backslash a}$ and $t \not \perp h_{i}^{\prime}$.

Let $g_{i+1}^{1}=g_{i+1}^{0} \cup s$. This will guarantee that

$$
\langle\tilde{z}, \tilde{z}\rangle \in U_{s} \times U_{t \mid \delta_{i}^{\prime}} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

2. (iv)-b of q is obtained similarly from (iv)-b. We have g_{i+1}^{2} at this stage. Note that (b) is automatic because of $E^{q}(\tilde{z}, \tilde{z}, a)$. And the same applies to (c). Let $g_{i+1}:=g_{i+1}^{2}$.
Case 2. $y_{i}=\tilde{z}$ and $z_{i} \neq \tilde{z}$, i.e. $z_{i} \in A$.
3. By (iv)-a- β applied to $\left\langle a, z_{i}\right\rangle$ with $\delta^{\prime}=a$ and $h^{\prime}=g_{i} \upharpoonright_{A \backslash a}, \exists\langle s, t\rangle \in B$, s.t. $\left\langle a, z_{i}\right\rangle \in U_{s \upharpoonright a} \times U_{t}$ and $s \not \perp g_{i} \upharpoonright_{A \backslash a}$. Let $g_{i+1}^{0}:=g_{i} \cup s$. This guarantees that

$$
\left\langle\tilde{z}, z_{i}\right\rangle \in U_{s} \times U_{t}
$$

1. Apply (iv)-b to $\left\langle a, z_{i}\right\rangle$ and $\delta=a, h=g_{i+1}^{1} \upharpoonright A \backslash a, \delta^{\prime}=\delta_{i}^{\prime}, h^{\prime}=h_{i}^{\prime}$. Get $\langle s, t\rangle \in$ B s.t. $\left\langle a, z_{i}\right\rangle \in U_{s \upharpoonright a} \times U_{t\left\lceil\delta^{\prime}\right.}$ and $t \not \perp h_{i}^{\prime}$ and $s \not \perp g_{i+1}^{1} \upharpoonright_{A \backslash a}$. Set $g_{i+1}^{2}:=g_{i+1}^{1} \cup s$, thus guaranteeing

$$
\left\langle\tilde{z}, z_{i}\right\rangle \in U_{s} \times U_{t\left\lceil\delta^{\prime}\right.} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

Note: $(\mathrm{a})(\beta)$ of q for $\left\langle\tilde{z}, z_{i}\right\rangle$ is automatic because of $E^{q}(\tilde{z}, \tilde{z}, a)$. (b) $)_{q}$ is automatic for the same reason and (c) ${ }_{q}$ does not apply here. Set $g_{i+1}=g_{i+1}^{1}$.

Case 3. $y_{i} \in A$ and $z_{i} \in \tilde{z}$.
0. By (iv)-a- $\alpha, \exists\langle s, t\rangle \in B$ s.t. $\left\langle y_{i}, a\right\rangle \in U_{s} \times U_{t \upharpoonright a}$ and $t \not \perp g_{i} \upharpoonright_{A \backslash a}$. Let $g_{i+1}^{0}=g_{i} \cup t$, guaranteeing

$$
\left\langle y_{i}, \tilde{z}\right\rangle \in U_{s} \times U_{t},
$$

i.e. $(\mathrm{iii})_{q}$ at $\left\langle y_{i}, \tilde{z}\right\rangle$.

1. Note that $(\mathrm{a})(\alpha)$ is automatic. Let $\langle s, t\rangle \in B$ be s.t. $\left\langle y_{i}, a\right\rangle \in U_{s \mid \delta_{i}} \times U_{t \upharpoonright a}$ and $s \not \perp h_{i}$ and $t \not \perp g_{i+1}^{0} \upharpoonright_{A \backslash a}$ (by (iv)-b). Set $g_{i+1}^{1}:=g_{i+1}^{0} \cup t$, thus guaranteeing that

$$
\left\langle y_{i}, \tilde{z}\right\rangle \in U_{s \mid \delta_{i}} \times U_{t} \quad \text { and } \quad s \not \perp h_{i} .
$$

2. Note again that (b) is automatic and (c) does not apply. Let $g_{i+1}:=g_{i+1}^{1}$.

Lemma 2. Let $p=\langle A, f, T\rangle \in \mathbb{P}$. Let $\gamma \in A, r \in F n(A \backslash \gamma, 3), \bar{z} \in A \backslash \gamma$ and $\tilde{z} \in \omega_{2} \backslash \sup ^{+} A$. Then $\exists \tilde{g}:(A \cup\{\tilde{z}\})^{2} \longrightarrow 3$ extending f s.t. $q:=\langle A \cup\{\tilde{z}\}, \tilde{g}, T\rangle \in \mathbb{P}$, $q \leq p, \tilde{z} \in U_{r}$ and $E^{q}(\gamma, \bar{z}, \tilde{z})$.

Proof: Let

$$
\begin{aligned}
\mathcal{S}= & \left\{\left\langle B_{i}, \delta_{i}, \delta_{i}^{\prime}, h_{i}, h_{i}^{\prime}, y_{i}, z_{i}\right\rangle: i<\omega\right\} \\
= & \left\{\left\langle B, \delta, \delta^{\prime}, h, h^{\prime}, y, z\right\rangle: B \in T, \delta, \delta^{\prime} \in A, h \in F n(A \backslash \delta, 3),\right. \\
& h^{\prime} \in F n\left(A \backslash \delta^{\prime}, 3\right), y \in(A \cup\{\tilde{z}\}) \backslash \delta, z \in(A \cup\{\tilde{z}\}) \backslash \delta^{\prime} \text { and } \\
& (y=\tilde{z} \text { or } z=\tilde{z})\} .
\end{aligned}
$$

As in the proof of Lemma 1 , let $\forall x \in A \cap \gamma g_{0}(x)=f(x, z)$ and $\forall x \in D(r)$ $g_{0}(x)=r(x)$, so $g_{0}:(A \cap \gamma) \cup D(r) \longrightarrow 3$. This guarantees at once that $\tilde{z} \in U_{r}$.

Step $i>0$. Consider $\langle\cdots\rangle_{i} \in \mathcal{S}$.
Case 1. $y_{i}=z_{i}=\tilde{z}$.
0. By (iv)-c applied to $\langle\bar{z}, \bar{z}\rangle$ with $h=g_{i} \upharpoonright A \backslash \gamma, h^{\prime}=\phi, \delta=\delta^{\prime}=\gamma, \exists\langle s, t\rangle \in B$ s.t. $\langle\bar{z}, \bar{z}\rangle \in U_{s \upharpoonright \gamma} \times U_{t \upharpoonright \gamma}$ and $g_{i} \upharpoonright_{A \backslash \gamma} \cup s \cup t \in F n$.

Let $g_{i+1}^{0}=g_{i} \cup s \cup t$. Thus

$$
\langle\tilde{z}, \tilde{z}\rangle \in U_{s} \times U_{t}
$$

and so is covered by B_{i}.

1. If $\delta_{i}^{\prime} \leq \gamma$, by (iv)-b, $\exists\langle s, t\rangle \in B_{i}$, s.t. $\langle\bar{z}, \bar{z}\rangle \in U_{s \mid \gamma} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}$ and $s \not \perp g_{i+1}^{0} \upharpoonright_{A \backslash \gamma}$ and $t \not \perp h_{i}^{\prime}$.

Let $g_{i+1}^{1}=g_{i+1}^{0} \cup s$, guaranteeing

$$
\langle\tilde{z}, \tilde{z}\rangle \in U_{s} \times U_{t \backslash \delta_{i}^{\prime}} \text { and } t \not \perp h_{i}^{\prime} .
$$

If $\delta_{i}^{\prime}>\gamma$, by (iv)-c- $\alpha, \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle\bar{z}, \bar{z}\rangle \in U_{s\lceil\gamma} \times U_{t\lceil\gamma}$ and $\left(g_{i+1}^{0} \upharpoonright A \backslash \gamma\right) \cup s \cup t\left\lceil\delta_{i}^{\prime} \in\right.$ $F n$ and $t \not \perp h_{i}^{\prime}$.

