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On powers of Lindelof spaces

IsAAC GORELIC

Abstract. We present a forcing construction of a Hausdorff zero-dimensional Lindel6f
space X whose square X2 is again Lindel6f but its cube X3 has a closed discrete sub-
space of size ¢t, hence the Lindelof degree L(X3) = ¢T. In our model the Continuum
Hypothesis holds true.

After that we give a description of a forcing notion to get a space X such that
L(X™) = Yy for all positive integers n, but L(XN0) = ¢t = Rs.

Keywords: forcing, topology, products, Lindelof
Classification: 54D20,54B10, 03E35

Introduction

It is well-known that a product of two Lindelof spaces need not be Lindelof.
Indeed, the product of two Sorgenfrey lines has a closed discrete subspace of size
9%o = ¢. The general problem of the degree of non-productivity of the Lindelsf
property is discussed in [2] and [5].

In 1978, Shelah, Hajnal and Juhasz proved that it is consistent that there is
a Lindeldf space whose square has a closed discrete subspace of size ¢ = Ry (see
1], [2], 3]).

In 1990 we gave a consistent example of a Lindel6f space whose square has
a closed discrete subspace of size 28!, cardinal 28 arbitrarily large and does not
depend on the size of the Continuum, see [4] and [5]. This is the best result up to
this point. We conjecture that 981 is the true upper bound on the sizes of closed
discrete subspaces of squares of Lindelof spaces.

Definition. For a topological space X, L(X) is the smallest cardinal x such
that every open cover of X has a subcover of size at most .

It is known about the higher powers of Lindel6f spaces that for each positive
integer n, there is a space X such that X" is Lindelsf, but L(X"*1) = ¢, see [6].

The aim of the present paper is to show a consistent example of a space whose
square is Lindelof, but L(X3) = ¢t. It is an open problem whether L(X3) =
281 > Ry is possible.

Our reference for forcing and basics is Kunen’s book [7].
Theorem. Con(ZF) = Con(ZFC+CH+ “There is a Lindel6f Hausdorff zero-
dimensional space X with all points G sets, | X| = wy = ¢, L(X) = L(X?) = w,
and L(X?3) = wg = 7).

The proof will consist of the following:
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A) Definitions,

B) Main Lemma, and

C) Facts, of which the last Corollary furnishes the space X mentioned in the
theorem.

A) Definitions

0.
1.

Let F: wy x wg — {0,1,2} be fixed.

D(f) denotes the domain of the function f and if D(f) C wa, then p(f) :=
min D(f) or wy, if f = ¢.

.Forx€wpandi€3,let AL :={y€wy: y#xand F(x,y) =i}
L Vs€ Fn(ws,3) Us:= ) (A3P U{a}).

z€D(s)

. Up = {Us: s € Fn(wa,3)}.
. F is flexible if (Vy # z in wg) (Vi,j € 3) (3z € wa\{y,z}) F(z,y) = i and

F(z,z)=j.

. Define ¢: wo X wa—wg + 1 by letting

¢(y,y) = wa, and for y # z
o(y,z) == min ({8 €ynz: F(6,y) #F(62)}U{ynz}),
i.e. the least § € wo s.t. (F(d,y) # F(4,2), or § =y or § = 2).

. We say that Up x U is sort-of-Lindeldf if every “cover” c: w%—>(Fn(w2, 3))2

satisfying (V(y, z) € w3) c(y, z) = (s, 1) =
(i) (y,z) € Us x Uy, and
(i) sle(y, z) = tle(y, 2)
has a countable “subcover”, i.e. 3 countable A C ws s.t.
Y(y,z) € wa Ia,b) € A
with (y, 2) € Uc,(a,p) X Ucy(ap) (Where ci(a,b) is the left coordinate of c(a,b),
and ca(a, b) is the right one).
We remark that (ii) simply means that Vy € wa([c(y,y) = (s,t) and y €
D(s) N D(t)] = s(y) = t(y))-

8. For an S C wy, let (S)? = S and (S)! = ws\S.

9. For k € Fn(wo,2), let

W= ) A,
zeD(k)

V= ) A,
zeD(k)

Ve ) e
zeD(k)
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10. Let 70, 71, 72 be topologies on wo generated, respectively, by the following

bases:
(VP k€ Fn(ws,2)},
{Vkl . k€ Fn(wse,2)},

{sz : k€ Fn(w,2)}.
So, e.g., 70 is generated on wy by a subbasis {A%, wo\ A% : & € wo}.

