Commentationes Mathematicae Universitatis Carolinae

Martin Fuchs

On the existence of weak solutions for degenerate systems of variational inequalities with critical growth

Commentationes Mathematicae Universitatis Carolinae, Vol. 35 (1994), No. 3, 445--449
Persistent URL: http://dml.cz/dmlcz/118685

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On the existence of weak solutions for degenerate systems of variational inequalities with critical growth

Martin Fuchs

Abstract

We prove the existence of solutions to systems of degenerate variational inequalities.

Keywords: variational inequalities, existence
Classification: 49

In this note we give a short proof of the following Theorem obtained in [1] not relying on the partial regularity theory.

Theorem. Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded open set and that $p \in(1, \infty)$ is given. For a continuous function $f: \bar{\Omega} \times \mathbb{R}^{N} \times \mathbb{R}^{n N} \rightarrow \mathbb{R}^{N}$ we consider the variational inequality

$$
\left\{\begin{array}{l}
\text { find } u \in \mathbb{K} \text { such that } \tag{V}\\
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla(v-u) d x \geq \int_{\Omega} f(\cdot, u, \nabla u) \cdot(v-u) d x \\
\text { holds for all } v \in \mathbb{K}
\end{array}\right.
$$

where the class \mathbb{K} is defined as $\left\{v \in H^{1, p}\left(\Omega, \mathbb{R}^{N}\right): v=u_{0}\right.$ on $\left.\partial \Omega, v(x) \in K\right\}$. Here K denotes the closure of a convex bounded open set in \mathbb{R}^{N} with the boundary of class C^{2} and u_{0} is a given function in $H^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ such that $u_{0}(\Omega) \subset K$. Then, if f satisfies the growth estimate

$$
\begin{equation*}
|f(x, y, Q)| \leq a \cdot|Q|^{p} \tag{1}
\end{equation*}
$$

for some constant $a \geq 0$ and if in addition

$$
\begin{equation*}
a<1 / \operatorname{diam} K \tag{2}
\end{equation*}
$$

holds, problem (V) admits at least one solution $u \in \mathbb{K}$.
As shown in [1] we obtain as a

Corollary. If $u_{0} \in H^{1, p}\left(\Omega, \mathbb{R}^{N}\right) \cap L^{\infty}$ is given and if f satisfies (1) as well as $a<\frac{1}{2 \cdot\left\|u_{0}\right\|_{\infty}}$, then the Dirichlet problem

$$
\left\{\begin{array}{l}
-\partial_{\alpha}\left(|\nabla u|^{p-2} \partial_{\alpha} u\right)=f(\cdot, u, \nabla u) \quad \text { on } \Omega \\
u=u_{0} \quad \text { on } \partial \Omega
\end{array}\right.
$$

has at least one weak solution $u \in H^{1, p}\left(\Omega, \mathbb{R}^{N}\right) \cap L^{\infty}$.
In the quadratic case $p=2$ the above Theorem is due to Hildebrandt and Widman [5] but we did not succeed to extend their method to general p. Our proof (working for all p) is based on a compensated compactness type lemma demonstrated in [2] with basic ideas taken from Landes paper [6].

Lemma. Suppose that we have weak convergence $u_{m} \rightharpoondown u$ in the space $H^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$. Then there is a subsequence $\left\{\tilde{u}_{m}\right\}$ such that $\left|\nabla \tilde{u}_{m}\right|^{p-2} \nabla \tilde{u}_{m} \rightharpoondown$ $|\nabla u|^{p-2} \nabla u$ weakly in $L^{\frac{p}{p-1}}\left(\Omega, \mathbb{R}^{n N}\right)$ and $\nabla \tilde{u}_{m} \rightarrow \nabla u$ pointwise a.e. provided we know

$$
\int_{\Omega}\left|\nabla u_{m}\right|^{p-2} \nabla u_{m} \cdot \nabla \varphi d x \leq c \cdot\|\varphi\|_{\infty}
$$

