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On the existence of weak solutions for degenerate

systems of variational inequalities with critical growth

Martin Fuchs

Abstract. We prove the existence of solutions to systems of degenerate variational in-
equalities.
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In this note we give a short proof of the following Theorem obtained in [1] not
relying on the partial regularity theory.

Theorem. Suppose that Ω ⊂ R
n is a bounded open set and that p ∈ (1,∞)

is given. For a continuous function f : Ω × R
N × R

nN → R
N we consider the

variational inequality

(V)











find u ∈ K such that
∫

Ω |∇u|p−2∇u · ∇(v − u) dx ≥
∫

Ω f(·, u,∇u) · (v − u) dx

holds for all v ∈ K

where the class K is defined as {v ∈ H1,p(Ω,RN ) : v = u0 on ∂Ω , v(x) ∈ K}.
HereK denotes the closure of a convex bounded open set in R

N with the boundary

of class C2 and u0 is a given function in H
1,p(Ω,RN ) such that u0(Ω) ⊂ K. Then,

if f satisfies the growth estimate

(1) |f(x, y,Q)| ≤ a · |Q|p

for some constant a ≥ 0 and if in addition

(2) a < 1/ diam K

holds, problem (V) admits at least one solution u ∈ K.

As shown in [1] we obtain as a
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Corollary. If u0 ∈ H1,p(Ω,RN ) ∩ L∞ is given and if f satisfies (1) as well as

a < 1
2·‖u0‖∞

, then the Dirichlet problem

{

−∂α( |∇u|p−2∂αu) = f(·, u,∇u) on Ω ,

u = u0 on ∂Ω

has at least one weak solution u ∈ H1,p(Ω,RN ) ∩ L∞.

In the quadratic case p = 2 the above Theorem is due to Hildebrandt and
Widman [5] but we did not succeed to extend their method to general p. Our
proof (working for all p) is based on a compensated compactness type lemma
demonstrated in [2] with basic ideas taken from Landes paper [6].

Lemma. Suppose that we have weak convergence um ⇁ u in the space
H1,p(Ω,RN ) . Then there is a subsequence {ũm} such that |∇ũm|p−2∇ũm ⇁

|∇u|p−2∇u weakly in L
p

p−1 (Ω,RnN ) and ∇ũm → ∇u pointwise a.e. provided we
know ∫

Ω
|∇um|p−2∇um · ∇ϕdx ≤ c · ‖ϕ‖∞

for all ϕ ∈ C10 (Ω,R
N ) with 0 ≤ c <∞ independent of m and ϕ. �

We now come to the

Proof of the Theorem: For m ∈ N let

fm : Ω× R
N × R

nN → R
N ,

fm(x, y,Q) :=

{

f(x, y,Q) : if |f(x, y,Q)| ≤ m
m

|f(x,y,Q)|
· f(x, y,Q) else

and consider the approximate problem

(V)m











find w ∈ K such that
∫

Ω |∇w|p−2∇w · ∇(v − w) dx ≥
∫

Ω fm(·, w,∇w) · (v − w) dx

holds for all v ∈ K .

As shown in [1] the existence of solutions um to (V)m can be deduced from
Schauder’s fixed point theorem. Recalling (1), (2) and the definition of fm we
infer

(1− a · diam K) ·

∫

Ω
|∇um|p dx ≤

∫

Ω
|∇um|p−1 · |∇u0| · dx

so that supm ‖um‖H1,p(Ω) <∞. Thus we may assume

um ⇁ u in H1,p(Ω,RN )
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at least for a subsequence. In order to proceed further we linearize the varia-
tional inequality (V)m making use of the fact that ∂K is of class C

2. As in [3,

Theorem 2.1, 2.2] we get for all ψ ∈ C10 (Ω,R
N )

(3)

{ ∫

Ω( |∇um|p−2∇um · ∇ψ − fm(·, um,∇um) · ψ) dx

=
∫

Ω∩[um∈∂K] ψ · N (um) bm(·, um,∇um) dx

where N (y) is the interior normal field of ∂K and bm(·, um,∇um) has the prop-
erties

bm(·, um,∇um) ≥ 0 a.e. on [um ∈ ∂K],

bm(·, um,∇um) ≤ ã · |∇um|p

with ã ≥ 0 independent of m. Now we are in the position to apply the Lemma
and deduce

(4)

∫

Ω
|∇um|p−2∇um · ∇ψ dx→

∫

Ω
|∇u|p−2∇u · ∇ψ dx

(after selecting a suitable subsequence). We claim

(5)

∫

Ω
fm(·, um,∇um) · ψ dx→

∫

Ω
f(·, u,∇u) · ψ dx.