11. The definition of the forcing notion (P,<). pe P iff p = (A, f,T), and
(i) ACwyand |A] <w.
(ii) f: A2—3.
(i) |7| < w and (VB € T) B C (Fn(A,3))* and A2 = J{Us x Uy : (s,t) €
B} N A2,
(iv) VBeT
V6,6’ € A
Vh € Fn(A\4,3)
Vh' € Fn(A\d,3)
Yy € A\d
Vz € A\&

(a) (3(s,t) € B)(3(s',t') € B)
(@) (y,2) €Us x Upy and t LI,
(B) (y,2) €Ugps x Upand s L I

(b) (3(s,t) € B)
(y,2) € Ugts x Uppsr and s £ hoand t f '

(c) If y = z, then (3(s,t) € B) and (3(s,t’) € B) s.t.
(o) If 6 < p(h'), then
<272> € Us[6 X Ut[(S
and hUsU (t/u(h')) € Fnand t L I/, and
(8) 16 < p(h), then
<Z,Z> c Uy 16" X Uy 16’ and
W Ut'U(s'tu(h)) € Fnoand s" L h. O

Let EP(d,y, z) N d,y,z€ Aand 6 <y,z and (Vo € ANJ) fP(x,y) = fP(x, 2).
Let ¢ < p if, by definition, A1 D AP, f4 > fP, T9 5 TP and E? D EP. (]

B) Main Lemma

Let V |E ZFC + CH and let P be defined in V' by Definition 11. Then P is
w1-complete and has wo — cc.

Let G be P-generic over V, and let F = |J{fP : p € G}. Then F: wy X wg—3
is a flexible total function and Up x Up is sort-of-Lindel6f.
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PROOF: The fact that P is wj-complete (i.e. that the naturally defined infimum of
a countable descending sequence of conditions belongs to P) is obvious, because
“p € P” is a finitary property (i.e. if p & P, then there is a finite collection of finite
parts of p (as a structure) witnessing this). O

We will prove 3 lemmas, of which Lemma 1 implies the totality, Lemma 2
implies the flexibility of F', and Lemma 3 establishes the wo-chain condition of P.
The final statement of the Main Lemma is proved last.

Lemma 1. Let p = (A, f,T) € P. Then
VZ € wa\A
35: (AU{z})? — 3 extending f, s.t.
qg = (AU{z2},,T)ePand ¢ <p.

Proof. Assume A\Z # ¢ (otherwise, use Lemma 2). So choose the least
a € A\Z. We will define by induction a partial function g: A—3 such that, if
(Vz € A) g, 2) = g(z), then ¢ € P. g will be an increasing union g = |J g;. Let
1<w
go: AN zZ—3 be defined by go(z) := f(z,a), for every x € ANZ=ANa.
Let

S

{(Bi, 6, 07, hiy hiy iy zi) = i < w}
= {B,5,8,hh,y,z): BET, 6,6 € A
h € Fn(A\6,3), h' € Fn(A\d,3),
ye (AU{ZD\S, z € (AU{Z}\, and (y = Zor 2 = 2)}.
Step i > 1. Consider (---); € S.
Casel. y; = z; = Z.
0. By (iv)-c-a applied to (a,a), d =" = a, h = gilg\q and &' = ¢, I(s,t) € B

s.t. (a,a) € Ugpy X Uyjq and g; Us Ut € Fy. Let gio_i_1 = ¢; UsUt. This will

guarantee that .
(2,2) € Us x Uy for iiig.

1. Apply (iv)-b to (a,a) with § = a, h = g?+1[A\a, 8 = 48,, b’ = hl. Then
3(s,t) € B, s.t. (a,a) € Uy, ¥ Ut and s £ g?_H [ a\q and t L R
Let gl.l_i_1 = g?_H U s. This will guarantee that

(2,2) € Us x Uy and ¢ L B

2. (iv)-b of ¢ is obtained similarly from (iv)-b. We have 91'24-1 at this stage. Note
that (b) is automatic because of E9(Z,%,a). And the same applies to (c). Let
Ji+1 = 91'2+1- O
Case 2. y; = Z and z; # Z, i.e. z; € A.
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iv)-a-3 applied to (a,z;) with 6’ = a and b/ = g; [ A\a> 3(s:1) € B, st
Usta x Up and s [ g; [A\a. Let 920+1 := ¢; Us. This guarantees that

m —~

<Z,ZZ'> € Ug x U.

1. Apply (iv)-b to (a,z;) and § = a, h = g} {[A\a, &' = &}, b’ = h}. Get (s,t) €
B s.t. (a,2) € Ugpg X Upgr and t £ b} and s 92'1+1FA\a' Set g?_i_1 = 9i1+1 Us,

thus guaranteeing
(%,2)) €Us x Uypg and t L hj.

Note: (a)(f) of ¢ for (Z, z;) is automatic because of E(Z, Z,a). (b)q is auto-
matic for the same reason and (c), does not apply here. Set g;+1 = gil_H.
(]

Case 3. y; € A and z; € Z.

0. By (iv)-a-a, 3(s,t) € Bs.t. (y;,a) € UsxUpjg and t L g;[ g\4- Let g?_H = g;Ut,

guaranteeing ~
<y7,72> e US X Ut7

ie. (iii)q at (y;, 2).