Set $g_{i+1}^{0}=g_{i+1}^{0} \cup s \cup t\left\lceil\delta_{i}^{\prime}\right.$, implying

$$
\langle\tilde{z}, \tilde{z}\rangle \in U_{s} \times U_{t \mid \delta_{i}^{\prime}} \text { and } t \not \perp h_{i}^{\prime} .
$$

2. Symmetrically we obtain g_{i+1}^{2} guaranteeing (a)(β) (i.e. that $\langle\tilde{z}, \tilde{z}\rangle \in U_{s \mid \delta_{i}} \times U_{t}$ and $s \not \perp h_{i}$, for some $\langle s, t\rangle$ in B_{i}).
3. Note that if $\delta_{i}, \delta_{i}^{\prime} \leq \gamma$, then (b) for $\langle\tilde{z}, \tilde{z}\rangle$ follows automatically from (b) for $\langle\bar{z}, \bar{z}\rangle$. If one of $\delta_{i}, \delta_{i}^{\prime}$ is $\leq \gamma$, then e.g. in $\delta_{i}^{\prime} \leq \gamma<\delta_{i}$ case, by (b), $\exists\langle s, t\rangle \in B_{i}$, s.t. $\langle\bar{z}, \bar{z}\rangle \in U_{s \uparrow \gamma} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}$ and $s \not \perp\left(g_{i+1}^{2} \mid \delta_{i} \backslash \gamma\right) \cup h_{i}$ and $t \not \perp h_{i}^{\prime}$. Let $g_{i+1}^{3}=g_{i+1}^{2} \cup s \upharpoonright \delta_{i}$, guaranteeing

$$
\langle\tilde{z}, \tilde{z}\rangle \in U_{s \mid \delta_{i}} \times U_{t \backslash \delta_{i}^{\prime}} \text { and } s \not \perp h_{i} \text { and } t \not \perp h_{i}^{\prime} .
$$

Similarly for the symmetric case of $\delta_{i} \leq \gamma<\delta_{i}^{\prime}$.
If $\gamma<\delta_{i}, \delta_{i}^{\prime}$, then if $\delta_{i} \leq \delta_{i}^{\prime}$ use $(c)(b)$, and if $\delta_{i}>\delta_{i}^{\prime}$, use (c)(α), e.g. if $\delta_{i} \leq \delta_{i}^{\prime}$, then $\gamma \leq \mu\left(h_{i}\right) \geq \delta_{i}$. So by $(c)(\beta), \exists\langle s, t\rangle \in B_{i}$, s.t. $\langle\bar{z}, \bar{z}\rangle \in U_{s \mid \gamma} \times U_{t\lceil\gamma}$ and $\left(g_{i+1}^{2} \backslash \delta_{i}^{\prime} \backslash \gamma\right) \cup h_{i}^{\prime} \cup t \cup s \upharpoonright \delta_{i} \in F n$ and $s \not \perp h_{i}$. Let $g_{i+1}^{3}=g_{i+1}^{2} \cup\left(t \upharpoonright \delta_{i}^{\prime}\right) \cup\left(s \upharpoonright \delta_{i}\right)$, guaranteeing

$$
\langle\tilde{z}, \tilde{z}\rangle \in U_{s \mid \delta_{i}} \times U_{t\left\lceil\delta_{i}^{\prime}\right.} \text { and } s \not \perp h_{i} \text { and } t \not \perp h_{i}^{\prime} .
$$

4. Suppose $\gamma<\delta_{i} \leq \mu\left(h_{i}^{\prime}\right)$. By $(\mathrm{c})(\alpha), \exists\langle s, t\rangle \in B$ s.t. $\langle\bar{z}, \bar{z}\rangle \in U_{s\lceil\gamma} \times U_{t\lceil\gamma}$ and $s \cup\left[\left(g_{i+1}^{3} \backslash \delta_{i} \backslash \gamma\right) \cup h_{i}\right] \cup\left(t \upharpoonright \mu\left(h_{i}^{\prime}\right)\right) \in F n$ and $t \not \perp h_{i}^{\prime}$. Set $g_{i+1}^{4}=g_{i+1}^{3} \cup\left(s \backslash \delta_{i}\right) \cup\left(t \upharpoonright \delta_{i}\right)$, guaranteeing

$$
\begin{gathered}
\langle\tilde{z}, \tilde{z}\rangle \in U_{s \upharpoonright \delta_{i}} \times U_{t \upharpoonright \delta_{i}}, \\
h_{i} \cup s \cup t \upharpoonright \mu\left(h_{i}^{\prime}\right) \in F n \text { and } t \not \perp h_{i}^{\prime} .
\end{gathered}
$$

5. Suppose now that also $\gamma<\delta_{i}^{\prime} \leq \mu\left(h_{i}\right)$. Then, by (c) $(\beta) \exists\langle s, t\rangle \in B$ s.t. $\langle\bar{z}, \bar{z}\rangle \in U_{s \upharpoonright \gamma} \times U_{t \upharpoonright \gamma}$ and $\left[\left(g_{i+1}^{4} \upharpoonright \delta_{i}^{\prime} \backslash \gamma\right) \cup h_{i}^{\prime}\right] \cup t \cup\left(s \upharpoonright \mu\left(h_{i}\right)\right) \in F n$ and $s \not 又 h_{i}$. Let $g_{i+1}^{5}=g_{i+1}^{4} \cup\left(t \upharpoonright \delta_{i}^{\prime}\right) \cup\left(s \upharpoonright \delta_{i}^{\prime}\right)$, guaranteeing

$$
\begin{gathered}
\langle\tilde{z}, \tilde{z}\rangle \in U_{s \backslash \delta_{i}^{\prime}} \times U_{t \backslash \delta_{i}^{\prime}}, \\
h_{i}^{\prime} \cup t \cup\left(s \upharpoonright \mu\left(h_{i}\right)\right) \in F n \text { and } s \not \perp h_{i} .
\end{gathered}
$$

Finally, let $g_{i+1}=g_{i+1}^{5}$.
Case 2. $y_{i}=\tilde{z}$ and $z_{i} \in A$.
0. By $(\mathrm{a})(\beta),\left\langle\bar{z}, z_{i}\right\rangle \in U_{s\lceil\gamma} \times U_{t}$ with $s \not \not \perp g_{i} \upharpoonright_{A \backslash \gamma}$. Let $g_{i+1}^{0}=g_{i} \cup s$, guaranteeing

$$
\left\langle\tilde{z}, z_{i}\right\rangle \in U_{s} \times U_{t}
$$

1. By (b), $\left\langle\bar{z}, z_{i}\right\rangle \in U_{s \upharpoonright \gamma} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}$ and $s \not \perp g_{i+1}^{0} \upharpoonright_{A \backslash \gamma}$ and $t \not \perp h_{i}^{\prime}$. Let $g_{i+1}^{\prime}=g_{i+1}^{0} \cup s$. Then

$$
\left\langle\tilde{z}, z_{i}\right\rangle \in U_{s} \times U_{t \mid \delta_{i}} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

2. W.l.o.g., $\gamma<\delta_{i}$. $\left\langle z, z_{i}\right\rangle \in U_{s \backslash \gamma} \times U_{t}$ and $s \not \perp\left(g_{i+1}^{\prime}\left\lceil\delta_{i} \backslash \gamma\right) \cup h_{i}\right.$. Let $g_{i+1}^{2}=$ $g_{i+1}^{\prime} \cup\left(s \upharpoonright \delta_{i}\right)$. Then

$$
\left\langle\tilde{z}, z_{i}\right\rangle \in U_{s \backslash \delta_{i}} \times U_{t} \quad \text { and } \quad s \not \perp h_{i} .
$$

3. $\left\langle z, z_{i}\right\rangle \in U_{s\lceil\gamma} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}$ and $s \not \perp \quad\left(g_{i+1}^{2} \upharpoonright \delta_{i} \backslash \gamma\right) \cup h_{i}$ and $t \not \perp h_{i}^{\prime}$. Let $g_{i+1}^{3}=$ $g_{i+1}^{2} \cup\left(s \upharpoonright \delta_{i}\right)$. Then

$$
\left\langle\tilde{z}, z_{i}\right\rangle \in U_{s \mid \delta_{i}} \times U_{t \uparrow \delta_{i}^{\prime}}, s \not \perp h_{i} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

Finally, let $g_{i+1}=g_{i+1}^{3}$.
Case 3. $y_{i} \in A$ and $z_{i}=\tilde{z}$. This is symmetric to Case 2.
End of the i-th induction step.
Lemma 3. \mathbb{P} has $\omega_{2}-c c$.
Proof: Let $\mathbb{Q} \subset \mathbb{P}$ with $|\mathbb{Q}| \geq \omega_{2}$. By CH and the Δ-system lemma, we may assume that there are $p \neq p^{\prime}$ in $\mathbb{Q}, p=\langle A, f, T\rangle, p^{\prime}=\left\langle A^{\prime}, f^{\prime}, T^{\prime}\right\rangle$ such that

$$
A \cap A^{\prime}=: \Delta<A \backslash \Delta<A^{\prime} \backslash \Delta
$$

$\operatorname{tp} A=\operatorname{tp} A^{\prime}$ and f, f^{\prime} are "typewise the same", so $f \upharpoonright \Delta^{2}=f^{\prime} \upharpoonright \Delta^{2}$, and $z \in A$ and $z^{\prime} \in A^{\prime}$ with $\operatorname{tp}(A \cap z)=\operatorname{tp}\left(A \cap z^{\prime}\right)$ implies $(\forall x \in A) f(x, z)=f\left(x, z^{\prime}\right)$.
Let $\gamma:=$ the least ordinal in $A \backslash \Delta$, and let z^{\prime} denote the member of A^{\prime} corresponding to $z \in A$. (So $\operatorname{tp}(A \cap z)=\operatorname{tp}\left(A^{\prime} \cap z\right)$ and $\left.A^{\prime} \cap \gamma^{\prime}=\Delta\right)$.

