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Sets of determination for

parabolic functions on a half-space

Jarmila Ranošová

Abstract. We characterize all subsets M of R
n × R

+ such that

sup
X∈Rn×R+

u(X) = sup
X∈M

u(X)

for every bounded parabolic function u on R
n × R

+. The closely related problem of
representing functions as sums of Weierstrass kernels corresponding to points ofM is also
considered. The results provide a parabolic counterpart to results for classical harmonic
functions in a ball, see References. As a by-product the question of representability
of probability continuous distributions as sums of multiples of normal distributions is
investigated.

Keywords: heat equation, parabolic function, Weierstrass kernel, set of determination,
decomposition of L1(Rn), normal distribution

Classification: 35K05, 35K15, 31B10, 60Exx

1. Preliminaries

In this paper the following notation is used: Small letters, such as x, y, will
denote points in R

n; capital letters, such as X , points in R
n+1, and t denotes

“time”. (We will write X = (x, t) for x ∈ R
n and t ∈ R.) The set R

n × {0} is
identified with R

n, and, when there is no danger of confusion, the point
(y, 0) ∈ R

n × {0} is denoted by y. The Lebesgue measure in R
n will be denoted

by λ.
Further notation is either standard or introduced when it is used.

Definition. A real function u on an open set G ⊂ R
n+1 having continuous

partial derivatives ∂u
∂t and

∂2u
∂x2i
for i = 1, ..., n, and satisfying the heat equation

∂u

∂t
=

n∑

i=1

∂2u

∂x2i

on G is called parabolic on G.

We will be interested in parabolic functions on R
n × R

+.
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The Weierstrass kernel for R
n × R

+ with the pole in y in R
n is given by

p(X, y) = (4πt)−n/2 exp(−‖x − y‖2
4t

),

where X = (x, t) ∈ R
n × R

+.
A parabolic function which is the limit of an increasing sequence of bounded

positive parabolic functions will be called quasi-bounded. The class of all functions
u which can be expressed as a difference of two positive quasi-bounded parabolic
functions will be denoted by P1.
Moreover, a parabolic function u will be called simple if there exists

a λ-measurable subset A of R
n × {0} such that u(X) =

∫
A

p(X, y) dy for any

X ∈ R
n × R

+.
The class of all simple parabolic functions will be denoted by Ps. Of course,

Ps ⊂ P1.
Theorem A. A function u on R

n × R
+ is a difference of two positive quasi-

bounded parabolic functions if and only if there is a λ-measurable function fu

on R
n for which ∫

Rn

exp(−‖y‖2
4t
)|fu(y)| dy < ∞

for all t > 0 and

u(X) =

∫

Rn

p(X, y)fu(y) dy, X ∈ R
n × R

+;

u is positive, if and only if fu is positive λ-almost everywhere.

It is clear that the function fu is uniquely determined λ-almost everywhere. In
what follows, for any u ∈ P1, fu will denote this function.

Proof: See [5, p. 291]. �

Definition. A point Y = (y, 0) is called a parabolic limit (resp. a 1-parabolic
limit) of a sequence {Xk}, Xk = (xk , tk), of points in R

n ×R
+, if {Xk} converges

to Y and lim infk→∞ tk‖xk −y‖−2 > 0 (that is, all Xk belong to some paraboloid

of revolution with vertex Y and opening upward)
(resp. lim infk→∞ tk‖xk − y‖−2 ≥ 1).
Let M ⊂ R

n × R
+. A point Y ∈ R

n × {0} is called a parabolic limit point
(resp. a 1-parabolic limit point) of the setM if there exists a sequence {Xk} such
that every Xk ∈ M and Y is a parabolic limit (resp. a 1-parabolic limit) of {Xk}.
A function f on R

n × R
+ is said to have a parabolic limit q at Y if {f(Xk)}

converges to q whenever Y is a parabolic limit of {Xk}.
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Theorem B (The Fatou limit theorem). Let u be a parabolic function in P1.
Then for λ-almost all y ∈ R

n the function u has the parabolic limit fu(y) at
Y = (y, 0).