1. Note that (a)(a) is automatic. Let (s,t) € B be s.t. (y;,a) € Ugps, x Uppq and

s Y h;and t [ g?_H [ A\a (by (iv)-b). Set 9i1+1 = 920+1 Ut, thus guaranteeing that
(i, 2) € Ugps, xUp and s [ hy.

2. Note again that (b) is automatic and (c) does not apply. Let g;11 := 9i1+1'

Lemma 2. Let p = (A, f,T) € P. Let v € A, r € Fn(A\v,3), 2 € A\~ and
% € wo\supt A. Then 3j: (AU{2})2—3 extending f s.t. q := (AU{3},3,T) € P,
q<p, 2€U, and E4(v,%,%).

PROOF: Let
= {(B,6,8',h, 1 ,y,2): BET, §§ €A, he Fn(A\S,3),
n' € Fn(A\Y,3), y€ (AU{Z}\J, z € (AU {z})\¢ and
(y=Zorz=2)}.

As in the proof of Lemma 1, let Vo € AN~y go(x) = f(x,2) and Vz € D(r)
go(z) = r(x), so go: (AN~)UD(r)—3. This guarantees at once that zZ € U,.

Step i > 0. Consider (---); € S.

Casel. y; = z; = Z.
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0. By (iv)-c applied to (z,z) with h = g;[A\y, ' = ¢, 6 = &' = v, Is,t) € B
s.t. (2,2) € Uspy x Ugpy and g; [A\’Y UsUt e Fn.
Let g?_H =g; UsUt. Thus

(2,3) € Us x Uy,

and so is covered by B;.

1. If §] < v, by (iv)-b, 3(s,t) € By, s.t. (2,2) € Ugpy X Uppgr and s £ g9, 114\
and ¢t J h.
Let 9i1+1 = g?_H U s, guaranteeing

<Z,2> € Ug X Ut[&’- and t 71/_ h;

If 5, > 7, by (iv)-c-av, I(s, t) € By s.t. (2,2) € Ugpy xUppy and (g2, 4 [ a\y)UsUL[9] €
Fnandt [ hl.
Set g?_H = g?_H U s U ¢]4}, implying

<Z,2> € Ug X Ut[&’- and t 71/_ h;

2. Symmetrically we obtain 92'2—1-1 guaranteeing (a)(3) (i.e. that (Z, Z) € Ugs, x Ut
and s [ h;, for some (s,t) in B;).

3. Note that if 6;,8, < v, then (b) for (Z, Z) follows automatically from (b) for
(z,2). If one of §;, 8} is < v, then e.g. in 6, <y < §; case, by (b), I(s,t) € B, s.t.
(2,2) € Ugpy ¥ Ut[6§ and s f (91-2_‘_1 10;\7) Uh; and ¢ £ h}. Let g?+1 = 9i2+1 U s[d;,

guaranteeing
(2,2) € Ugps, ¥ Uys; and s [ hi and t [ Ry .

Similarly for the symmetric case of §; <y < 4.

If v < 6;,6%, then if 6; < ] use (c)(b), and if §; > 8., use (c)(w), e.g. if §; < &,
then v < wu(h;) > ;. So by (c)(8), 3(s,t) € By, s.t. (£,2) € Ugpy x Uypy and
(gi2+1[5§\7) UhiUtUs[6; € Fnand s £ h;. Let g?+1 = gi2+1 U (£16) U (s1;),

guaranteeing
(2,2) € Ugps, ¥ Uye; and s [ hi and t [ Ry .

4. Suppose v < &; < pu(hf). By (c)(@), 3(s,t) € B s.t. (2,%) € Ugpy X Uppy and

sUI(98116,\7)Uhi]U(tu(h})) € Frand ¢ L hi. Set gfy = g7, 1 U(s18;) U(¢]6;),
guaranteeing

(2,2) € Usps, X Ugps, »
h;UsUtlu(hl) € Fnand t £ h.
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5. Suppose now that also v < 6, < p(h;). Then, by (c)(3) I(s,t) € B s.t.
(2,2) € Uspy x U}y and [(9214-1[52\7) URJUtU (siu(hi)) € Fnand s [ h;. Let
9201 = gt 1 U (t16}) U (s]4}), guaranteeing
<2,5> S Us[éi. X Ut[&; s
R UtU (slu(h;)) € Fnand s £ h;.

Finally, let g;11 = gi5 -
Case 2. y; = Z and z; € A.
0. By (a)(B), (%,2i) € Uspy x Up with s £ g;[ 4\, Let g?_H = g; Us, guaranteeing

<Z,Zi> e Ug x Ug.

1. By (b), (%, 2;) € Ugpy x Uy and s L g?_i_l[A\ﬁ/ andt [ h). Let g;, ; = g?_HUs.

Then ,
(%, 2;) € Ug % Utps; and t L h;.