for all $\varphi \in C_{0}^{1}\left(\Omega, \mathbb{R}^{N}\right)$ with $0 \leq c<\infty$ independent of m and φ.
We now come to the
Proof of the Theorem: For $m \in \mathbb{N}$ let

$$
\begin{aligned}
& f_{m}: \bar{\Omega} \times \mathbb{R}^{N} \times \mathbb{R}^{n N} \rightarrow \mathbb{R}^{N}, \\
& f_{m}(x, y, Q):= \begin{cases}f(x, y, Q): & \text { if }|f(x, y, Q)| \leq m \\
\frac{m}{|f(x, y, Q)|} \cdot f(x, y, Q) & \text { else }\end{cases}
\end{aligned}
$$

and consider the approximate problem
$(\mathrm{V})_{m} \quad\left\{\begin{array}{l}\text { find } w \in \mathbb{K} \text { such that } \\ \int_{\Omega}|\nabla w|^{p-2} \nabla w \cdot \nabla(v-w) d x \geq \int_{\Omega} f_{m}(\cdot, w, \nabla w) \cdot(v-w) d x \\ \text { holds for all } v \in \mathbb{K} .\end{array}\right.$
As shown in [1] the existence of solutions u_{m} to $(\mathrm{V})_{m}$ can be deduced from Schauder's fixed point theorem. Recalling (1), (2) and the definition of f_{m} we infer

$$
(1-a \cdot \operatorname{diam} K) \cdot \int_{\Omega}\left|\nabla u_{m}\right|^{p} d x \leq \int_{\Omega}\left|\nabla u_{m}\right|^{p-1} \cdot\left|\nabla u_{0}\right| \cdot d x
$$

so that $\sup _{m}\left\|u_{m}\right\|_{H^{1, p}(\Omega)}<\infty$. Thus we may assume

$$
u_{m} \rightharpoondown u \quad \text { in } H^{1, p}\left(\Omega, \mathbb{R}^{N}\right)
$$

at least for a subsequence. In order to proceed further we linearize the variational inequality $(\mathrm{V})_{m}$ making use of the fact that ∂K is of class C^{2}. As in [3, Theorem 2.1, 2.2] we get for all $\psi \in C_{0}^{1}\left(\Omega, \mathbb{R}^{N}\right)$

$$
\left\{\begin{array}{l}
\int_{\Omega}\left(\left|\nabla u_{m}\right|^{p-2} \nabla u_{m} \cdot \nabla \psi-f_{m}\left(\cdot, u_{m}, \nabla u_{m}\right) \cdot \psi\right) d x \tag{3}\\
=\int_{\Omega \cap\left[u_{m} \in \partial K\right]} \psi \cdot \mathcal{N}\left(u_{m}\right) b_{m}\left(\cdot, u_{m}, \nabla u_{m}\right) d x
\end{array}\right.
$$

where $\mathcal{N}(y)$ is the interior normal field of ∂K and $b_{m}\left(\cdot, u_{m}, \nabla u_{m}\right)$ has the properties

$$
\begin{aligned}
& b_{m}\left(\cdot, u_{m}, \nabla u_{m}\right) \geq 0 \quad \text { a.e. on }\left[u_{m} \in \partial K\right], \\
& b_{m}\left(\cdot, u_{m}, \nabla u_{m}\right) \leq \tilde{a} \cdot\left|\nabla u_{m}\right|^{p}
\end{aligned}
$$

with $\tilde{a} \geq 0$ independent of m. Now we are in the position to apply the Lemma and deduce

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{m}\right|^{p-2} \nabla u_{m} \cdot \nabla \psi d x \rightarrow \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \psi d x \tag{4}
\end{equation*}
$$

(after selecting a suitable subsequence). We claim

$$
\begin{equation*}
\int_{\Omega} f_{m}\left(\cdot, u_{m}, \nabla u_{m}\right) \cdot \psi d x \rightarrow \int_{\Omega} f(\cdot, u, \nabla u) \cdot \psi d x \tag{5}
\end{equation*}
$$

