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M-mappings make their images less cellular

Michael G. Tkačenko

Abstract. We consider M -mappings which include continuous mappings of spaces onto
topological groups and continuous mappings of topological groups elsewhere. It is proved
that if a space X is an image of a product of Lindelöf Σ-spaces under an M -mapping
then every regular uncountable cardinal is a weak precaliber for X, and hence X has
the Souslin property. An image X of a Lindelöf space under an M -mapping satisfies
celωX ≤ 2ω . Every M -mapping takes a Σ(ℵ0)-space to an ℵ0-cellular space. In each of
these results, the cellularity of the domain of an M -mapping can be arbitrarily large.

Keywords: M -mapping, topological group, Maltsev space, ℵ0-cellularity

Classification: 54A25

1. Introduction

We define the notion of an M -mapping that takes its origin from topological
groups and Maltsev spaces (see [7], [18] for the discussion of Maltsev spaces).
Then we prove the results mentioned above thus generalizing [11, Theorem 1],
[16, Theorem 1] and [9, Theorem 1.1].
Let G be a topological group. The mapping F : G3 → G defined by F (x, y, z) =

x · y−1 · z is continuous and satisfies the condition

(∗) F (x, y, y) = F (y, y, x) = x for all x, y ∈ G.

This reason gives rise for the notion of Maltsev spaces [7], [18], or M -spaces
for short: we say that X is an M -space, if there exists a continuous mapping
F : X3 → X satisfying (∗). The mapping F is called a Maltsev operation on X .
It is clear that every topological group is an M -space. In fact, every retract of
a topological group is an M -space (if r is a continuous retraction of a topological
group G onto its subspace X , define F : X3 → X by F (x, y, z) = r(x · y−1 · z)
for all x, y, z of X). It is an open problem whether every M -space is a retract of
some topological group.
Every σ-compact topological group has the Souslin property [11]. Uspenskǐı

[17] generalized this result by proving that any Maltsev Lindelöf Σ-space has the
same property (and even is ℵ0- cellular). In fact, a little bit more is proved in [11]:
if γ is a family of open sets in a σ-compact topological group G and the cardinality
of γ is uncountable and regular, then there exists a subfamily µ of γ such that
|µ| = |γ| and U ∩ V 6= ∅ for all U, V of µ. In other words, every uncountable
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regular cardinal is a weak precaliber for G. The same conclusion can be proved
for a Lindelöf Σ-group or more generally, for a Maltsev Lindelöf Σ-space.
Our aim is to show that both the Souslin property and the weak precaliber

property arise when the structures of an M -space and of a Lindelöf Σ-space are
‘separated’ by a continuous mapping of a special kind. In fact, the structure of
an M -space will be completely replaced by the so-called M -mapping.

1.1 Definition. We call f : X → Y an M -mapping provided that there exists

a continuous mapping F : X3 → Y such that F (x, y, y) = F (y, y, x) = f(x) for
all x, y of X .

It is clear that every M -mapping is continuous. If f : X → Y is continuous
and X (or Y ) is an M -space, then f is an M -mapping. One can easily see that
if every continuous mapping of a space X to elsewhere is an M -mapping, then
X is an M -space. Furthermore, X is an M -space iff the identity mapping idX

is an M -mapping. Also note that f : X → Y is an M -mapping if there exist an
‘intermediate’ M -space Z and continuous mappings g : Z → Y and h : X → Z

such that f = g ◦ h. The class of M -mappings does not consist only of mappings
generated by M -spaces: it is not necessary to require that g be defined on the
whole space Z; it suffices to assume that g is defined on a subspace Z0 of Z
containing the set F0(h(X)

3), where F0 is a Maltsev operation for Z. Indeed,
define a continuous mapping F : X3 → Y by F (x, y, z) = gF0(h(x), h(y), h(z))
for all x, y, z of X . Obviously, F is as in Definition 1.1. Note that neither h(X)
nor Z0 have to be M -subspaces of Z. This is the reason why the notion of an
M -mapping seems to be flexible. Some additional information on M -mappings is
contained in [13].
We denote by w(X), l(X) and c(X) the weight, Lindelöf number and cellularity

of a spaceX respectively. A Gτ -set in X is an intersection of at most τ many open
subsets of X . The τ -cellularity of X , denoted by celτX , is the least cardinal λ
such that every family γ of Gτ -sets in X contains a subfamily µ of cardinality less
than or equal to λ satisfying cl(∪µ) = cl(∪λ). A space X is said to be τ -cellular
if celτX ≤ τ .
All considered spaces are assumed to be completely regular.
The notion of a Σ-space (see [8]) is one of the most important in the paper.