2. Wlo.g., v < ;. (2,2;) € Ugpy x Uy and s [ (gg_i_1 16;\y) U h;. Let 92'2—1-1 =
i1 U (s10;). Then
<5,Z7;> S Usr(;i x U and st h;.

3. (z,2;) € Ugpy X Utr6§ and s [/ (gi2+1[52-\7) Uh; and t £ h}. Let 9?—1—1 =
gi2+1 U (s]6;). Then

<2,Zi>€Usr5iXUtr5;,Slhi and t,l/_h;.

Finally, let g;11 = gf’+1.
Case 3. y; € A and z; = Z. This is symmetric to Case 2.

End of the ¢-th induction step. (|
Lemma 3. P has wy — cc.

PrROOF: Let Q C P with |Q| > wy. By CH and the A-system lemma, we may
assume that there are p #p' in Q, p = (A, f,T), p’ = (A’, f/,T') such that

ANA = A<A\A<A\A,

tpA=tpA' and f, f’ are “typewise the same”, so f|A2 = f'|A2, and z € A and
2/ € A with tp(AN z) = tp(AN 2') implies (Vz € A) f(z,2) = f(x, 7).

Let v := the least ordinal in A\A, and let 2’ denote the member of A’ correspond-
ing to 2 € A. (So tp(ANz) =tp(A'Nz)and A' Ny =A).
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We want to extend (fUf') to g: (AUA")2—3 so that q := (AUA’, g, TUT') € P
and ¢ < p,p’. First we will define g on (A\A) x (A’\A). For every z € A\A, let
921 = ¢.

By induction in w steps, we will extend every g7 (2 € A\A) to a partial function
g%: A\A—3 s.t., in the process,
(i) (Vi) g7 will all be finite.
(il) EP(v,y,2) = (Vi) 97 = g} -
Let
S= {(B;, 6,0, hi,heyi, 2i) + i <w}
r= {(B,5,6 h,h',§,2): BET, 5§ €A, he Fn(A\S,3),
h' € Fn(A\Y,3), §,2€ (AUANA, § <g, & <z},
Step i > 0. Consider (---); € S.
There are 3 relevant cases (for the future pairs involving y, z € A\A):
(1) g€ Aand z; =2 € A
(2) g;=y €A and z; € A
(3) =y €A and z; =2 € A.
Casel. j; =y € Aand z;, =2/ € A"
0. By (a)(a), 3(s,t) € By s.t. (y,2) € Us x Uppy and t £ g7 4.
Let gfo =g7 Ut Ay This will guarantee that
(9i, %) € Us x Ut

(*) Let also gfo = gfo for every x € A\y with EP(~,z, z).
Let ggco = g7, for all other x € A\y.
1. By (a)(B) of p, 3(s,t) € B; s.t. (y,2) € Us x Uy} and t [ (g7 5’) U hL. Let
gfl = gfo U (¢1(6}\7)), guaranteeing
(i, %) € Us x Uy and t L Ry

Then (x)-update, i.e. let gfl = gfl for every x € A\vy with EP(y,z,z), and
gfl = gfo for all other x € A\n~.
2. Concerning (a)(/): Similarly, by (b) of p get (s, t) € Bjs.t. (y,2) € Ugps, xUypy
and s Y h; and t Y gfl.
Let gfz = gfl U (tl(4\y)), guaranteeing that
(Ui, i) € Ugrs, x Ur and s [ h;.
Then (x)-update.
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3. (b) Assume w.lo.g. that v < &;. Here 3(s,t) € B; s.t. (y,z) € Ugps, X Uppy

and s f h; and t [ gfz [0 U hl. Let gfg = gf2 U ¢1(0;\y). This will guarantee
that
<gi,2i>€U5r5iXUtr6§, s Y h; and tlh;.

Then (x)-update all y-twins of z.

Finally, let Vo € A\A, g7 := ggcg O

Case 2. Is entirely symmetric.

Case3. §; =y € Al and z; = 2/ € A’

Subcase 3a. EP(y,y,z). So g7_; = g7_;.

0. By (c)(a) of p, I(s,t) € B; s.t. (y,y) € Uspy x Uy and gf_; UsUtL € Fn (ie.
W =¢and h =g/ | here).

Let giyo =g/ ;U (sUt)[(A\y). Also (x)-update g7 ;’s, i.e. for every z € A\y
s.t. EP(vy,y,x), set gfo = gfo, and for every other x € A\A, set gfo =gy 4.
This will guarantee that o

(Di, %) € Us x Ut
1. (a)(e) If 0j <, then by (b), I(s,t) € B; s.t. (y,y) € Ugpy X Uy and s f g?o

and t £ hl. Let g?l = g?o U s[(A\Y), and (*)-update. Then

(Ui, Zi) € Us ¥ Utr(;; and t ) hg.