To prove this we observe

(

x, um(x),∇um(x)
)

→
(

x, u(x),∇u(x)
)

for almost all x ∈ Ω, especially

f(·, um,∇um)→ f(·, u,∇u) a.e.

But for points x ∈ Ω with the property that a finite limit
limm→∞ f

(

x, um(x),∇um(x)
)

exists, we clearly have

fm
(

x, um(x),∇um(x)
)

= f
(

x, um(x),∇um(x)
)

for m >> 1 , in conclusion fm(·, um,∇um)→ f(·, u,∇u) a.e. On the other hand
the uniform growth estimate |fm(x, y,Q)| ≤ a · |Q|p combined with the smallness
condition (2) implies Caccioppli’s inequality

∫

BR/2

|∇um|p dx ≤ µ ·R−p
∫

BR

|um −
(

um
)

R|
p dx
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for any ball BR ⊂ Ω with µ independent of m. From this we easily get

sup
m

‖∇um‖Lq(Ω′) <∞

for any subregion Ω′ ⊂⊂ Ω and with q slightly larger as p. After passing to
a subsequence we may therefore assume

fm(·, um,∇um)⇁: g

weakly in the space L
q/p
loc (Ω,R

N ) for some function g. Using Egoroff’s Theorem
we find g = f(·, u,∇u) which proves (5).
Next we look at the remaining integral

∫

[um∈∂K]
ψ · N (um) · bm(·, um,∇um) dx := Im

and specialize ψ = v− u where v ∈ K is arbitrary but with the property spt (v −
u) ⊂⊂ Ω. (Note that (4), (5) remain valid). We have

Im =

∫

[um∈∂K]∩spt (v−u)
(v − um) · N (um) · bm(·, um,∇um) dx

+

∫

[um∈∂K]∩spt (v−u)
(um − u) · N (um) · bm(·, um,∇um) dx

=: I1m + I
2
m ,

I1m ≥ 0 an account of (v − um) · N (um) ≥ 0 a.e. on [um ∈ ∂K] ∩ spt (v − u) (due
to the convexity of K) and

|I2m| ≤

∫

spt (u−v)
ã · |∇um|p |um − u| dx

≤ ã ·
(

∫

spt (u−v)
|∇um|q dx

)p/q
·
(

∫

spt (u−v)
|um − u|

q
q−p dx

)1−p/q

−−−−→
m→∞

0,

since ‖∇um‖
Lq

(

spt (u−v)
) is uniformly bounded and

∫

spt (u−v)
|um − u|

q
q−p dx ≤ const(q, p, diam K) ·

∫

spt (u−v)
|um − u|p dx −→ 0.

Putting together our results we arrive at

(6)

∫

Ω
|∇u|p−2∇u · ∇(v − u) dx ≥

∫

Ω
f(·, u,∇u) · (v − u) dx
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for all v ∈ K such that spt (u − v) ⊂⊂ Ω. We have to remove the support
condition on v ∈ K. To this purpose consider an arbitrary function v ∈ K. Then

v − u ∈
◦
H1,p(Ω,RN ) so that there is a sequence wm ∈ C∞

0 (Ω,R
N ) such that

wn → v − u in the strong topology of the space H1,p(Ω,RN ) . Let F : RN → K
denote the projection onto the set K. Then vm := F (u+wm) belongs to the class
K, moreover (6) is valid for vm. It is easy to check that

vm ⇁ F (v) = v

weakly in H1,p(Ω,RN ), hence

∫

Ω
|∇u|p−2∇u · ∇(vm − u) dx→

∫

Ω
|∇u|p−2∇u · ∇(v − u) dx.

After passing to a subsequence we may assume vm → v a.e. on Ω and since

|f(·, u,∇u)| · |vm − u| ≤ a · diam K · |∇u|p ∈ L1(Ω)

we deduce from dominated convergence that

∫

Ω
f(·, u,∇u) · (vm − u)dx→

∫

Ω
f(·, u,∇u) · (v − u) dx

so that u is a solution of the variational inequality (V). �

From [4] we get in addition

Corollary. Let u denote the solution of (V) obtained in the Theorem. Then there
is a relatively closed set Σ ⊂ Ω such that u ∈ C1,α(Ω − Σ) for some 0 < α < 1
and Hn−p(Σ) = 0.
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