Proof: See [5, p. 292]. �

Lemma 1. A parabolic function u on R
n × R

+ is bounded if and only if there

is a function fu ∈ L∞(Rn) such that

u(X) =

∫

Rn

p(X, y)fu(y) dy, X ∈ R
n × R

+.

If it is the case, then sup
X∈Rn×R+

u(X) = ess sup
y∈Rn

fu(y) and sup
X∈Rn×R+

|u(X)| =

‖fu‖L∞(Rn).

Proof: Since u is a bounded parabolic function, it belongs to P1. From Theo-
rem A it follows that there is a λ-measurable function fu such that

u(X) =

∫

Rn

p(X, y)fu(y) dy, X ∈ R
n × R

+.

As for the constant function u = c we have fu = c (λ-almost everywhere), by
Theorem A it follows that c−u ≥ 0 if and only if c−fu ≥ 0 λ-almost everywhere.
Consequently, sup

X∈Rn×R+

u(X) = ess sup
y∈Rn

fu(y). The rest is trivial. �

The class of all bounded parabolic functions on R
n×R

+ will be denoted by Pb.
Of course, Ps ⊂ Pb ⊂ P1.

Lemma 2. Let M ⊂ R
n × R

+. Then the set of all parabolic limit points of M
is λ-measurable.

Proof: The point Y = (y, 0) is a parabolic limit point of M if and only if

lim sup
t0→0+

sup
{x;(x,t0)∈M}

t0
‖x − y‖2 > 0.

It follows from the definition of parabolic limits points. Remark that sup ∅ = −∞,
as usual.
Let M0 be a countable dense subset of M . The point Y is a parabolic limit

point of M if and only if Y is a parabolic limit point of M0. That is why we can
assume that M is a countable set.
For t ∈ R

+, x ∈ R
n and y ∈ R

n, define

g(t, x, y) =
t

‖x − y‖2 , if x 6= y,

=∞, if x = y.



500 J. Ranošová

It is easy to see that the function g is a continuous function from R
+ × R

n × R
n

into (0,∞]. Fix x and t. The function g(t, x, .) is measurable (even continuous)
from R

n into (0,∞].
For fixed t, let us put

gt(y) = sup
{x;(x,t)∈M}

t

‖x − y‖2 .

Let us recall that M is countable. Then gt, being a supremum of a countable
system of measurable functions, is measurable.
Because M is countable, only for countably many t the function gt is strictly

positive. Let us denote this set of t by T .
So, Y is a parabolic limit point of M if and only if

lim sup
t→0,t∈T

gt(y) > 0.

But then g, being a limes superior of a countable system of measurable func-
tions, is measurable.
Thus the set of all parabolic limit points, which is {g > 0}, is measurable. �

2. Sets of determination

Theorem 1. Let M ⊂ R
n × R

+.

If
sup

X∈Rn×R+

u(X) = sup
X∈M

u(X)

for all bounded positive parabolic functions, then λ-almost every point
y ∈ R

n × {0} is a parabolic limit point of M .
Proof: Suppose it is not true.
The set of all parabolic limit points of M will be denoted by Mp. We know

from the preceding lemma that the set Mp is measurable. Then its complement
M ′

p is also measurable and by our assumption λ(M ′
p) > 0.

For k ∈ N and y ∈ R
n × {0}, Γk

y will denote the set

{(x, t) ∈ R
n × R

+; 1/k > t > ‖x − y‖2}.

Then, for every y ∈ M ′
p, there is ky ∈ N such that Γ

ky
y ∩ M is empty. Denote by

Dk the set of y ∈ M ′
p for which Γ

k
y ∩ M is empty.

We will prove now that, for any k, the setDk is a measurable subset of R
n×{0}.

By definition
Dk =M ′

p ∩ {y ∈ R
n × {0}; M ∩ Γk

y = ∅}.
We know that M ′

p is measurable. Thus it remains to prove that

{y ∈ R
n × {0}; M ∩ Γk

y = ∅} is measurable.
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But M ∩ Γk
y = ∅ if and only if for any t ∈ (0, 1/k):

sup
{x; (x,t)∈M}

t

‖x − y‖2 ≤ 1.