If 5, > ~, then by (c)(«), 3(s,t) € B;s.t. (y,y) € Uspyx Uy}, and ngUsUt[ég € Fn
and t } h. Let gfl = gfo U (sI(A\v)) U (¢16}), and (x)-update. Then

(Ui, %) € Us x Ut[é; and t ) hg.

2. Concerning (a)(8): Similarly to 1, get (s,t) € B; and update to giyz, guaran-
teeing o
<yi,zi> S US[’Y x Uz and s l h;.

3. Concerning (b). There are 4 possibilities here:
(1) 6i§7and5§§7
(2) 6; <~vand 4] >~
(3) 6; >~ and 6, <~
(4) 6; >~ and 0] > v, 4(a) 6; < 0}, 4(b) & < ;.
If (1) — there is nothing to do: make gf?’ = gfz for all x € A\ A.
If (2), then by (b), I(s,t) € B; s.t. (y,y) € Ugys; x Uypy and s £ h; and

2
t L (gf 107) U .

391
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Let v gy ! -

g; =g; Ut[(5;\7) and (¥)-update. Then
<gi,2i>€U8r5iXUtr6§, s Y h; and tlh;.

If (3), act similarly.

If 4(a), then by (c)(a), I(s,t) € B; s.t. (y,y) € Ugpy x Uy and (giyz 16;) Uh; U
sUt[0; € Fn.

Let gz‘yg = ggﬂ U s](6;\ ) UtI(8;\7y) and (x)-update. Then
(G, %) € Ugjs, x Uy s s L by and ¢ L1,
If 4(b), then by (c)(8), Is, ) € Bi s.t. (y,y) € Uy x Uppy and (g7 16]) U RS U
tUslé; € Fn.

Let g; - gz‘yz Ut[(6:\y) UsI(6;\) and (x)-update. Then the same formula as
in 4(a) holds.

4. Concerning (c)(«): If y = z and 6; < u(h;), then w.lo.g. v < §; and, by (c)(«)

of p, 3(s,t) € Bi s.t. (y,y) € Ugpy x Uppy and (gf3 10;) Uh; UsU (tlu(h)) € Fn,
and ¢t J h.

Let 91'4 = gfg U sl(6;\7) Utl(;\77), and (%)-update. Then
(Zi, Zi) € Ugps; x Uprs,, hiUsU (t[,u(h;)) €Fn and t /L h;.
5. Concerning (c)(3): If y = z and 8, < u(h;), then w.l.o.g. v < 68}, and by (c)(5)
of p, 3(s,t) € B; s.t. (y,y) € Ugpy X Uypy and (gf4 167) U h, Ut U (slu(hi)) € Fn
and s f h;.
5 4
Let g/ = g5 Ut[(6/\7)Us[(5;\7) and (*)-update. Then
(%i, %) € Ugpsr X Uy
hLUtU (slu(h;)) € Fn and s [ h;.

Subcase 3b. Not — EP(v,y, 2).
0. By (b()) of p, (s, t) € By s.t. (y,2) € Ugpy x Uy and s [ g/ yandt f g7 ;.
0
Let g; = gf_l Us[(A\y) and g7 = g7 ; Ut[(A\Y). Then
(Gir9i) € Us x Uy .
Then (*)-update, i.e.
(a) for every x € A\A s.t. EP(vy,x,y), set gqco =g/,
(b) for every x € A\A s.t. EP(y,x,z), set g;’.”o = giZO and
(c) for every other x € A\A, set gfo =g
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1. Concerning (a)(): Again, if §; < ~, then, by (b) of p, I(s,t) € B; s.t.
0
(y,z) € Ugpy X Uniar» s Lg? andt LRl
Let g; = giyo U s[(A\y). Then

(Ui, Zi) € Us ¥ Utr(;; and t ) hg.

Then (x)-update, i.e. all x € A\d with EP(y,x,y) will get gfl = gz‘yo.

If v < 6, then 3(s,t) € B;, s.t. (y,2) € Ugpy X Uppy, s L giyo and t L
(97 167) U ;.

Let g; - gfo Us[(A\7y) and gfl = giz0 Ut1(0;\), and (*x)-update, as (mutatis
mutandis) in 0.
2. Re (a)(B). If §; < v, then 3(s,t) € B, s.t. (y,2) € Ugys; ¥ Ugpy, 8 £ h; and
tLg

Let gfz = gfl U (¢1(A\7y)) and gi2 = gz‘yl and (x%)-update, as in 0. Then

(Ui, Zi) € Usrs, x Uy and s [ hy.

If v < §;, then 3(s,t) € Bj s.t. (y,2) € Ugpy x Uypy, s £ (gf1 [6;)Uh; and ¢ [ gfl.

Let gg-f = giyl U (s1(d;\7y)) and gfz = gfl U (t](A\Y)) and (xx)-update. Then
the formula above holds.
3. (b) Again, there are 4 possibilities here:

(1) 6; <vand g; <7,

(2) 6 < v and & > 7,

(3) 6; >~ and 4] <7,

(4) 6; >~ and 6] > 7.