We want to extend $\left(f \cup f^{\prime}\right)$ to $g:\left(A \cup A^{\prime}\right)^{2} \longrightarrow 3$ so that $q:=\left\langle A \cup A^{\prime}, g, T \cup T^{\prime}\right\rangle \in \mathbb{P}$ and $q \leq p, p^{\prime}$. First we will define g on $(A \backslash \Delta) \times\left(A^{\prime} \backslash \Delta\right)$. For every $z \in A \backslash \Delta$, let

$$
g_{-1}^{z}=\phi
$$

By induction in ω steps, we will extend every $g_{-1}^{z}(z \in A \backslash \Delta)$ to a partial function $g^{z}: A \backslash \Delta \longrightarrow 3$ s.t., in the process,
(i) $(\forall i) g_{i}^{z}$ will all be finite.
(ii) $E^{p}(\gamma, y, z) \Longrightarrow(\forall i) g_{i}^{z}=g_{i}^{y}$.

Let

$$
\begin{aligned}
\mathcal{S}= & \left\{\left\langle B_{i}, \delta_{i}, \delta_{i}^{\prime}, h_{i}, h_{i}^{\prime}, y_{i}, z_{i}\right\rangle: i<\omega\right\} \\
r= & \left\{\left\langle B, \delta, \delta^{\prime}, h, h^{\prime}, \tilde{y}, \tilde{z}\right\rangle: B \in T, \delta, \delta^{\prime} \in A, h \in F n(A \backslash \delta, 3),\right. \\
& \left.h^{\prime} \in F n\left(A \backslash \delta^{\prime}, 3\right), \tilde{y}, \tilde{z} \in\left(A \cup A^{\prime}\right) \backslash \Delta, \delta \leq \tilde{y}, \delta^{\prime} \leq \tilde{z}\right\}
\end{aligned}
$$

Step $i \geq 0$. Consider $\langle\cdots\rangle_{i} \in \mathcal{S}$.
There are 3 relevant cases (for the future pairs involving $y, z \in A \backslash \Delta$):
(1) $\tilde{y}_{i} \in A$ and $\tilde{z}_{i}=z^{\prime} \in A^{\prime}$
(2) $\tilde{y}_{i}=y^{\prime} \in A^{\prime}$ and $\tilde{z}_{i} \in A$
(3) $\tilde{y}_{i}=y^{\prime} \in A^{\prime}$ and $\tilde{z}_{i}=z^{\prime} \in A^{\prime}$.

Case 1. $\tilde{y}_{i}=y \in A$ and $\tilde{z}_{i}=z^{\prime} \in A^{\prime}$.
0. $\operatorname{By}(\mathrm{a})(\alpha), \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, z\rangle \in U_{s} \times U_{t \gamma \gamma}$ and $t \not \perp g_{i-1}^{z}$.

Let $g_{i}^{z^{0}}:=g_{i-1}^{z} \cup t \Gamma_{A \backslash \gamma}$. This will guarantee that

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s} \times U_{t} .
$$

(*) Let also $g_{i}^{x^{0}}:=g_{i}^{z^{0}}$ for every $x \in A \backslash \gamma$ with $E^{p}(\gamma, x, z)$.
Let $g_{i}^{x^{0}}:=g_{i-1}^{x}$ for all other $x \in A \backslash \gamma$.

1. By $(\mathrm{a})(\beta)$ of $p, \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, z\rangle \in U_{s} \times U_{t\lceil\gamma}$ and $t \not \perp\left(g_{i}^{z^{0}} \upharpoonright \delta_{i}^{\prime}\right) \cup h_{i}^{\prime}$. Let $g_{i}^{z^{1}}:=g_{i}^{z^{0}} \cup\left(t \upharpoonright\left(\delta_{i}^{\prime} \backslash \gamma\right)\right)$, guaranteeing

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s} \times U_{t \mid \delta_{i}^{\prime}} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

Then (*)-update, i.e. let $g_{i}^{x^{1}}=g_{i}^{z^{1}}$ for every $x \in A \backslash \gamma$ with $E^{p}(\gamma, x, z)$, and $g_{i}^{x^{1}}=g_{i}^{x^{0}}$ for all other $x \in A \backslash \gamma$.
2. Concerning (a) (β) : Similarly, by (b) of p get $\langle s, t\rangle \in B_{i}$ s.t. $\langle y, z\rangle \in U_{s \mid \delta_{i}} \times U_{t \uparrow \gamma}$ and $s \not \perp h_{i}$ and $t \not \perp g_{i}^{z^{1}}$.

Let $g_{i}^{z^{2}}=g_{i}^{z^{1}} \cup\left(t \upharpoonright_{(A \backslash \gamma)}\right)$, guaranteeing that

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s \mid \delta_{i}} \times U_{t} \quad \text { and } \quad s \not \perp h_{i} .
$$

Then (*)-update.
3. (b) Assume w.l.o.g. that $\gamma<\delta_{i}^{\prime}$. Here $\exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, z\rangle \in U_{s \uparrow \delta_{i}} \times U_{t\lceil\gamma}$ and $s \not \perp h_{i}$ and $t \not \perp g_{i}^{z^{2}} \upharpoonright \delta_{i}^{\prime} \cup h_{i}^{\prime}$. Let $g_{i}^{z^{3}}:=g_{i}^{z^{2}} \cup t \upharpoonright\left(\delta_{i}^{\prime} \backslash \gamma\right)$. This will guarantee that

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s \uparrow \delta_{i}} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}, \quad s \not \perp h_{i} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

Then $(*)$-update all γ-twins of z.
Finally, let $\forall x \in A \backslash \Delta, g_{i}^{x}:=g_{i}^{x^{3}}$
Case 2. Is entirely symmetric.
Case 3. $\tilde{y}_{i}=y^{\prime} \in A^{\prime}$ and $\tilde{z}_{i}=z^{\prime} \in A^{\prime}$
Subcase 3a. $E^{p}(\gamma, y, z)$. So $g_{i-1}^{z}=g_{i-1}^{y}$.
0. By $(\mathrm{c})(\alpha)$ of $p, \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, y\rangle \in U_{s\lceil\gamma} \times U_{t \uparrow \gamma}$ and $g_{i-1}^{y} \cup s \cup t \in F n$ (i.e. $h^{\prime}=\phi$ and $h=g_{i-1}^{y}$ here).

Let $g_{i}^{y^{0}}:=g_{i-1}^{y} \cup(s \cup t) \upharpoonright(A \backslash \gamma)$. Also $(*)$-update g_{i-1}^{x} 's, i.e. for every $x \in A \backslash \gamma$ s.t. $E^{p}(\gamma, y, x)$, set $g_{i}^{x^{0}}:=g_{i}^{y^{0}}$, and for every other $x \in A \backslash \Delta$, set $g_{i}^{x^{0}}=g_{i-1}^{x}$. This will guarantee that

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s} \times U_{t} .
$$

1. (a) (α) If $\delta_{i}^{\prime} \leq \gamma$, then by (b), $\exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, y\rangle \in U_{s \upharpoonright \gamma} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}$ and $s \not \perp g_{i}^{y^{0}}$ and $t \not \perp h_{i}^{\prime}$. Let $g_{i}^{y^{1}}:=g_{i}^{y^{0}} \cup s \upharpoonright(A \backslash \gamma)$, and $(*)$-update. Then

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s} \times U_{t\left\lceil\delta_{i}^{\prime}\right.} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

If $\delta_{i}^{\prime}>\gamma$, then by (c) $(\alpha), \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, y\rangle \in U_{s \upharpoonright \gamma} \times U_{t \upharpoonright \gamma}$ and $g_{i}^{y^{0}} \cup s \cup t \upharpoonright \delta_{i}^{\prime} \in F n$ and $t \not \perp h_{i}^{\prime}$. Let $g_{i}^{y^{1}}:=g_{i}^{y^{0}} \cup(s \upharpoonright(A \backslash \gamma)) \cup\left(t \upharpoonright \delta_{i}^{\prime}\right)$, and $(*)$-update. Then

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s} \times U_{t\left\lceil\delta_{i}^{\prime}\right.} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

2. Concerning $(a)(\beta)$: Similarly to $\mathbf{1}$, get $\langle s, t\rangle \in B_{i}$ and update to $g_{i}^{y^{2}}$, guaranteeing

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s \mid \gamma} \times U_{t} \quad \text { and } \quad s \not \perp h_{i} .
$$

3. Concerning (b). There are 4 possibilities here:
(1) $\delta_{i} \leq \gamma$ and $\delta_{i}^{\prime} \leq \gamma$
(2) $\delta_{i} \leq \gamma$ and $\delta_{i}^{\prime}>\gamma$
(3) $\delta_{i}>\gamma$ and $\delta_{i}^{\prime} \leq \gamma$
(4) $\delta_{i}>\gamma$ and $\delta_{i}^{\prime}>\gamma, 4(\mathrm{a}) \delta_{i} \leq \delta_{i}^{\prime}, 4(\mathrm{~b}) \delta_{i}^{\prime}<\delta_{i}$.