Let M0 be a countable dense subset of M . The point Y is a parabolic limit
point of M if and only if Y is a parabolic limit point of M0. That is why we can
assume that M is a countable set. Let us fix t. Then

y 7−→ sup
{x; (x,t)∈M}

t

‖x − y‖2

is a measurable function and

{y ∈ R
n; sup

{x; (x,t)∈M}

t

‖x − y‖2 ≤ 1}

is a measurable set.
This set can be different from R

n only for t such that there is X = (x, t) ∈ M .
Let us denote this set by T . So, the intersection

⋂

0<t<1/k

{y ∈ R
n; sup

{x; (x,t)∈M}

t

‖x − y‖2 ≤ 1}

is equal to ⋂

0<t<1/k
t∈T

{y ∈ R
n; sup

{x; (x,t)∈M}

t

‖x − y‖2 ≤ 1},

and, as an intersection of countable system of measurable sets, it is measurable.
It means that Dk is measurable.

As
⋃∞

k=1Dk = M ′
p, the Lebesgue measure of at least one of the sets Dk is

strictly positive. Let it be the set Da where a ∈ N. Then there is a bounded
subset of Da which has strictly positive Lebesgue measure. Denote this set by D.
For a point X = (x, t) of R

n × R
+ we define

AX = {(y, 0) ∈ R
n × {0}; ‖x − y‖2 < t}.

(AX is the ball in R
n × {0} with the center (x, 0) and radius t1/2.)

Denote D′ = (Rn × {0}) \ D.
Let X = (x, t) ∈ M ∩(Rn×(0, 1/a)) and let y ∈ AX . Then 1/a > t > ‖x−y‖2,

so thatX ∈ Γa
y . Consequently, y /∈ Da, and so y /∈ D. We conclude thatAX ⊂ D′,

whenever X ∈ M ∩ (Rn × (0, 1/a)).
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For any measurable set A ⊂ R
n × {0} we define

uA(X) =

∫

A

p(X, y) dy, X ∈ R
n × R

+.

It means uA ∈ Ps, thus uA ∈ Pb and −uA ∈ Pb. By Lemma 1 we get uA is
positive, and if λ(A) > 0, then sup

Rn×R+

uA(X) = 1.

Denote the Lebesgue measure of the unit ball in R
n by αn. Then for any

X ∈ R
n × R

+:

uAX
(X) =

∫

AX

p(X, y) dy = (4πt)−n/2
∫

AX

exp(−‖x − y‖2
4t

) dy

≥ (4πt)−n/2
∫

AX

exp(− t

4t
) dy = (4πt)−n/2λ(AX ) exp(−1/4)

= (4π)−n/2αn exp(−1/4).

We see that

c = inf
X∈Rn×R+

uAX
(X) > 0.

The set D has a positive measure, hence the function uD is positive, parabolic,
bounded and

sup
X∈Rn×R+

uD(X) = 1.

Since uD + uD′ = 1, we get for every N ⊂ R
n × R

+ the equality

sup
X∈N

uD(X) = 1− inf
X∈N

uD′(X).

But AX is a subset of D
′ for every X ∈ M ∩ (Rn × (0, 1/a)).

It follows that

uD′(X) ≥ uAX
(X) ≥ c

for every X ∈ M ∩ (Rn × (0, 1/a)).
Then

sup
X∈M∩(Rn×(0,1/a))

uD(X) ≤ 1− c.

Now sup
X∈M∩(Rn×[1/a,∞))

uD(X) will be estimated. As D is bounded, there is
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d ∈ R
+ such that D ⊂ [−d, d]n and so we have for any (x, t) ∈ R

n × [1/a,∞)

uD(x, t) = (4πt)−n/2
∫

D

exp(−‖x − y‖2
4t

) dy

≤ (4πt)−n/2
∫

[−d,d]n

exp(−‖x − y‖2
4t

) dy ≤ (4πt)−n/2
∫

[−d,d]n

exp(−‖x − y‖2
4t

) dy

≤ (4πt)−n/2
∫

[−d,d]n

exp(−‖y‖2
4t
) dy = π−n/2

∫

[−d/(2
√

t),d/(2
√

t)]n

exp(−‖y‖2) dy

≤ π−n/2
∫

[−d
√

a/2,d
√

a/2]n

exp(−‖y‖2) dy < 1.