If (1), do nothing.

If (2), then by (b), 3(s,t) € B; st. (y,2) € Ugps, X Ugpy, s £ hj and t [
(97"16) Uk

Let g/ =g and ng = gfz U (¢1(65\y)). Then (xx)-update. Then

(i, 2i) € Usp; x Uy s s £ hy and t LR

If (3), then, by (b), 3(s,#) € B; st (y.2) € Uspy x Uy, s £ gl 16; U by and
t L h.

Let gi3 = 9?2 U (s(8;\7y)) and gizB = gfz. Then (*x)-update.

If (4), then 3(s,t) € B st. (y,2) € Ugpy x Uppy, s L 9?2 [0; Uh; and t [
97" 16, U B,
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Let g/ = g;y U (s[(;\7)) and g7 = g7 U (t[(ég\’y)). Then (*#)-update.
End of the Subcase 3b and of Case 3. O

For every z € A\A, g7 is defined as the most recent value.
End of the i-th induction step. O

At the end of induction, let for every z € A\A
U
<w
Finally, define g on (A\A) x (A’\A) by the following rule:

n [ 97°(y), ifye€ dom (¢7)
9(y, 2') = .
0 otherwise.

The extension procedure for g on (A’\A) x (A\A) and the condition p’ is the
same. (We do not have to take care there of 7/-twins, but we may).

Since the construction has, as in side remarks, a verification of the conditions
(iii) and (iv) of ¢, we are done. O
The proof that in V[G] Up X Up is sort-of-Lindeldf:

1. Let ¢ € V[G] be as in the definition (7), and let o be a P-name for it.

2. It is enough to show that, for every p € P with
(*) p||- “definition (7) for o”

there are p* < p and a countable A* C ws s.t.

p*||—@% = U{UUl(%Z X UU2(y PE (y,2) € A* x A*

-

3. Note that Vg € P with g~ “(x)”, V(y,2) € w3 Ir = 7(q,¥,2) < ¢ and
(s, t) € (Fn(wa,3))? s.t. 7||-0(5,2) = (5,f) and D(s) U D(t) C A".

4. Let ¢: w—w X w be a bijection s.t. (Vn € w) (p(n) =

(
5. We will construct an w-sequence of conditions pg > p1 > -+ > pp > -+-
w by induction, starting with pg = p.

6. If p; = (A;, fi, T;) has been already constructed, we fix an w-enumeration

{(5 Y, 2, h) 0,y,2 € Aj, 0 <z, heFn(A4;\0,3)}.
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7. Step n+ 1, for n > 0. How to choose py4+17
(1) Find ¢(n) = (i,j), i <n.
(2) Consider (67,45, 25, h’) € S* and pick 2z, € wo\ sup™ A,.
(3) Apply Lemma 2 to pp, and zp, to get ¢n < pp, such that
zn € AT
E (6%, 24, 2,) holds, and
J

(4) Apply note in 3. to get pp+1 = 7(gn, yé, z;)

8. So pn+1||—a(gj§,z‘§) = (8n, ), for some sp,t, in Fn(Ay41,3). Also, for ev-

ery [, .
EPrit (p,y5, 25) — snlp = talp.

(Because here pu 1|33 2) > fi).
9. Let ¢* := (A%, f*,T*), where A* = JA;, f*=U fi, T* = UJT;. Then ¢* € P,
because P is wy-complete.
10. Let
B* := {(sp,tn) : n<w}
= {{s,1) € (Fn(4",3))" : (3(y,») € A" x A")
(q"lo(y,2) = (3,6)}.

Let p* := (A%, f*, T* U {B*}).
11. Claim p* € P.

Regarding (iii) of p* at B*. o

<Yz >€ A" x A* = (n €w) st p(n) =<i,j > and <y,z>=<yj 2 >
Then ppy1|[-0(3, 2) = (3n, n), as remarked in 8. Then ¢*||-((7, %) € Us, x U{n),
because ¢* < p and < pn41. Then (y, z) € Ug: X th:, by absoluteness (because
D(sp) U D(ty) C A*). O

Regarding (iv) of p* at B*

Suppose 6,8’ € A, h € Fn(A\§,3), b’ € Fn(A\d,3), y € A\J, z € A\J'.
(a)(«). Find n € w s.t. ¢(u) = (i,j) and z = z;'», h' = h;- and ¢ = 5;

By (iii) p* already checked, 3k € w s.t. (y, zn) € Us, x Uy, and, by choice in 7,
ET (8,2, 2,) and zp, € Uy \D(K), so t}, £ h'. Then

(y,2) € Us, x Uppr and  t, [ .
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(a)(B). Similarly, find n € w s.t. p(n) = (i,j), y = z;‘-, h = h;, 5= 5; Then, by
(iii) of ¢*, Ik € w s.t. (2n,2) € Us, x Uy, and E9 (3,y, z,) and zy, € Up\D(h).
Then

(y,2) € Ugts xUp and s L h.