For the reader’s convenience we give some definitions related to this concept.

1.2 Definition. We call X a Σ-space, if there are two covers K and C of X
such that K is σ-locally finite and consists of closed sets, C consists of countably
compact sets and for every C ∈ C and every neighborhood U of C there exists
K ∈ K satisfying C ⊆ K ⊆ U . If in addition |K| ≤ τ , we call X a Σ(τ)-space.

Note that every countably compact space is obviously a Σ(ℵ0)-space. The
classes of Σ- and Σ(τ)-spaces are closed with respect to countable unions and
passing to perfect (even quasiperfect) images [8].
The following cardinal invariant was defined by Arhangel’skǐı [1] in a slightly

different form. Let βX be the Čech-Stone compactification of X and F the family
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of all closed subsets of βX .

1.3 Definition. The Nagami number of a space X is the cardinal number

Nag(X) = min{|γ| : (γ ⊆ F)&(∀x ∈ X ∀y ∈ βX \X ∃F ∈ γ with x ∈ F 6∋ y)}.

In other words, the Nagami number of X is the least cardinality of a fam-
ily γ ⊆ F separating the points of X from the points of βX \ X . Note that
a Σ-space X is Lindelöf iff Nag(X) ≤ ℵ0. Lindelöf Σ-spaces can also be charac-
terized as continuous images of spaces that admit perfect mappings onto separable
metric ones [1]. Compact and σ-compact spaces constitute proper subclasses of
the class of Lindelöf Σ-spaces, and the latter is countably productive. Clearly,
l(X) ≤ Nag(X) for every space X . It needs mentioning that the Čech-Stone
compactification βX in Definition 1.3 can be replaced by any compactification
of X .

2. Main results

Let Π =
∏

i∈J Pi be a product space and p
∗ ∈ Π. Denote by σ(p∗) the

subspace of Π consisting of all points which differ from p∗ on at most finitely
many coordinates. The following theorem presents the main result of the paper.

2.1 Theorem. Let Π =
∏

i∈J Pi be a product of spaces satisfying Nag(Pi) ≤ τ

for each i ∈ J , and Z be a subspace of Π such that σ(p∗) ⊆ Z. If X is an image

of Z under anM -mapping, then every regular cardinal λ > τ is a weak precaliber

for X .

We will prove the theorem by making use of two auxiliary set-theoretic lemmas.
The first of them reminds of the ∆-lemma [5, Appendix 2] and has a similar proof.

2.2 Lemma. Suppose that λ and τ are infinite cardinals such that cf(λ) > τ+

and kτ < λ for each k < λ. If ξ is a family of sets of cardinality less than or

equal to τ and |ξ| = λ, then ξ contains a quasidisjoint subfamily η of the same

cardinality λ, i.e. there exists a set R such that M ∩N = R whenever M,N ∈ η

and M 6= N .

Proof: For an arbitrary set A put ξA = {M \A :M ∈ ξ}. It suffices to consider
the case when the family ξA does not contain disjoint subfamilies of cardinality
λ whenever |A| < λ. If α < τ+ and a subfamily η(β) of ξ with |η(β)| < λ has
already been defined for each β < α, we put B(β) = ∪η(β), A(α) =

⋃
β<αB(β)

and define η(α) as a maximal disjoint subfamily of ξA(α). Obviously |A(α)| < λ,

and hence |η(α)| < λ as well. If nowM ∈ ξ \
⋃

α<τ+ η(α), then M ∩B(α) 6= ∅ for

each α < τ+. The latter implies |M | > τ , for B(α) ∩B(β) = ∅ whenever α 6= β,
which contradicts the assumption on the family ξ. �

If γ is a cover of a set X and x ∈ X , we denote St(x, γ) = ∪{U ∈ γ : x ∈ U}.
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2.3 Lemma (see [11]). Let {γα : α < λ} be a family of finite covers of a set T ,
where λ is a regular uncountable cardinal. Then for every sequence {xα : α <
λ} ⊆ T there exists a subset A ⊆ λ such that |A| = λ and St(xα, γβ)∩St(xβ , γα) 6=
∅ for all α, β ∈ A.