Thus
sup

X∈M∩(Rn×[1/a,∞))
uD(X) < 1.

Consequently,

sup
X∈M

uD(X) ≤ max (1− c, sup
X∈M∩(Rn×[1/a,∞))

uD(X)) < 1,

contradicting our assumption. �

In fact, we proved a bit more than the assertion of Theorem 1. Namely we
proved

Theorem 1’. Let M ⊂ R
n × R

+.

If
sup

X∈Rn×R+

u(X) = sup
X∈M

u(X)

for all simple parabolic functions, then λ-almost every point y ∈ R
n × {0} is

a 1-parabolic limit point of M .

Theorem 2. Let M be a subset of R
n × R

+ and let λ-almost every point
(y, 0) ∈ R

n × {0} be a parabolic limit point of M . Then
sup

X∈Rn×R+

|u(X)| = sup
X∈M

|u(X)|

for every bounded parabolic function u on R
n × R

+.

Proof: Let u be a bounded parabolic function on R
n ×R

+. By Lemma 1, there
exists f ∈ L∞(Rn) such that

u(X) =

∫

Rn

p(X, y)f(y) dy, X ∈ R
n × R

+
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and
sup

X∈Rn×R+

|u(X)| = ‖f‖L∞
.

It is clear that

sup
X∈M

|u(X)| ≤ sup
X∈Rn×R+

|u(X)| = ‖f‖L∞
.

By the hypothesis, λ-almost every point of R
n × {0} is a parabolic limit point

of M . From the Fatou limit theorem, for λ-almost every y ∈ R
n,

limu(Xk) = f(y),

whenever y is a parabolic limit of {Xk}. Thus

sup
X∈M

|u(X)| ≥ ‖f‖L∞
,

so that
sup

X∈Rn×R+

|u(X)| = sup
X∈M

|u(X)|.

�

3. A decomposition theorem for L1(R
n)

Let us introduce the following notation: The closure of M ⊂ R
n × R

+ in the

set R
n × R

+ (which is the set M ∩ (Rn × R
+)) will be denoted by M̃ .

The support of a measure ν on R
n×R

+ with respect to R
n×R

+ (it means the
complement in R

n×R
+ of the largest open set G ⊂ R

n×R
+ such that ν(G) = 0)

will be denoted by s(ν).

Theorem 3. Let M be a subset of R
n × R

+ and ν be a σ-finite measure on
R

n × R
+ such that s(ν) = M̃ . Let

sup
X∈Rn×R+

|u(X)| = sup
X∈M

|u(X)|

for every bounded parabolic function u on R
n × R

+.

Then, for any f in L1(R
n), there exists Φ in L1(ν) such that

(1) f =

∫

Rn×R+

Φ(X)p(X, .) dν(X)

λ-almost everywhere and

‖f‖L1(Rn) = inf {‖Φ‖L1(ν); (1) holds for some Φ ∈ L1(ν)}.



Sets of determination for parabolic functions on a half-space 505

Further, there exists a sequence {Xk}, Xk ∈ M and {λk} ∈ l1 such that

(2) f =
∞∑

k=1

λkp(Xk, .)

λ-almost everywhere and

‖f‖L1(Rn) = inf {
∑

|λk|; (2) holds for some {Xk} in M}.
The second part is an easy consequence of the first one. Just take a dense

countable subset of M , denote it {Xk}, and take ν the counting measure on it.
We will need the following version of the closed range theorem (see [7, p. 97]).

Let X and Y be Banach spaces, T a bounded linear mapping of X into Y. If there
exists a constant c > 0 such that ‖T ∗y∗‖ ≥ c‖y∗‖ for all y∗ ∈ Y∗ then TX = Y.
In our situation, X = L1(ν), Y = L1(R

n) and for Φ ∈ L1(ν) we define

TνΦ =

∫

Rn×R+

p(X, .)Φ(X) dν(X).