(b). Find ny,ng € ws.t. ¢(n1) = (i1, j1), ¢(na) = (ia, j2), and y = 211, 6 = 611,

h=h3 and z = 22, & = 82, i’ = hi2. Then E(8,y, 2n,), #n, € Up\D(h),

ET (8,2, 2p,) and zn, € Up/\D(R'), by construction.
By (iii) of p*, 3k € w s.t. (2ny, 2ny) € Us, % Uy, implying that

(y,2) € Ug, 15 X Up .t and sy, L hoand ty, f '

(c)(@). Suppose y = z and & < p(h'). Find n1,n2 € ws.t. p(n1) = (iz,j1),

o(ng) :*<i2,j2>, z = zﬁ, 5= 5;-1, h = h;ll ?nd Zng = ;2, u(h') = 5;-2, = h;22

Then E? (8, 2, 2n, ), 2ny € Up\D(h) and E? (u(h'), 2ny, 2ns)s 2ng € Up/\D(R').
By (iii) of p*, pick k € w s.t. (2n;, 2ny) € Us, x Uy,. This implies that

(2,2) € Ug 16 X Uy, 15, h U s U (tgIu(h')) € Fno and ¢ L 1

because sy, [p(h') =t [u(h'), by 8.

(c)(B). Similarly, assuming y = 2 and 8 < u(h), find ni,no € w, p(n1) =

(i1.51), p(ng) = (ig,j2) s.t. 2 = z}}, & = 050, h' = hZ, zny = 22, u(h) = 672,

h = h2. Then BT (8,2, 2,), 20y € Up\D(h') and BT (u(h), 2y, 2n3), 2ny €
Up\D(h). Let (zny, zn,) € Us, x Uy, for some k € w. Then
(2,2) € Ug 190 X Uppsr, W Ut U (sglu(h)) € Fno and s L h
because sp [u(h) =t [u(h), by 8. O
12. Finally, p* € P = p* <p and
pl-wd = (U x Ue: (s1) € B}
= U{Um(y,z) X UUZ(%Z) D (y,2) € A* x A*)7.

(The first line is a consequence of Lemma 1 and p*||-“A* x A* = (J{Us x Uy :
(s,t) € B*}”.) As required. O

This concludes the proof of the Main Lemma.
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C) Facts about F in V[G]

Fact 1. Uy is a Lindelof family, i.e. every Up-cover of we has a countable sub-
cover.

PROOF: Let ¢: wy—Fn(we,3) be a Up-cover of wa, i.e. Vy € wy y € Ue(y)- If
z € wy and @(y, z) = 0, then z € Uy)5. Define d: w2 —(Fn(wa,3))? by

d(y,z) = (c(y),c(¥)le(y, 2)) -

Then d is as in Definition (7). By Main Lemma, 3 countable A C wo s.t. d”A?
covers w?. But then ¢’ A covers wy. [y € wy = (y,0) € Us x Uy, where (s,t) =
d(a,b) for some (a,b) € A? = y € Us = U,(,) by definition of d]. O

Fact 2. Each of 79, 71,72 is a Lindelof topology.

PROOF: Let C be a cover of wy by 70-basic open sets, i.e.
wo = U{Vko  keC}, CCFn(w,2).
Vz € wy pick k; € Csit. z€ VY . Let s5: D(ks)—3 be defined by

() {i€3s.t.s€AfE, ifz#2x
sx(x) =
? 1 (or 2) ifz=x

Then z € U, and 3F, C D(k;) s.t.

2 €U, \F. C VY.

Indeed, ¥z € D(k;) AY® c (49)k=(@)
(8
N Ar®cvo.
ze€D(k;)

Let 2= () (AFY U\ Naepgr,) 45 € D(k2).

Then Us. = Nye ey (A5 U {}) € VO UE.]

So {s, : z € wa} is a Up-cover of wa, hence, by Fact 1, there is a countable
subcover {s;, : ¢ € w}. But then U{Vkoz : i < w} is co-countable in w9, and

0

hence 7" is a Lindel6f topology. ([
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Fact 3. Each of 70,71, 72 is a points G topology.

ProOF: For 7. Fix z € wy. By flexibility of F, Yy # z 3z € wo\{y, 2} s.t.
F(z,y) = 0 and F(z,z) = 1 ( 2 is equally possible).
Let K = {x € wo\{2}: F(z,2) = 1}. Then wo = |J (A% U {z})u (AU {z}).

reK
By Lindel6fness of Up, 3 countable Ko C K s.t.

wr = (J (Au{ehuauiz).
z€Ky
Consequently, we have
w\fz} = |J (AQu{ehual,
z€Ky
so w\{z} is a countable union of 70-closed (points are closed by flexibility of F)
sets, and so {z} is a G5 of 79. O

Fact 4. Each of ¢ x 77, i,j € 3, is a Lindeldf topology on w%.