If (1) - there is nothing to do: make $g_{i}^{x^{3}}=g_{i}^{x^{2}}$ for all $x \in A \backslash A$.
If (2), then by (b), $\exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, y\rangle \in U_{s \mid \delta_{i}} \times U_{t \mid \gamma}$ and $s \not \perp h_{i}$ and $t \not \perp\left(g_{i}^{y^{2}} \upharpoonright \delta_{i}^{\prime}\right) \cup h_{i}^{\prime}$.

Let $g_{i}^{y^{3}}=g_{i}^{y^{2}} \cup t \upharpoonright\left(\delta_{i}^{\prime} \backslash \gamma\right)$ and $(*)$-update. Then

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s \mid \delta_{i}} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}, \quad s \not \perp h_{i} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

If (3), act similarly.
If 4 (a), then by $(\mathrm{c})(\alpha), \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, y\rangle \in U_{s \upharpoonright \gamma} \times U_{t\lceil\gamma}$ and $\left(g_{i}^{y^{2}} \upharpoonright \delta_{i}\right) \cup h_{i} \cup$ $s \cup t \uparrow \delta_{i}^{\prime} \in F n$.

Let $g_{i}^{y^{3}}=g_{i}^{y^{2}} \cup s \upharpoonright\left(\delta_{i} \backslash \gamma\right) \cup t\left\lceil\left(\delta_{i}^{\prime} \backslash \gamma\right)\right.$ and $(*)$-update. Then

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s \backslash \delta_{i}} \times U_{t \mid \delta_{i}^{\prime}}, \quad s \not \perp h_{i} \quad \text { and } \quad t \not \perp h^{\prime} .
$$

If $4(\mathrm{~b})$, then by $(\mathrm{c})(\beta), \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, y\rangle \in U_{s\lceil\gamma} \times U_{t\lceil\gamma}$ and $\left(g_{i}^{y^{2}} \upharpoonright \delta_{i}^{\prime}\right) \cup h_{i}^{\prime} \cup$ $t \cup s \upharpoonright \delta_{i} \in F n$.

Let $g_{i}^{y^{3}}=g_{i}^{y^{2}} \cup t \upharpoonright\left(\delta_{i}^{\prime} \backslash \gamma\right) \cup s \upharpoonright\left(\delta_{i} \backslash \gamma\right)$ and $(*)$-update. Then the same formula as in 4(a) holds.
4. Concerning (c) (α) : If $y=z$ and $\delta_{i} \leq \mu\left(h_{i}\right)$, then w.l.o.g. $\gamma<\delta_{i}$ and, by (c)(α) of $p, \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, y\rangle \in U_{s \upharpoonright \gamma} \times U_{t\lceil\gamma}$ and $\left(g_{i}^{y^{3}} \upharpoonright \delta_{i}\right) \cup h_{i} \cup s \cup\left(t \upharpoonright \mu\left(h_{i}^{\prime}\right)\right) \in F n$, and $t \not \perp h_{i}^{\prime}$.

Let $g_{i}^{y^{4}}=g_{i}^{y^{3}} \cup s \upharpoonright\left(\delta_{i} \backslash \gamma\right) \cup t\left\lceil\left(\delta_{i} \backslash \gamma\right)\right.$, and $(*)$-update. Then

$$
\left\langle\tilde{z}_{i}, \tilde{z}_{i}\right\rangle \in U_{s \mid \delta_{i}} \times U_{t\left\lceil\delta_{i}\right.}, \quad h_{i} \cup s \cup\left(t \upharpoonright \mu\left(h_{i}^{\prime}\right)\right) \in F n \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

5. Concerning (c) (β) : If $y=z$ and $\delta_{i}^{\prime} \leq \mu\left(h_{i}\right)$, then w.l.o.g. $\gamma<\delta_{i}^{\prime}$, and by (c)(β) of $p, \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, y\rangle \in U_{s \upharpoonright \gamma} \times U_{t \upharpoonright \gamma}$ and $\left(g_{i}^{y^{4}} \upharpoonright \delta_{i}^{\prime}\right) \cup h_{i}^{\prime} \cup t \cup\left(s \upharpoonright \mu\left(h_{i}\right)\right) \in F n$ and $s \not \perp h_{i}$.

Let $g_{i}^{y^{5}}=g_{2}^{y^{4}} \cup t\left\lceil\left(\delta_{i}^{\prime} \backslash \gamma\right) \cup s \upharpoonright\left(\delta_{i}^{\prime} \backslash \gamma\right)\right.$ and (*)-update. Then

$$
\begin{gathered}
\left\langle\tilde{z}_{i}, \tilde{z}_{i}\right\rangle \in U_{s\left\lceil\delta_{i}^{\prime}\right.} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}, \\
h_{i}^{\prime} \cup t \cup\left(s \upharpoonright \mu\left(h_{i}\right)\right) \in F n \quad \text { and } \quad s \not \perp h_{i} .
\end{gathered}
$$

Subcase 3b. Not - $E^{p}(\gamma, y, z)$.
0. By (b) of $p, \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, z\rangle \in U_{s \uparrow \gamma} \times U_{t \uparrow \gamma}$ and $s \not \perp g_{i-1}^{y}$ and $t \not \perp g_{i-1}^{z}$. Let $g_{i}^{y^{0}}=g_{i-1}^{y} \cup s \upharpoonright(A \backslash \gamma)$ and $g_{i}^{z^{0}}=g_{i-1}^{z} \cup t \upharpoonright(A \backslash \gamma)$. Then

$$
\left\langle\tilde{y}_{i}, \tilde{y}_{i}\right\rangle \in U_{s} \times U_{t} .
$$

Then (*)-update, i.e.
(a) for every $x \in A \backslash \Delta$ s.t. $E^{p}(\gamma, x, y)$, set $g_{i}^{x^{0}}=g_{i}^{y^{0}}$,
(b) for every $x \in A \backslash \Delta$ s.t. $E^{p}(\gamma, x, z)$, set $g_{i}^{x^{0}}=g_{i}^{z^{0}}$ and
(c) for every other $x \in A \backslash \Delta$, set $g_{i}^{x^{0}}=g_{i-1}^{x}$.

1. Concerning (a) (α) : Again, if $\delta_{i}^{\prime} \leq \gamma$, then, by (b) of $p, \exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, z\rangle \in U_{s \upharpoonright \gamma} \times U_{t \upharpoonright \delta_{i}^{\prime}}, s \not \perp g_{i}^{y^{0}}$ and $t \not \perp h_{i}^{\prime}$.

Let $g_{i}^{y^{1}}=g_{i}^{y^{0}} \cup s \upharpoonright(A \backslash \gamma)$. Then

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s} \times U_{t\left\lceil\delta_{i}^{\prime}\right.} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

Then $(*)$-update, i.e. all $x \in A \backslash \delta$ with $E^{p}(\gamma, x, y)$ will get $g_{i}^{x^{1}}=g_{i}^{y^{0}}$.
If $\gamma<\delta_{i}^{\prime}$, then $\exists\langle s, t\rangle \in B_{i}$, s.t. $\langle y, z\rangle \in U_{s \mid \gamma} \times U_{t \mid \gamma}, s \not \perp g_{i}^{y^{0}}$ and $t \not \perp$ $\left(g_{i}^{z^{0}} \upharpoonright \delta_{i}^{\prime}\right) \cup h_{i}^{\prime}$.

Let $g_{i}^{y^{1}}=g_{i}^{y^{0}} \cup s \upharpoonright(A \backslash \gamma)$ and $g_{i}^{z^{1}}=g_{i}^{z^{0}} \cup t\left\lceil\left(\delta_{i}^{\prime} \backslash \gamma\right)\right.$, and $(* *)$-update, as (mutatis mutandis) in $\mathbf{0}$.
2. $\operatorname{Re}(\mathrm{a})(\beta)$. If $\delta_{i} \leq \gamma$, then $\exists\langle s, t\rangle \in B$, s.t. $\langle y, z\rangle \in U_{s \mid \delta_{i}} \times U_{t\lceil\gamma}, s \not \perp h_{i}$ and $t \not \perp g_{i}^{z^{1}}$.