Lemma 3. The mapping Tν is a bounded linear mapping of L1(ν) into L1(R
n),

‖Tν‖ = 1; T ∗
ν is the parabolic extension mapping L∞(Rn) into L∞(ν).

Proof: Using the Fubini theorem we arrive at

‖TνΦ‖L1(Rn) =

∫

Rn

|TνΦ| dλ =

∫

Rn

|
∫

Rn×R+

p(X, y)Φ(X) dν(X)| dλ(y)

≤
∫

Rn

(

∫

Rn×R+

p(X, y)|Φ(X)| dν(X)) dλ(y)

=

∫

Rn×R+

(

∫

Rn

p(X, y)|Φ(X)| dλ(y)) dν(X)

=

∫

Rn×R+

|Φ(X)|(
∫

Rn

p(X, y) dλ(y)) dν(X)

=

∫

Rn×R+

|Φ(X)| dν(X) = ‖Φ‖L1(ν).

So, the first part of Lemma is proved.

Let g ∈ L∞(Rn) and Φ ∈ L1(ν). Using again the Fubini theorem we have

[Φ, T ∗
ν g] = [TνΦ, g] =

∫

Rn

gTνΦ dλ =

∫

Rn

g(y)(

∫

Rn×R+

Φ(X)p(X, y) dν(X)) dλ(y) =

∫

Rn×R+

Φ(X)(

∫

Rn

g(y)p(X, y) dλ(y)) dν(X) = [Φ,

∫

Rn

p(X, y)g(y) dλ(y)].

�
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Proof of Theorem 3. We shall prove the existence of a constant c > 0 such that
‖T ∗

ν g‖L∞(ν) ≥ c‖g‖L∞(Rn) for all g ∈ L∞(Rn) and the first part of the theorem

will be proved.
The function T ∗

ν g is bounded and parabolic on R
n ×R

+. Then, by hypothesis,
Lemma 3 and Lemma 1,

sup
X∈M

|(T ∗
ν g)(X)| = sup

X∈Rn×R+

|(T ∗
ν g)(X)| = ‖g‖L∞(Rn).

Since T ∗
ν g is a continuous function on R

n × R
+ and s(ν) = M̃ ,

‖T ∗
ν g‖L∞(ν) = sup

X∈M
|(T ∗

ν g)(X)|.

Consequently,
‖T ∗

ν g‖L∞(ν) = ‖g‖L∞(Rn).

So, we can take c = 1. The first part of Theorem 3 is proved.

To prove the other part, define the space

Z = L1(ν)/ kerTν .

For z ∈ Z and Φ ∈ z put Sz = TνΦ.
Then S is an invertible bounded linear mapping of Z into L1(R

n) and so its
adjoint S∗ is an invertible bounded linear mapping of L∞(Rn) into Z∗

(see [7, p. 94]).
Let z ∈ Z, Φ ∈ z and g ∈ L∞(Rn). Then we have

(S∗g)(z) = [Sz, g] = [TνΦ, g] = [Φ, T ∗
ν g].

If ε > 0, there exists Φ0 ∈ L1(ν) with ‖Φ0‖L1(ν) = 1 and

|[Φ0, T ∗
ν g]| > ‖T ∗

ν g‖L∞(ν) − ε.

Let z0 denote the coset of Φ0 in Z. Then

|(S∗g)(z0)| > ‖T ∗
ν g‖L∞(ν) − ε,

and
‖z0‖Z ≤ ‖Φ0‖L1(ν) = 1.

Therefore, the norm of the functional S∗g satisfies

‖S∗g‖Z∗ > ‖T ∗
ν g‖L∞(ν) − ε = ‖g‖L∞(Rn) − ε.
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Since ε was arbitrary, we proved that

‖S∗g‖Z∗ ≥ ‖g‖L∞(Rn)

for any g ∈ L∞(Rn), and so, using the fact that the norm of any operator is
the same as the norm of its adjoint (see [7, p. 93]) and the obvious fact that
(S∗)−1 = (S−1)∗, we have

‖S−1‖ = ‖(S∗)−1‖ ≤ 1.