To prove this we observe

$$
\left(x, u_{m}(x), \nabla u_{m}(x)\right) \rightarrow(x, u(x), \nabla u(x))
$$

for almost all $x \in \Omega$, especially

$$
f\left(\cdot, u_{m}, \nabla u_{m}\right) \rightarrow f(\cdot, u, \nabla u) \quad \text { a.e. }
$$

But for points $x \in \Omega$ with the property that a finite limit
$\lim _{m \rightarrow \infty} f\left(x, u_{m}(x), \nabla u_{m}(x)\right)$ exists, we clearly have

$$
f_{m}\left(x, u_{m}(x), \nabla u_{m}(x)\right)=f\left(x, u_{m}(x), \nabla u_{m}(x)\right)
$$

for $m \gg 1$, in conclusion $f_{m}\left(\cdot, u_{m}, \nabla u_{m}\right) \rightarrow f(\cdot, u, \nabla u)$ a.e. On the other hand the uniform growth estimate $\left|f_{m}(x, y, Q)\right| \leq a \cdot|Q|^{p}$ combined with the smallness condition (2) implies Caccioppli's inequality

$$
\int_{B_{R / 2}}\left|\nabla u_{m}\right|^{p} d x \leq \mu \cdot R^{-p} \int_{B_{R}}\left|u_{m}-\left(u_{m}\right)_{R}\right|^{p} d x
$$

for any ball $B_{R} \subset \Omega$ with μ independent of m. From this we easily get

$$
\sup _{m}\left\|\nabla u_{m}\right\|_{L^{q}\left(\Omega^{\prime}\right)}<\infty
$$

for any subregion $\Omega^{\prime} \subset \subset \Omega$ and with q slightly larger as p. After passing to a subsequence we may therefore assume

$$
f_{m}\left(\cdot, u_{m}, \nabla u_{m}\right) \rightharpoondown: g
$$

weakly in the space $L_{\text {loc }}^{q / p}\left(\Omega, \mathbb{R}^{N}\right)$ for some function g. Using Egoroff's Theorem we find $g=f(\cdot, u, \nabla u)$ which proves (5).

Next we look at the remaining integral

$$
\int_{\left[u_{m} \in \partial K\right]} \psi \cdot \mathcal{N}\left(u_{m}\right) \cdot b_{m}\left(\cdot, u_{m}, \nabla u_{m}\right) d x:=I_{m}
$$

and specialize $\psi=v-u$ where $v \in \mathbb{K}$ is arbitrary but with the property $\operatorname{spt}(v-$ $u) \subset \subset \Omega$. (Note that (4), (5) remain valid). We have

$$
\begin{aligned}
I_{m}= & \int_{\left[u_{m} \in \partial K\right] \cap \operatorname{spt}(v-u)}\left(v-u_{m}\right) \cdot \mathcal{N}\left(u_{m}\right) \cdot b_{m}\left(\cdot, u_{m}, \nabla u_{m}\right) d x \\
& +\int_{\left[u_{m} \in \partial K\right] \cap \operatorname{spt}(v-u)}\left(u_{m}-u\right) \cdot \mathcal{N}\left(u_{m}\right) \cdot b_{m}\left(\cdot, u_{m}, \nabla u_{m}\right) d x \\
=: & I_{m}^{1}+I_{m}^{2}
\end{aligned}
$$