Let $g_{i}^{z^{2}}=g_{i}^{z^{1}} \cup(t \upharpoonright(A \backslash \gamma))$ and $g_{i}^{y^{2}}=g_{i}^{y^{1}}$ and $(* *)$-update, as in $\mathbf{0}$. Then

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s \backslash \delta_{i}} \times U_{t} \quad \text { and } \quad s \not \perp h_{i} .
$$

If $\gamma<\delta_{i}$, then $\exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, z\rangle \in U_{s\lceil\gamma} \times U_{t\lceil\gamma}, s \not \perp\left(g_{i}^{y^{1}} \upharpoonright \delta_{i}\right) \cup h_{i}$ and $t \not \perp g_{i}^{z^{1}}$.
Let $g_{i}^{y^{2}}=g_{i}^{y^{1}} \cup\left(s \upharpoonright\left(\delta_{i} \backslash \gamma\right)\right)$ and $g_{i}^{z^{2}}=g_{i}^{z^{1}} \cup(t \upharpoonright(A \backslash \gamma))$ and $(* *)$-update. Then the formula above holds.
3. (b) Again, there are 4 possibilities here:
(1) $\delta_{i} \leq \gamma$ and $\delta_{i}^{\prime} \leq \gamma$,
(2) $\delta_{i} \leq \gamma$ and $\delta_{i}^{\prime}>\gamma$,
(3) $\delta_{i}>\gamma$ and $\delta_{i}^{\prime} \leq \gamma$,
(4) $\delta_{i}>\gamma$ and $\delta_{i}^{\prime}>\gamma$.

If (1), do nothing.
If (2), then by (b), $\exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, z\rangle \in U_{s \mid \delta_{i}} \times U_{t \mid \gamma}, s \not \perp h_{i}$ and $t \not \perp$ $\left(g_{i}^{z^{2}} \upharpoonright \delta_{i}^{\prime}\right) \cup h_{i}^{\prime}$.

Let $g_{i}^{y^{3}}=g_{i}^{y^{2}}$ and $g_{i}^{z^{3}}=g_{i}^{z^{2}} \cup\left(t \upharpoonright\left(\delta_{i}^{\prime} \backslash \gamma\right)\right)$. Then $(* *)$-update. Then

$$
\left\langle\tilde{y}_{i}, \tilde{z}_{i}\right\rangle \in U_{s \backslash \delta_{i}} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}, \quad s \not \perp h_{i} \quad \text { and } \quad t \not \perp h_{i}^{\prime} .
$$

If (3), then, by (b), $\exists\langle s, t\rangle \in B_{i}$ s.t. $\langle y, z\rangle \in U_{s \upharpoonright \gamma} \times U_{t\left\lceil\delta_{i}^{\prime}\right.}, s \not \perp g_{i}^{y^{2}} \upharpoonright \delta_{i} \cup h_{i}$ and $t \not \perp h_{i}^{\prime}$.

Let $g_{i}^{y^{3}}=g_{i}^{y^{2}} \cup\left(s \upharpoonright\left(\delta_{i} \backslash \gamma\right)\right)$ and $g_{i}^{z^{3}}=g_{i}^{z^{2}}$. Then $(* *)$-update.
If (4), then $\exists\langle s, t\rangle \in B$ s.t. $\langle y, z\rangle \in U_{s\lceil\gamma} \times U_{t\lceil\gamma}, s \not \perp g_{i}^{y^{2}} \upharpoonright \delta_{i} \cup h_{i}$ and $t \not \perp$ $g_{i}^{z^{2}} \upharpoonright \delta_{i}^{\prime} \cup h_{i}^{\prime}$.

Let $g_{i}^{y^{3}}=g_{i}^{y^{2}} \cup\left(s \upharpoonright\left(\delta_{i} \backslash \gamma\right)\right)$ and $g_{i}^{z^{3}}=g_{i}^{z^{2}} \cup\left(t \upharpoonright\left(\delta_{i}^{\prime} \backslash \gamma\right)\right)$. Then $(* *)$-update.
End of the Subcase 3 b and of Case 3.
For every $z \in A \backslash \Delta, g_{i}^{z}$ is defined as the most recent value.
End of the i-th induction step.
At the end of induction, let for every $z \in A \backslash \Delta$

$$
g^{z}=\bigcup_{i<\omega} g_{i}^{z}
$$

Finally, define g on $(A \backslash \Delta) \times\left(A^{\prime} \backslash \Delta\right)$ by the following rule:

$$
g\left(y, z^{\prime}\right)= \begin{cases}g^{z}(y), & \text { if } y \in \operatorname{dom}\left(g^{z}\right) \\ 0 & \text { otherwise }\end{cases}
$$

The extension procedure for g on $\left(A^{\prime} \backslash \Delta\right) \times(A \backslash \Delta)$ and the condition p^{\prime} is the same. (We do not have to take care there of γ^{\prime}-twins, but we may).

Since the construction has, as in side remarks, a verification of the conditions (iii) and (iv) of q, we are done.

The proof that in $V[G] \mathcal{U}_{F} \times \mathcal{U}_{F}$ is sort-of-Lindelöf:

1. Let $c \in V[G]$ be as in the definition (7), and let σ be a \mathbb{P}-name for it.
2. It is enough to show that, for every $p \in \mathbb{P}$ with

$$
\begin{equation*}
p \|- \text { "definition (7) for } \sigma \text { ", } \tag{*}
\end{equation*}
$$

there are $p^{*} \leq p$ and a countable $A^{*} \subset \omega_{2}$ s.t.

$$
p^{*} \mid 1-\check{\omega}_{2}^{2}=\bigcup\left\{\dot{U}_{\sigma_{1}(y, z)} \times \dot{U}_{\sigma_{2}(y, z)}:\langle y, z\rangle \in \check{A}^{*} \times \check{A}^{*}\right\}
$$

3. Note that $\forall q \in \mathbb{P}$ with $q \|-"(*) ", \forall\langle y, z\rangle \in \omega_{2}^{2} \exists r=r(q, y, z) \leq q$ and $\exists\langle s, t\rangle \in\left(F n\left(\omega_{2}, 3\right)\right)^{2}$ s.t. $r \|-\sigma(\check{y}, \check{z})=\langle\check{s}, \check{t}\rangle$ and $D(s) \cup D(t) \subset A^{r}$.
4. Let $\varphi: \omega \longrightarrow \omega \times \omega$ be a bijection s.t. $(\forall n \in \omega)(\varphi(n)=\langle i, j\rangle \Rightarrow n \geq i)$.
5. We will construct an ω-sequence of conditions $p_{0} \geq p_{1} \geq \cdots \geq p_{n} \geq \cdots, n<$ ω by induction, starting with $p_{0}=p$.
6. If $p_{i}=\left\langle A_{i}, f_{i}, T_{i}\right\rangle$ has been already constructed, we fix an ω-enumeration

$$
\begin{aligned}
\mathcal{S}^{i} & =\left\{\left\langle\delta_{j}^{i}, y_{j}^{i}, z_{j}^{i}, h_{j}^{i}\right\rangle: j<\omega\right\} \\
& =\left\{\langle\delta, y, z, h\rangle: \delta, y, z \in A_{i}, \delta \leq z, h \in \operatorname{Fn}\left(A_{i} \backslash \delta, 3\right)\right\}
\end{aligned}
$$

7. Step $n+1$, for $n \geq 0$. How to choose p_{n+1} ?
(1) Find $\varphi(n)=\langle i, j\rangle, i \leq n$.
(2) Consider $\left\langle\delta_{j}^{i}, y_{j}^{i}, z_{j}^{i}, h_{j}^{i}\right\rangle \in \mathcal{S}^{i}$ and pick $z_{n} \in \omega_{2} \backslash \sup ^{+} A_{n}$.
(3) Apply Lemma 2 to p_{n} and z_{n}, to get $q_{n} \leq p_{n}$ such that

$$
\begin{aligned}
& z_{n} \in A^{q_{n}} \\
& E^{q_{n}}\left(\delta_{j}^{i}, z_{j}^{i}, z_{n}\right) \text { holds, and } \\
& z_{n} \in U_{h_{j}^{i}} .
\end{aligned}
$$

(4) Apply note in 3. to get $p_{n+1}=r\left(q_{n}, y_{j}^{i}, z_{j}^{i}\right)$.
8. So $p_{n+1} \mid-\sigma\left(\check{y}_{j}^{i}, \check{z}_{j}^{i}\right)=\left\langle\check{s}_{n}, \check{t}_{n}\right\rangle$, for some s_{n}, t_{n} in $F n\left(A_{n+1}, 3\right)$. Also, for every μ,

$$
E^{p_{n+1}}\left(\mu, y_{j}^{i}, z_{j}^{i}\right) \longrightarrow s_{n} \upharpoonright \mu=t_{n} \upharpoonright \mu
$$

(Because here $\left.p_{n+1} \|-\dot{\varphi}(\check{y}, \check{z}) \geq \check{\mu}\right)$.
9. Let $q^{*}:=\left\langle A^{*}, f^{*}, T^{*}\right\rangle$, where $A^{*}=\bigcup_{i} A_{i}, f^{*}=\bigcup_{i} f_{i}, T^{*}=\bigcup_{i} T_{i}$. Then $q^{*} \in \mathbb{P}$, because \mathbb{P} is ω_{1}-complete.
10. Let

$$
\begin{aligned}
B^{*}:= & \left\{\left\langle s_{n}, t_{n}\right\rangle: n<\omega\right\} \\
= & \left\{\langle s, t\rangle \in\left(F n\left(A^{*}, 3\right)\right)^{2}:\left(\exists\langle y, z\rangle \in A^{*} \times A^{*}\right)\right. \\
& \left.\left(q^{*} \mid-\sigma(\check{y}, \check{z})=\langle\check{s}, \check{t}\rangle\right)\right\} .
\end{aligned}
$$

Let $p^{*}:=\left\langle A^{*}, f^{*}, T^{*} \cup\left\{B^{*}\right\}\right\rangle$.
11. Claim $p^{*} \in \mathbb{P}$.