Proof of Theorem 2.1. Let f be an M -mapping of Z onto X and suppose
that a continuous mapping F : Z3 → X witnesses that. Suppose also that
{Oα : α < λ} is a family of non-void open sets in X , where λ is a regular
cardinal, λ > τ . Since σ = σ(p∗) is dense in Π (and in Z), for each α < λ one can
find a point xα ∈ σ with f(xα) ∈ Oα. For all x ∈ σ and α < λ define Uα(x) ∋ x
as a maximal open set in σ such that

(1) F (xα, y, z) ∈ Oα and F (z, y, xα) ∈ Oα for all y, z ∈ Uα(x).

Then define γα = {Uα(x) : x ∈ σ}; α < λ. It is clear that γα is an open cover of
σ for each α < λ. Our aim is to show that the conclusion of Lemma 2.3 holds for
the family {γα : α < λ} and the sequence {xα : α < λ}. The further reasoning is
divided into three parts.

Case 1. Suppose that λ ≤ 2τ . For each x ∈ σ denote by supp(x) the set of all
indices of J on which x differs from p∗. Put B =

⋃
α<λ supp(xα). Then |B| ≤ λ,

because |supp(x)| < ℵ0 whenever x ∈ σ. Denote by πB the projection of Π onto
ΠB =

∏
i∈B Pi. The subspace σB = {x ∈ σ : supp(x) ⊆ B} of Π is homeomorphic

to πB(σ), and the latter is the σ-product σ(πB(p
∗)) ⊆ ΠB with the base point

πB(p
∗). We have |B| ≤ λ ≤ 2τ and Nag(Pi) ≤ τ for all i ∈ B. Therefore

Nag(σB) = Nag(πB(σ)) ≤ τ by a theorem of Ranchin [2]. Let βΠ be the Čech-
Stone compactification of Π and F a family of closed sets in βΠ separating points
of σB from the points of βΠ \ σB , |F| ≤ τ . We can assume that the family F is
closed under finite intersections. For every α < λ denote by γ̃α a family of open
sets in βΠ whose traces on σ constitute the cover γα of σ and find an element
L ∈ F such that xα ∈ L ⊆ ∪γ̃α. It does exist, for otherwise ∩Fα \ ∪γ̃α 6= ∅,
where Fα = {K ∈ F : xα ∈ K}. The latter, however, contradicts the separating
property of F . Since λ is a regular cardinal and |F| ≤ τ < λ, one can find
a set A0 ⊆ λ, |A0| = λ, and an element K∗ ∈ F such that xα ∈ K∗ ⊆ ∪γ̃α for
all α ∈ A0. Using compactness of K

∗, we can assume that |γ̃α| < ℵ0 for each
α ∈ A0. Thus γα is a finite cover of the set T = {xβ : β ∈ A0} for each α ∈ A0,
and Lemma 2.3 implies the existence of a subset A ⊆ A0 with |A| = λ such that
St(xα, γβ) ∩ St(xβ , γα) 6= ∅ for all α, β ∈ A.

Case 2. There exists a cardinal k such that τ < k < λ ≤ 2k.

The argument here is just the same as in Case 1 with k playing the rôle of τ .

Case 3. 2k < λ for each k < λ (i.e. λ is a strong limit cardinal). This is the
only case to care about thoroughly. Since X is completely regular, we can assume
that for each α < λ there exists a continuous function ϕα : X → [0, 1] such that

Oα = ϕ−1α (0, 1]. Consider continuous mappings ψα = ϕα ◦ F and ψ̃α = ψα|σ3 ;
α < λ. Note that for every finite B ⊆ J the space ΠB satisfies the inequality
l(ΠB) ≤ Nag(ΠB) ≤ τ , and hence l(σ) ≤ τ by a theorem of [6]. By the same
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reason we have l(σ3) ≤ τ . Since ψ̃α is a continuous mapping of σ
3 to a second-

countable space, ψ̃α depends on at most τ coordinates by Corollary 1 of [10]
(another way is to apply a theorem of Engelking [3]). LetMα be the set of all the