$I_{m}^{1} \geq 0$ an account of $\left(v-u_{m}\right) \cdot \mathcal{N}\left(u_{m}\right) \geq 0$ a.e. on $\left[u_{m} \in \partial K\right] \cap \operatorname{spt}(v-u)$ (due to the convexity of K) and

$$
\begin{aligned}
\left|I_{m}^{2}\right| & \leq \int_{\operatorname{spt}(u-v)} \tilde{a} \cdot\left|\nabla u_{m}\right|^{p}\left|u_{m}-u\right| d x \\
& \leq \tilde{a} \cdot\left(\int_{\operatorname{spt}(u-v)}\left|\nabla u_{m}\right|^{q} d x\right)^{p / q} \cdot\left(\int_{\operatorname{spt}(u-v)}\left|u_{m}-u\right|^{\frac{q}{q-p}} d x\right)^{1-p / q} \\
& \xrightarrow[m \rightarrow \infty]{ } 0
\end{aligned}
$$

since $\left\|\nabla u_{m}\right\|_{L^{q}(\operatorname{spt}(u-v))}$ is uniformly bounded and

$$
\int_{\operatorname{spt}(u-v)}\left|u_{m}-u\right|^{\frac{q}{q-p}} d x \leq \operatorname{const}(q, p, \operatorname{diam} K) \cdot \int_{\operatorname{spt}(u-v)}\left|u_{m}-u\right|^{p} d x \longrightarrow 0
$$

Putting together our results we arrive at

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla(v-u) d x \geq \int_{\Omega} f(\cdot, u, \nabla u) \cdot(v-u) d x \tag{6}
\end{equation*}
$$

for all $v \in \mathbb{K}$ such that $\operatorname{spt}(u-v) \subset \subset \Omega$. We have to remove the support condition on $v \in \mathbb{K}$. To this purpose consider an arbitrary function $v \in \mathbb{K}$. Then $v-u \in \stackrel{\circ}{H}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ so that there is a sequence $w_{m} \in C_{0}^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$ such that $w_{n} \rightarrow v-u$ in the strong topology of the space $H^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$. Let $F: \mathbb{R}^{N} \rightarrow K$ denote the projection onto the set K. Then $v_{m}:=F\left(u+w_{m}\right)$ belongs to the class \mathbb{K}, moreover (6) is valid for v_{m}. It is easy to check that

$$
v_{m} \rightharpoondown F(v)=v
$$

weakly in $H^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$, hence

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla\left(v_{m}-u\right) d x \rightarrow \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla(v-u) d x
$$

After passing to a subsequence we may assume $v_{m} \rightarrow v$ a.e. on Ω and since

$$
|f(\cdot, u, \nabla u)| \cdot\left|v_{m}-u\right| \leq a \cdot \operatorname{diam} K \cdot|\nabla u|^{p} \in L^{1}(\Omega)
$$

we deduce from dominated convergence that

$$
\int_{\Omega} f(\cdot, u, \nabla u) \cdot\left(v_{m}-u\right) d x \rightarrow \int_{\Omega} f(\cdot, u, \nabla u) \cdot(v-u) d x
$$

so that u is a solution of the variational inequality (V).
From [4] we get in addition
Corollary. Let u denote the solution of (V) obtained in the Theorem. Then there is a relatively closed set $\Sigma \subset \Omega$ such that $u \in C^{1, \alpha}(\Omega-\Sigma)$ for some $0<\alpha<1$ and $\mathcal{H}^{n-p}(\Sigma)=0$.

References

[1] Fuchs M, Existence via partial regularity for degenerate systems of variational inequalities with natural growth, Comment. Math. Univ. Carolinae 33 (1992), 427-435.
[2] , The blow up of p-harmonic maps, Manus. Math. 81 (1993), 89-94.
[3] _ , p-harmonic obstacle problems, Annali di Mat. Pura Appl. 156 (1990), 127-180.
[4] , Smoothness for systems of degenerate variational inequalities with natural growth, Comment. Math. Univ. Carolinae 33 (1992), 33-41.
[5] Hildebrandt S., Widman K.-O., Variational inequalities for vector-valued functions, J. Reine Angew. Math. 309 (1979), 181-220.
[6] Landes R., On the existence of weak solutions of perturbed systems with critical growth, J. Reine Angew. Math. 393 (1989), 21-38.

Universität des Saarlandes, Fachbereich Mathematik, D-6600 Saarbrücken, Germany