Regarding (iii) of p^{*} at B^{*}.
$<y, z>\in A^{*} \times A^{*} \Rightarrow(\exists n \in \omega)$ s.t. $\varphi(n)=<i, j>$ and $<y, z>=<y_{j}^{i}, z_{j}^{i}>$. Then $p_{n+1} \|-\sigma(\check{y}, \check{z})=\left\langle\check{s}_{n}, \check{t}_{n}\right\rangle$, as remarked in 8. Then $q^{*} \|-\left(\langle\check{y}, \check{z}\rangle \in \dot{U}_{\check{s}_{n}} \times \dot{U}_{\check{t}_{n}}\right)$, because $q^{*} \leq p$ and $\leq p_{n+1}$. Then $\langle y, z\rangle \in U_{s_{n}}^{q^{*}} \times U_{t_{n}}^{q^{*}}$, by absoluteness (because $\left.D\left(s_{n}\right) \cup D\left(t_{n}\right) \subset A^{*}\right)$.

Regarding (iv) of p^{*} at B^{*}
Suppose $\delta, \delta^{\prime} \in A, h \in F n(A \backslash \delta, 3), h^{\prime} \in F n\left(A \backslash \delta^{\prime}, 3\right), y \in A \backslash \delta, z \in A \backslash \delta^{\prime}$.
(a)(α). Find $n \in \omega$ s.t. $\varphi(u)=\langle i, j\rangle$ and $z=z_{j}^{i}, h^{\prime}=h_{j}^{i}$ and $\delta^{\prime}=\delta_{j}^{i}$.

By (iii) p^{*} already checked, $\exists k \in \omega$ s.t. $\left\langle y, z_{n}\right\rangle \in U_{s_{k}} \times U_{t_{k}}$ and, by choice in $\mathbf{7}$, $E^{q^{*}}\left(\delta^{\prime}, z, z_{n}\right)$ and $z_{n} \in U_{h^{\prime}} \backslash D\left(h^{\prime}\right)$, so $t_{k} \not \perp h^{\prime}$. Then

$$
\langle y, z\rangle \in U_{s_{k}} \times U_{t_{k} \mid \delta^{\prime}} \quad \text { and } \quad t_{k} \not \perp h^{\prime}
$$

(a)(β). Similarly, find $n \in \omega$ s.t. $\varphi(n)=\langle i, j\rangle, y=z_{j}^{i}, h=h_{j}^{i}, \delta=\delta_{j}^{i}$. Then, by (iii) of $q^{*}, \exists k \in \omega$ s.t. $\left\langle z_{n}, z\right\rangle \in U_{s_{k}} \times U_{t_{k}}$ and $E^{q^{*}}\left(\delta, y, z_{n}\right)$ and $z_{n} \in U_{h} \backslash D(h)$. Then

$$
\langle y, z\rangle \in U_{s_{k} \upharpoonright \delta} \times U_{t} \quad \text { and } \quad s_{k} \not \perp h .
$$

(b). Find $n_{1}, n_{2} \in \omega$ s.t. $\varphi\left(n_{1}\right)=\left\langle i_{1}, j_{1}\right\rangle, \varphi\left(n_{2}\right)=\left\langle i_{2}, j_{2}\right\rangle$, and $y=z_{j_{1}}^{i_{1}}, \delta=\delta_{j_{1}}^{i_{1}}$, $h=h_{j_{1}}^{i_{1}}$ and $z=z_{j_{2}}^{i_{2}}, \delta^{\prime}=\delta_{j_{2}}^{i_{2}}, h^{\prime}=h_{j_{2}}^{i_{2}}$. Then $E^{q^{*}}\left(\delta, y, z_{n_{1}}\right), z_{n_{1}} \in U_{h} \backslash D(h)$, $E^{q^{*}}\left(\delta^{\prime}, z, z_{n_{2}}\right)$ and $z_{n_{2}} \in U_{h^{\prime}} \backslash D\left(h^{\prime}\right)$, by construction.

By (iii) of $p^{*}, \exists k \in \omega$ s.t. $\left\langle z_{n_{1}}, z_{n_{2}}\right\rangle \in U_{s_{k}} \times U_{t_{k}}$, implying that

$$
\langle y, z\rangle \in U_{s_{k} \upharpoonright \delta} \times U_{t_{k} \upharpoonright \delta^{\prime}} \quad \text { and } \quad s_{k} \not \perp h \text { and } t_{k} \not \perp h^{\prime} .
$$

(c)(α). Suppose $y=z$ and $\delta \leq \mu\left(h^{\prime}\right)$. Find $n_{1}, n_{2} \in \omega$ s.t. $\varphi\left(n_{1}\right)=\left\langle i_{2}, j_{1}\right\rangle$, $\varphi\left(n_{2}\right)=\left\langle i_{2}, j_{2}\right\rangle, z=z_{j_{1}}^{i_{1}}, \delta=\delta_{j_{1}}^{i_{1}}, h=h_{j_{1}}^{i_{1}}$ and $z_{n_{1}}=z_{j_{2}}^{i_{2}}, \mu\left(h^{\prime}\right)=\delta_{j_{2}}^{i_{2}}, h^{\prime}=h_{j_{2}}^{i_{2}}$. Then $E^{q^{*}}\left(\delta, z, z_{n_{1}}\right), z_{n_{1}} \in U_{h} \backslash D(h)$ and $E^{q^{*}}\left(\mu\left(h^{\prime}\right), z_{n_{1}}, z_{n_{2}}\right), z_{n_{2}} \in U_{h^{\prime}} \backslash D\left(h^{\prime}\right)$.

By (iii) of p^{*}, pick $k \in \omega$ s.t. $\left\langle z_{n_{1}}, z_{n_{2}}\right\rangle \in U_{s_{k}} \times U_{t_{k}}$. This implies that

$$
\langle z, z\rangle \in U_{s_{k} \upharpoonright \delta} \times U_{t_{k} \upharpoonright \delta}, h \cup s_{k} \cup\left(t_{k} \upharpoonright \mu\left(h^{\prime}\right)\right) \in F n \quad \text { and } \quad t \not \perp h^{\prime}
$$

because $s_{k} \upharpoonright \mu\left(h^{\prime}\right)=t_{k} \upharpoonright \mu\left(h^{\prime}\right)$, by 8 .
(c)(β). Similarly, assuming $y=z$ and $\delta^{\prime} \leq \mu(h)$, find $n_{1}, n_{2} \in \omega, \varphi\left(n_{1}\right)=$ $\left\langle i_{1}, j_{1}\right\rangle, \varphi\left(n_{2}\right)=\left\langle i_{2}, j_{2}\right\rangle$ s.t. $z=z_{j_{1}}^{i_{1}}, \delta^{\prime}=\delta_{j_{1}}^{i_{1}}, h^{\prime}=h_{j_{1}}^{i_{1}}, z_{n_{1}}=z_{j_{2}}^{i_{2}}, \mu(h)=\delta_{j_{2}}^{i_{2}}$, $h=h_{j_{2}}^{i_{2}}$. Then $E^{q^{*}}\left(\delta^{\prime}, z, z_{n_{1}}\right), z_{n_{1}} \in U_{h^{\prime}} \backslash D\left(h^{\prime}\right)$ and $E^{q^{*}}\left(\mu(h), z_{n_{1}}, z_{n_{2}}\right), z_{n_{2}} \in$ $U_{h} \backslash D(h)$. Let $\left\langle z_{n_{2}}, z_{n_{1}}\right\rangle \in U_{s_{k}} \times U_{t_{k}}$ for some $k \in \omega$. Then

$$
\langle z, z\rangle \in U_{s_{k} \upharpoonright \delta^{\prime}} \times U_{t_{k}\left\lceil\delta^{\prime}\right.}, h^{\prime} \cup t_{k} \cup\left(s_{k} \upharpoonright \mu(h)\right) \in F n \quad \text { and } \quad s_{k} \not \perp h
$$

because $s_{k} \upharpoonright \mu(h)=t_{k} \upharpoonright \mu(h)$, by 8 .
12. Finally, $p^{*} \in \mathbb{P} \Rightarrow p^{*} \leq p$ and

$$
\begin{aligned}
p^{*} \mid 1-" \omega_{2}^{2} & =\bigcup\left\{\dot{U}_{s} \times \dot{U}_{t}:\langle s, t\rangle \in B^{*}\right\} \\
& =\bigcup\left\{\dot{U}_{\sigma_{1}(y, z)} \times \dot{U}_{\sigma_{2}(y, z)}:\langle y, z\rangle \in \check{A}^{*} \times \check{A}^{*}\right\} "
\end{aligned}
$$

(The first line is a consequence of Lemma 1 and $p^{*} \mid-$ " $\check{A}^{*} \times \check{A}^{*}=\bigcup\left\{\dot{U}_{s} \times U_{t}\right.$: $\left.\langle s, t\rangle \in B^{*}\right\} "$.) As required.