Fix f ∈ L1(R
n) and put z = S−1f . Then

‖z‖Z ≤ ‖f‖L1(Rn),

that is
inf {‖Φ‖L1(ν);TνΦ = f} ≤ ‖f‖L1(Rn).

By Lemma 3 we have

‖f‖L1(Rn) = ‖TνΦ‖L1(Rn) ≤ ‖Tν‖.‖Φ‖L1(ν) = ‖Φ‖L1(ν).

So, the opposite inequality holds as well. �

Theorem 4. Let ν be a σ-finite measure on R
n × R

+ and s(ν) = M̃ . Assume
that for every function f ∈ L1(R

n) there exists Φ in L1(R
n) such that

(1) f =

∫

Rn×R+

Φ(X)p(X, .) dν(X)

λ-almost everywhere and

‖f‖L1(Rn) = inf {‖Φ‖L1(ν); (1) holds for some Φ in L1(ν)}.

Then
sup

X∈Rn×R+

u(X) = sup
X∈M

u(X)

for any quasi-bounded positive parabolic function u on R
n × R

+.

Proof: Put c = sup
X∈M

u(X). If c = ∞, sup
X∈Rn×R+

u(X) = ∞. So, suppose that
c < ∞.
Let ε > 0. If we fix X0 ∈ R

n × R
+, then p(X0, .) ∈ L1(R

n) and
‖p(X0, .)‖L1(Rn) = 1. By assumptions there is a function Φ ∈ L1(ν) such that

p(X0, .) =

∫

Rn×R+

Φ(X)p(X, .) dν(X) ≤
∫

Rn×R+

|Φ(X)|p(X, .) dν(X)
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and
‖Φ‖L1(ν) < 1 + ε.

As u is a quasi-bounded positive parabolic function, u ∈ P and we can integrate
the first inequality with respect to fu dλ. Using the Fubini theorem and the fact
that u ≤ c on s(ν), we have

u(X0) =

∫

Rn

p(X0, y)fu(y) dy ≤
∫

Rn

(

∫

Rn×R+

|Φ(X)|p(X, y)dν(X))fu(y) dy =

∫

Rn×R+

|Φ(X)|(
∫

Rn

p(X, y)fu(y) dy) dν(X) =

∫

Rn×R+

|Φ(X)|u(X) dν(X) ≤

∫

Rn×R+

c.|Φ(X)| dν(X) = c‖Φ‖L1(ν) ≤ c(1 + ε).

Since X0 and ε were arbitrary, we have sup
X∈Rn×R+

u(X) = c. �

Of course, the following special form of Theorem 4 holds:

Theorem 4’. Let M be a subset of R
n × R

+. Assume that for every function

f ∈ L1(R
n) there exist {λk}∞k=1 in l1 and a sequence {Xk}∞k=1 of points in M

such that

(2) f =

∞∑

k=1

λkp(Xk, .)

λ−almost everywhere and

‖f‖L1(Rn) = inf {
∞∑

k=1

|λk|; (2) holds for some {Xk} in M}.

Then
sup

X∈Rn×R+

u(X) = sup
X∈M

u(X)

for any quasi-bounded positive parabolic function u.

4. The main results

Theorem 5. Let M ⊂ R
n × R

+. Then the following statements are equivalent:

(i)
sup

X∈Rn×R+

u(X) = sup
X∈M

u(X)

for all simple parabolic functions u;
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(ii)
sup

X∈Rn×R+

u(X) = sup
X∈M

u(X)

for all bounded positive parabolic functions u;
(iii)

sup
X∈Rn×R+

u(X) = sup
X∈M

u(X)

for all bounded parabolic functions u;
(iv)

sup
X∈Rn×R+

u(X) = sup
X∈M

u(X)

for all quasi-bounded positive parabolic functions u;
(v)

sup
X∈Rn×R+

|u(X)| = sup
X∈M

|u(X)|

for all bounded parabolic functions u;