ProoF: For 79 x 71,

A. Suppose (y,2) € V2 x V;}. Then, as in Fact 2, define 2 functions s, #: D(k) U
D(¢)—3 as follows:

S(x):{ief&s.t.yeAé, ify#ux
2, - ify=um.
t(x)_{2€3s.t.z€A;, ifz#2

2, if z = .

Then slp(y, 2) = tle(y, z). (Indeed, if y = z, then by observation that defini-
tions of s and ¢ coincide. If y # z and = < ¢(y,2), then F(z,y) = F(z,z), and
ye Al - ze€ AL, (y # x # z).) Also, as in Fact 3, 3 finite F,G C D(k) U D({)
st. y € U\F C V0 and 2z € U\G C V}}, so (y,2) € U\F x U\G C V)2 x V},
and Us x Uy C (VPUF) x (VIUG).

B. Let C be a 79 x 7! cover of w%, and let D C Up X Up be its refinement,
obtained, for each point as in A, point by point. Since, by the Main Lemma,

Up x Up is sort-of-Lindelof and D satisfies Definition (7), there is a countable
subcover of D, say {Ug, x Uy, : i <w} C D. Then

wi = | JWs, xU,) = JIVQUF) x (VEugy)

<w <w
= JIV xVH UV x G) U (F, x VA U (F; x Gy)].
<w
Since V,g is Lindel6f in 79, vlj in 71 by Fact 2, and F; and G; are finite, D has
a countable subco 70 x 71 is Lindelf. [l

(Other cases of (i,j) € 3 x 3 are similar.)
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Fact 5. In 70 x 71 x 72, wg’ has a closed discrete diagonal.

PrOOF: Closed by the flexibility of F, and (z,z,z) € (A%)¢ x (AL)¢ x (A2)¢
witnesses the discreteness. O
Corollary. Let, in V[G], S := (w2, 7°) @ (w2, ') @ (wa,72). Then S and S? are
Lindeléf points G5 0-dimensional spaces, and L(S3) = ¢t = ws. O

This finishes the proof of our theorem. O

We conclude with a sketch of the forcing notion P to get a zero-dimensional
space X such that,for all finite n, L(X™) = Xg , but L(XX0) = ¢t =Rg. p e P iff
p = (A, f, B), where

(i) A€ [wg]=

(i) f:A%2 s w

(iii) B= (Bp:n €w\l) and Vn |B,| < w and VB € B, B C (Fn(A,w))" (and
A" = {Usy X ... x Us,,_, : § € B} N A™; this follows from (iv)).

(iv) Vn € w\1
VB € By
vz e A"
V partition of n, N U N=n
Vo e AN i
Vh e (Fn(A,w)Y st. b > 6 (ie. D(h) > 6;, Vi).

V assignment || for Vz € ran(Z [ N),

of e1 a finite tree (7%, <) s.t.
(te T? =t = (0t, he)),
o€ A& h € Fn(A\ét,w),
& (s <t= s <O¢)

& (t € Levg(T) = 6 < z2);
and ~
of 2 an identification map m? : N* — T, where N? := {i € N : z; = 2},
s.t.

(m*(i) =t = (6; = 0p&hi = ht))H

35 € B such that
(a) (Vi) € N) [z €Us, & (2 = 2 = 5 = 5,)]
and ~
(b) Vz € ran(Z | N)
Vi,j € N*
(1) m#(i) = m*(j) = s; = sj;
(2) if m#(i) < m*(j) and ¢ € T? is the immediate successor of m?*(7)
in the chain of
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T% leading to m?(j), then s; [ 6 = s; [ 0;

(3) si £ hy;
(4) if t € Levo(T) & t < m*(3),
then
z € Usi [ Ot
Let EP be defined by
0,y,z € AP

EP(,y,2) & 0<y,2
Ve e (AP N &) fP(z,y) = fP(x, 2).

We define g < p iff A9 D AP, f9 > fP, (Vn € w—1) B} D Bk, and EY > EP. End
of definition.

It is worth observing that if 7% contains a chain of the form

d ho 61 h1 62 ho 463 h3

then
hoUsoU (s1 [61)U(s2[d1)U(s3[3d1) € Fn
&
h1Us1U(s2 [ d2)U(s3 [d2) € Fn
&
haUsa U (s3] 03) € Fn
&

h3 U sz € Fn.

P preserves cardinals and CH, (it is wi-complete & wa-cc). If G is P-generic over
V andV |= CH, then 3X € V[G], s.t.
X is a Lindel6f Hausdorff 0-dimensional space of size No, and

Vn < w L(Xn) =Ny
and L(X¥) = ¢™ = Ro.

With slightly simpler partial orders, we can set for every n < w a Hausdorff Y;,
s.t.

L(Y) =Ro & LY, ) = ¢t =,
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