This concludes the proof of the Main Lemma.

C) Facts about \mathbf{F} in $\mathrm{V}[\mathrm{G}]$

Fact 1. \mathcal{U}_{F} is a Lindelöf family, i.e. every \mathcal{U}_{F}-cover of ω_{2} has a countable subcover.

Proof: Let $c: \omega_{2} \longrightarrow F n\left(\omega_{2}, 3\right)$ be a \mathcal{U}_{F}-cover of ω_{2}, i.e. $\forall y \in \omega_{2} y \in U_{c(y)}$. If $z \in \omega_{2}$ and $\varphi(y, z)=\delta$, then $z \in U_{c(y) \upharpoonright \delta}$. Define $d: \omega_{2}^{2} \longrightarrow\left(F n\left(\omega_{2}, 3\right)\right)^{2}$ by

$$
d(y, z)=\langle c(y), c(y) \upharpoonright \varphi(y, z)\rangle .
$$

Then d is as in Definition (7). By Main Lemma, \exists countable $A \subset \omega_{2}$ s.t. $d^{\prime \prime} A^{2}$ covers ω_{2}^{2}. But then $c^{\prime \prime} A$ covers $\omega_{2} . \quad\left[y \in \omega_{2} \Rightarrow\langle y, 0\rangle \in U_{s} \times U_{t}\right.$, where $\langle s, t\rangle=$ $d(a, b)$ for some $\langle a, b\rangle \in A^{2} \Rightarrow y \in U_{s}=U_{c(a)}$ by definition of $\left.d\right]$.

Fact 2. Each of $\tau^{0}, \tau^{1}, \tau^{2}$ is a Lindelöf topology.
Proof: Let \mathcal{C} be a cover of ω_{2} by τ^{0}-basic open sets, i.e.

$$
\omega_{2}=\bigcup\left\{V_{k}^{0}: k \in \mathcal{C}\right\}, \quad \mathcal{C} \subset F n\left(\omega_{2}, 2\right) .
$$

$\forall z \in \omega_{2}$ pick $k_{z} \in \mathcal{C}$ s.t. $z \in V_{k_{z}}^{0}$. Let $s_{z}: D\left(k_{z}\right) \longrightarrow 3$ be defined by

$$
s_{z}(x)= \begin{cases}i \in 3 \text { s.t. } s \in A_{x}^{i}, & \text { if } z \neq x \\ 1 \text { (or } 2) & \text { if } z=x\end{cases}
$$

Then $z \in U_{s_{z}}$ and $\exists F_{z} \subset D\left(k_{z}\right)$ s.t.

$$
z \in U_{s_{z}} \backslash F_{z} \subset V_{k_{z}}^{0}
$$

$$
\begin{gathered}
\text { [Indeed, } \forall x \in D\left(k_{z}\right) \quad A_{x}^{s_{z}(x)} \subset\left(A_{x}^{0}\right)^{k_{z}(x)} \\
\Downarrow \\
\bigcap_{x \in D\left(k_{z}\right)} A_{x}^{s_{z}(x)} \subset V_{k_{z}}^{0} .
\end{gathered}
$$

Let $F_{z}=\left(\bigcap_{x \in D\left(k_{z}\right)}\left(A_{x}^{s_{z}(x)} \cup\{x\}\right)\right) \backslash \bigcap_{x \in D\left(k_{z}\right)} A_{x}^{s_{z}(x)} \subset D\left(k_{z}\right)$.
Then $U_{s_{z}}:=\bigcap_{x \in D\left(k_{z}\right)}\left(A_{x}^{s_{z}(x)} \cup\{x\}\right) \subset V_{k_{z}}^{0} \cup F_{z}$.]
So $\left\{s_{z}: z \in \omega_{2}\right\}$ is a \mathcal{U}_{F}-cover of ω_{2}, hence, by Fact 1 , there is a countable subcover $\left\{s_{z_{i}}: i \in \omega\right\}$. But then $\bigcup\left\{V_{k_{z_{i}}}^{0}: i<\omega\right\}$ is co-countable in ω_{2}, and hence τ^{0} is a Lindelöf topology.

Fact 3. Each of $\tau^{0}, \tau^{1}, \tau^{2}$ is a points G_{δ} topology.
Proof: For τ^{0}. Fix $z \in \omega_{2}$. By flexibility of $F, \forall y \neq z \exists x \in \omega_{2} \backslash\{y, z\}$ s.t.

$$
F(x, y)=0 \quad \text { and } \quad F(x, z)=1(2 \text { is equally possible })
$$

Let $K=\left\{x \in \omega_{2} \backslash\{z\}: F(x, z)=1\right\}$. Then $\omega_{2}=\bigcup_{x \in K}\left(A_{x}^{0} \cup\{x\}\right) \cup\left(A_{z}^{0} \cup\{z\}\right)$.
By Lindelöfness of \mathcal{U}_{F}, \exists countable $K_{0} \subset K$ s.t.

$$
\omega_{2}=\bigcup_{x \in K_{0}}\left(A_{x}^{0} \cup\{x\}\right) \cup\left(A_{z}^{0} \cup\{z\}\right)
$$

Consequently, we have

$$
\omega_{2} \backslash\{z\}=\bigcup_{x \in K_{0}}\left(A_{x}^{0} \cup\{x\}\right) \cup A_{z}^{0}
$$

so $\omega \backslash\{z\}$ is a countable union of τ^{0}-closed (points are closed by flexibility of F) sets, and so $\{z\}$ is a G_{δ} of τ^{0}.
Fact 4. Each of $\tau^{i} \times \tau^{j}, i, j \in 3$, is a Lindelöf topology on ω_{2}^{2}.
Proof: For $\tau^{0} \times \tau^{1}$.
A. Suppose $\langle y, z\rangle \in V_{k}^{0} \times V_{\ell}^{1}$. Then, as in Fact 2, define 2 functions $s, t: D(k) \cup$ $D(\ell) \longrightarrow 3$ as follows:

$$
\begin{aligned}
& s(x)= \begin{cases}i \in 3 \text { s.t. } y \in A_{x}^{i}, & \text { if } y \neq x \\
2, & \text { if } y=x \\
i \in 3 \text { s.t. } z \in A_{x}^{i}, & \text { if } z \neq x \\
2, & \text { if } z=x\end{cases} \\
& t(x)=\left\{\begin{array}{l}
\text {. }
\end{array}\right.
\end{aligned}
$$

Then $s \upharpoonright \varphi(y, z)=t \upharpoonright \varphi(y, z)$. (Indeed, if $y=z$, then by observation that definitions of s and t coincide. If $y \neq z$ and $x<\varphi(y, z)$, then $F(x, y)=F(x, z)$, and $y \in A_{x}^{i} \leftrightarrow z \in A_{x}^{i},(y \neq x \neq z)$.) Also, as in Fact 3, \exists finite $F, G \subset D(k) \cup D(\ell)$ s.t. $y \in U_{s} \backslash F \subset V_{k}^{0}$ and $z \in U_{t} \backslash G \subset V_{\ell}^{1}$, so $\langle y, z\rangle \in U_{s} \backslash F \times U_{t} \backslash G \subset V_{k}^{0} \times V_{\ell}^{1}$, and $U_{s} \times U_{t} \subset\left(V_{k}^{0} \cup F\right) \times\left(V_{\ell}^{1} \cup G\right)$.
B. Let \mathcal{C} be a $\tau^{0} \times \tau^{1}$ cover of ω_{2}^{2}, and let $\mathcal{D} \subset \mathcal{U}_{F} \times \mathcal{U}_{F}$ be its refinement, obtained, for each point as in A, point by point. Since, by the Main Lemma, $\mathcal{U}_{F} \times \mathcal{U}_{F}$ is sort-of-Lindelöf and \mathcal{D} satisfies Definition (7), there is a countable subcover of \mathcal{D}, say $\left\{U_{S_{i}} \times U_{t_{i}}: i<\omega\right\} \subset \mathcal{D}$. Then

$$
\begin{aligned}
\omega_{2}^{2}= & \bigcup_{i<\omega}\left(U_{S_{i}} \times U_{t_{i}}\right)=\bigcup_{i<\omega}\left[\left(V_{k_{i}}^{0} \cup F_{i}\right) \times\left(V_{\ell_{i}}^{1} \cup G_{i}\right)\right] \\
& =\bigcup_{i<\omega}\left[\left(V_{k_{i}}^{0} \times V_{\ell_{i}}^{1}\right) \cup\left(V_{k_{i}}^{0} \times G_{i}\right) \cup\left(F_{i} \times V_{\ell_{i}}^{1}\right) \cup\left(F_{i} \times G_{i}\right)\right]
\end{aligned}
$$

Since $V_{k_{i}}^{0}$ is Lindelöf in $\tau^{0}, V_{l_{i}}^{1}$ in τ^{1} by Fact 2, and F_{i} and G_{i} are finite, \mathcal{D} has a countable subco $\tau^{0} \times \tau^{1}$ is Lindelöf.
(Other cases of $\langle i, j\rangle \in 3 \times 3$ are similar.)