(vi) for λ-almost every point Y ∈ R
n × {0} there is a sequence of points of M

for which Y is a parabolic limit;

(vii) for λ-almost every point Y ∈ R
n ×{0} there is a sequence of points of M

for which Y is a 1-parabolic limit;

(viii) if ν is a σ-finite Borel measure with s(ν) = M̃ , then for every f ∈ L1(R
n)

there exists Φ ∈ L1(ν) such that

(1) f =

∫

Rn×R+

Φ(X)p(X, .) dν(X)

λ-almost everywhere and

‖f‖L1(Rn) = inf {‖Φ‖L1(ν); (1) holds for some Φ ∈ L1(ν)};

(ix) for every f ∈ L1(R
n), there is a sequence {Xk}, Xk ∈ M and {λk} ∈ l1

such that

(2) f =

∞∑

k=1

λkp(Xk, .)

λ-almost everywhere and

‖f‖L1(Rn) = inf {
∑

|λk|; (2) holds for some {Xk} in M}.

Proof: (i)⇒ (vii) by Theorem 1’; (vii)⇒ (vi) is clear; (vi)⇒ (v) by Theorem 2;
(v) ⇒ (viii) by Theorem 3; (viii) ⇒ (ix) is easy; (ix) ⇒ (iv) by Theorem 4’;
(iv) ⇒ (ii) is clear; (ii) ⇒ (iii) is easy; (iii) ⇒ (i) is clear. �
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Theorem 6. Let ν be a σ-finite Borel measure on R
n × R

+. Then for every

f ∈ L1(R
n) there exists Φ ∈ L1(ν) such that

(1) f =

∫

Rn×R+

Φ(X)p(X, .) dν(X)

and
‖f‖L1(Rn) = inf {‖Φ‖L1(ν); (1) holds for some Φ ∈ L1(ν)},

if and only if λ-almost every point Y ∈ R
n×{0} is a parabolic limit point of s(ν).

Proof: The result is obtained by combining Theorem 4, Theorem 1, Theorem 2
and Theorem 3. �

5. Application

Definition. Normal distribution N(µ, σ2) on R with parameters µ and σ2 is
a continuous probability distribution on R with a density

φ(y;µ, σ2) =
1

σ
√
2π
exp(− (y − µ)2

2σ2
);

normal distribution Nn(µ,Σ) on R
n with parameters µ and Σ, where µ ∈ R

n

and Σ = (σk,j) is a positive definite matrix n × n, is a continuous probability
distribution with density

φ(y;µ,Σ) = φ(y1, y2, ..yn;µ,Σ) =

(2π)−n/2|Σ|−n/2 exp(−1
2

n∑

j=1

n∑

k=1

(yj − µj)(yk − µk)σ
j,k),

where |Σ| is the determinant of Σ and (σj,k) = Σ−1.

If Σ is a σ2-multiple of the unit matrix U we have |Σ| = σ2n, Σ−1 = σ−2U
and

φ(y;µ,Σ) = φ(y;µ, σ2) = (2π)−n/2σ−n exp(−‖y − µ‖2
2σ2

).

Such normal distribution will be denoted by Nn(µ, σ2) and the class of all such
normal distributions will be denoted by SU . Let us remark that, if n = 1, then
SU is a class of all normal distributions.
(We recall that a continuous probability distribution on R

n is a probability
measure on R

n which is absolutely continuous with respect to λ.)

Definition. A set N is called non-tangentially dense in R
n ×R

+ if for λ-almost
every point (y, 0) of R

n × {0} there is a sequence {(µk, σk)} of points of N such
that (y, 0) is a limit of this sequence and lim infk→∞ σ−1

k ‖µk − y‖ > 0. (It means

that there is a cone Cy ⊂ R
n × R

+ with vertex in (y, 0) and open upward such
that M is a limit point of M ∩ Cy.)
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Theorem 7. Let S ⊂ SU . Then the set N = {(µ, σ) ∈ R
n×R

+; Nn(µ, σ2) ∈ S}
is non-tangentially dense if and only if for any continuous probability distribution

P there is a sequence {Nn(µk, σ2k)} of normal distributions on R
n of S and

{λk} ∈ l1 such that P can be expressed in the form

(3) P =

∞∑

k=1

λkNn(µk, σ2k),

and

(4) inf {
∞∑

k=1

|λk|; (3) holds for some Nn(µk, σ2k) in S} = 1.