Fact 5. In $\tau^{0} \times \tau^{1} \times \tau^{2}, \omega_{2}^{3}$ has a closed discrete diagonal.
Proof: Closed by the flexibility of F, and $\langle x, x, x\rangle \in\left(A_{x}^{0}\right)^{c} \times\left(A_{x}^{1}\right)^{c} \times\left(A_{x}^{2}\right)^{c}$ witnesses the discreteness.
Corollary. Let, in $V[G], S:=\left(\omega_{2}, \tau^{0}\right) \oplus\left(\omega_{2}, \tau^{1}\right) \oplus\left(\omega_{2}, \tau^{2}\right)$. Then S and S^{2} are Lindelöf points $G_{\delta} 0$-dimensional spaces, and $L\left(S^{3}\right)=\mathfrak{c}^{+}=\omega_{2}$.

This finishes the proof of our theorem.
We conclude with a sketch of the forcing notion \mathbb{P} to get a zero-dimensional space X such that,for all finite $n, L\left(X^{n}\right)=\aleph_{0}$, but $L\left(X^{\aleph_{0}}\right)=\mathfrak{c}^{+}=\aleph_{2} . p \in \mathbb{P}$ iff $p=\langle A, f, \overrightarrow{\mathcal{B}}\rangle$, where
(i) $A \in\left[\omega_{2}\right]^{\leq \omega}$
(ii) $f: A^{2} \rightarrow \omega$
(iii) $\overrightarrow{\mathcal{B}}=\left\langle\mathcal{B}_{n}: n \in \omega \backslash 1\right\rangle$ and $\forall n\left|\mathcal{B}_{n}\right| \leq \omega$ and $\forall B \in \mathcal{B}_{n} B \subset(F n(A, \omega))^{n}$ (and $A^{n}=\bigcup\left\{U_{s_{0}} \times \ldots \times U_{s_{n-1}}: \vec{s} \in B\right\} \cap A^{n}$; this follows from (iv)).
(iv) $\forall n \in \omega \backslash 1$
$\forall B \in \mathcal{B}_{n}$
$\forall \vec{z} \in A^{n}$
\forall partition of $n, N \cup \tilde{N}=n$
$\forall \vec{\delta} \in A^{\tilde{N}}$
$\forall \vec{h} \in(F n(A, \omega))^{\tilde{N}}$ s.t. $\vec{h} \geq \vec{\delta}$ (i.e. $\left.D\left(h_{i}\right) \geq \delta_{i}, \forall i\right)$.
\forall assignment $[[$ for $\forall z \in \operatorname{ran}(\vec{z} \upharpoonright \tilde{N})$,
of $\bullet 1$ a finite tree $\left(T^{z}, \preceq\right)$ s.t.

$$
\begin{gathered}
\left(t \in T^{z} \Rightarrow t=\left\langle\delta_{t}, h_{t}\right\rangle\right), \\
\delta_{t} \in A \& h_{t} \in F n\left(A \backslash \delta_{t}, \omega\right), \\
\&\left(s \prec t \Rightarrow \delta_{s}<\delta_{t}\right) \\
\&\left(t \in \operatorname{Lev}_{0}(T) \Rightarrow \delta_{t} \leq z\right) ;
\end{gathered}
$$

and
of $\bullet 2$ an identification map $m^{Z}: N^{z} \rightarrow T$, where $N^{z}:=\left\{i \in \tilde{N}: z_{i}=z\right\}$, s.t.
$\left.\left.\left(m^{z}(i)=t \Rightarrow\left(\delta_{i}=\delta_{t} \& h_{i}=h_{t}\right)\right)\right]\right]$
$\exists \vec{s} \in B$ such that
(a) $(\forall i, j \in N)\left[z_{i} \in \mathcal{U}_{s_{i}} \&\left(z_{i}=z_{j} \Rightarrow s_{i}=s_{j}\right)\right]$
and
(b) $\forall z \in \operatorname{ran}(\vec{z} \mid \tilde{N})$
$\forall i, j \in N^{z}$
(1) $m^{z}(i)=m^{z}(j) \Rightarrow s_{i}=s_{j}$;
(2) if $m^{z}(i) \prec m^{z}(j)$ and $t \in T^{z}$ is the immediate successor of $m^{z}(i)$ in the chain of
T^{z} leading to $m^{z}(j)$, then $s_{i} \upharpoonright \delta_{t}=s_{j} \upharpoonright \delta_{t}$;
(3) $s_{i} \not \perp h_{i}$;
(4) if $t \in \operatorname{Lev}_{0}(T) \& t \preceq m^{z}(i)$,
then

$$
z \in \mathcal{U}_{s_{i}} \upharpoonright \delta_{t}
$$

Let E^{p} be defined by

$$
E^{p}(\delta, y, z) \Leftrightarrow\left\{\begin{array}{l}
\delta, y, z \in A^{p} \\
\delta \leq y, z \\
\forall x \in\left(A^{p} \cap \delta\right) f^{p}(x, y)=f^{p}(x, z)
\end{array}\right.
$$

We define $q \leq p$ iff $A^{q} \supset A^{p}, f^{q} \supset f^{p},(\forall n \in \omega-1) \mathcal{B}_{n}^{q} \supset \mathcal{B}_{n}^{p}$, and $E^{q} \supset E^{p}$. End of definition.

It is worth observing that if T^{z} contains a chain of the form

$$
\begin{array}{cccccccc}
\delta_{0} & h_{0} & \delta_{1} & h_{1} & \delta_{2} & h_{2} & \delta_{3} & h_{3}
\end{array}
$$

then

$$
h_{0} \cup s_{0} \cup\left(s_{1} \upharpoonright \delta_{1}\right) \cup\left(s_{2} \upharpoonright \delta_{1}\right) \cup\left(s_{3} \upharpoonright \delta_{1}\right) \in F n
$$

\&

$$
h_{1} \cup s_{1} \cup\left(s_{2} \upharpoonright \delta_{2}\right) \cup\left(s_{3} \upharpoonright \delta_{2}\right) \in F n
$$

\&

$$
h_{2} \cup s_{2} \cup\left(s_{3} \upharpoonright \delta_{3}\right) \in F n
$$

\&

$$
h_{3} \cup s_{3} \in F n .
$$

\mathbb{P} preserves cardinals and CH , (it is ω_{1}-complete $\& \omega_{2}$-cc). If G is \mathbb{P}-generic over V and $V \models C H$, then $\exists X \in V[G]$, s.t.
X is a Lindelöf Hausdorff 0 -dimensional space of size \aleph_{2}, and

$$
\begin{gathered}
\forall n<\omega L\left(X^{n}\right)=\aleph_{0} \\
\text { and } L\left(X^{\omega}\right)=\mathfrak{c}^{+}=\aleph_{2} .
\end{gathered}
$$

With slightly simpler partial orders, we can set for every $n<\omega$ a Hausdorff Y_{n} s.t.

$$
L\left(Y_{n}^{n}\right)=\aleph_{0} \& L\left(Y_{n}^{n+1}\right)=\mathfrak{c}^{+}=\aleph_{2}
$$

Acknowledgements. The contents of this paper is a part of the doctoral thesis written at the University of Toronto under the supervision of Professor William Weiss. He originally posed the exact question answered here. The author is very grateful to him for advice and encouragement during numerous discussions of the subject, and to Professor Bohuslav Balcar for helping to write this paper.

References

[1] Shelah S., On some problems in general topology, preprint, 1978.
[2] Juhász I., Cardinal Functions II, in: K. Kunen and J.E. Vaughan, eds., Handbook of Settheoretic Topology, North-Holland, Amsterdam, 1984.
[3] Hajnal A., Juhàsz I., Lindelöf spaces à la Shelah, Coll. Mat. Soc. Bolyai, Budapest, 1978.
[4] Gorelic I., The Baire Category and forcing large Lindelöf spaces with points G_{δ}, Proceedings Amer. Math. Soc. 118 (1993), 603-607.
[5] Juhász I., Cardinal Functions, in: M. Hušek and J. van Mill, eds., Recent Progress in General Topology, North-Holland, 1992.
[6] Przymusinski T.C., Normality and paracompactness in finite and countable cartesian products, Fund. Math. 105 (1980), 87-104.
[7] Kunen K., Set Theory, North-Holland, Amsterdam, 1980.

The Center for Theoretical Study, Charles University, Ovocný trh 3, 11636 Praha 1, Czech Republic
(Received April 6, 1992, revised October 26, 1993)