Proof: A function f is a density of some continuous distribution if and only if
f ≥ 0, f ∈ L1(R

n) and ‖f‖L1(Rn) = 1.

Let us introduce substitution t = σ2/2, µ = x. Then φ(y, µ, σ2) = p((x, t), y).
Denote M = {(x, t) ∈ R

n × R
+; (µ, σ) ∈ N}.

The set N is non-tangentially dense if and only if for almost every (y, 0) there
is a sequence (µk, σk) ∈ N , the sequence converges to (y, 0) and
lim infk→∞ σk‖µk − y‖−1 > 0, it means lim infk→∞ σ2k/2‖µk − y‖−2 > 0. Using
the above substitution we have that it is equivalent to the existence of the sequence
(xk , tk) of elements of M which converges to (y, 0) and
lim infk→∞ tk‖xk − y‖−2 > 0. It means N is non-tangentially dense if and only
if λ-almost every point of R

n × {0} is a parabolic limit point of M .
Then, by Theorem 5, for any density f there is a sequence (xk, tk) of elements

of M (it means (µk, σk) ∈ N) and {λk} ∈ l1

(5) f =

∞∑

k=1

λkp(Xk, .)

λ-almost everywhere and

(6) 1 = ‖f‖L1(Rn) = inf {
∞∑

k=1

|λk|; (5) holds for some {xk, tk} in M}

and so

f =
∞∑

k=1

φ(., µk , σ2k)(7)

1 = inf {
∞∑

k=1

|λk|; (7) holds for some Nn(µk, σ2k) in S}.(8)
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Integrating (7) with respect to λ over any λ-measurable set A and using the
Lebesgue Convergence Theorem (can be used thanks to (8)) we have (3) and (4).

Let us suppose that any continuous distribution can be expressed in (3) and
that (4) is true. Let P be a continuous distribution and f its density. Then (3)
can be written in the form for any λ-measurable set A

∫

A

f dλ =
∞∑

k=1

λk

∫

A

φ(., µk , σ2k) dλ.

Then, using the Lebesgue Convergence Theorem again (thanks to (4)), we have

∫

A

f dλ =

∫

A

∞∑

k=1

λkφ(., µk , σ2k) dλ.

Choosing A be a ball with the center y and radius r, dividing the equality by
the λ-measure of the ball and letting r → 0, we have (7) and (8) and thus (5)
and (6).
Let us remark that for any f ∈ L1(R

n) there are real numbers a1, a2 and func-
tions f1, f2 which are densities of some distributions such that f = a1 f1 − a2 f2
and ‖f‖L1(Rn) = a1 ‖f1‖L1(Rn) + a2 ‖f2‖L1(Rn). (Really, put a1 = ‖f+‖L1(Rn)

and a2 = ‖f−‖L1(Rn). If a1 6= 0, put f1 =
1
a1

f+, else f1 = π−n/2 exp(−‖.‖2),
and if a2 6= 0, then put f2 =

1
a2

f−, else f2 = π−n/2 exp(−‖.‖2).)
Then (5) and (6) are true for any f ∈ L1(R

n) (of course, without 1) and, by
Theorem 5, λ-almost every point of Rn ×{0} is a parabolic limit point ofM , and
then, as we know, N is non-tangentially dense. �

6. Remark

Similar problems as in Sections 1–4 have been recently investigated for classical
harmonic functions on a ball in [2], [3], [4], [6] and for more general domains in [1].
The proofs in Section 2 were inspired by [6]; those in Section 3 by [4]. Sufficiency
of the non-tangential density of the set N in Theorem 7 can be obtained as
a special case of Theorem 2.9 in [8]. (From this, using substitution σ =

√
2t,

x = µ, Theorem 5 (vi) ⇒ (viii) follows.)
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