indices of J the function ψ̃α depends on; |Mα| ≤ τ . Note that in fact we should
speak about coordinates of the index set J3, but ‘spilling’ the triples of J3 we
get the sets Mα lying in J . Obviously, ψα does not depend on J \Mα either,
because σ3 is dense in Z3. For every α < λ denote Nα = Mα ∪ supp(xα) and
consider the family ξ = {Nα : α < λ}. If |ξ| < λ, by the regularity of λ there
exists a set E ⊆ λ of cardinality λ such that Nα = Nβ = B for all α, β ∈ E.
Then |B| ≤ τ and we will get Case 1 if we consider the subspace σB of Z and the
family {γα : α ∈ E} of covers of σB . So it remains to assume that |ξ| = λ. Then
by Lemma 2.2 the family ξ contains a quasidisjoint subfamily η with |η| = λ. Let
η = {Nα : α ∈ C}, where C ⊆ λ, and suppose that R is a root of η. Diminishing
η, we can also assume that Nα 6= Nβ for all distinct α, β of C. For each α ∈ C

put N∗
α = Nα \R. Then {N∗

α : α ∈ C} is a disjoint family of cardinality λ.

We claim that U = σ ∩ π−1Nα

πNα
(U) for all U ∈ γα and α < λ. First, note

that the restriction of πNα
to σ is an open mapping onto πNα

(σ); therefore by
the maximality of a set U (= Uα(x) for some point x ∈ σ) it suffices to verify

that the open set σ ∩ π−1Nα

πNα
(U) satisfies the above condition (1). Indeed, take

y, z, y′, z′ ∈ σ such that y, z ∈ Uα(x), πNα
(y′) = πNα

(y) and πNα
(z′) = πNα

(z).

Then π3Nα

(xα, y
′, z′) = π3Nα

(xα, y, z), and the definition of the subset Mα of Nα

implies

ψα(xα, y
′, z′) = ϕαF (xα, y

′, z′) = ϕαF (xα, y, z) = ψα(xα, y, z).

By the definition of Uα(x) we have

y, z ∈ Uα(x) =⇒ ϕαF (xα, y, z) > 0 =⇒ ϕαF (xα, y
′, z′) > 0.

Analogously,

y, z ∈ Uα(x) =⇒ ϕαF (z, y, xα) > 0 =⇒ ϕαF (z
′, y′, xα) > 0.

Since Oα = ϕ−1α (0, 1], the inequalities above imply that the set Ũα(x) = σ ∩

π−1Nα

πNα
(Uα(x)) satisfies (1), and hence Ũα(x) = Uα(x).

Denote Π∗R = ΠR ×{πJ\R(p
∗)} and Φ = clβΠΠ

∗
R. Since |R| ≤ τ , the subspace

σR = σ ∩ Π∗R of Π satisfies Nag(σR) ≤ τ . The set σR is dense in Φ, and hence
there exists a family F of closed sets in Φ separating points of σR from the points
of Φ \ σR, |F| ≤ τ . For each α ∈ C, define a point x∗α ∈ σR by πR(x

∗
α) = πR(xα)

and πJ\R(x
∗
α) = πJ\R(p

∗). The same argument as in Case 1 gives us an element

K∗ ∈ F and a subset D of C such that |D| = λ and x∗α ∈ K∗ ⊆ ∪γ̃α for all
α ∈ D.
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Claim. If µ ⊆ γα for some α ∈ D and K∗ ⊆ ∪µ, then {xβ : β ∈ D}\{xα} ⊆ ∪µ.

Indeed, let α ∈ D and µ ⊆ γα, F ⊆ ∪µ. For an arbitrary β ∈ D \ {α} choose
U ∈ µ with x∗β ∈ U . The points xβ and x

∗
β coincide on all coordinates of J \N∗

β ,

and N∗
β ∩Nα = ∅. Since x∗β ∈ U and U = π−1Nα

πNα
(U), we conclude that xβ ∈ U .

This proves the claim.

For each α ∈ D, find a finite subfamily µα of γα that covers the compact
set K∗ ∪ {xα} and apply Lemma 2.4 to the family {µα : α ∈ D} of covers of
the sequence {xα : α ∈ D} (Claim works here). This gives us a subset A ⊆ D
of cardinality λ such that St(xα, µβ) ∩ St(xβ , µα) 6= ∅ for all α, β ∈ A. Since
µα ⊆ γα, we conclude that

(∗) St(xα, γβ) ∩ St(xβ , γα) 6= ∅ for all α, β ∈ A.

Final step.In each of Cases 1–3 we have found a subset A ⊆ λ of cardinality λ
with the above property (∗). It remains to show that Oα∩Oβ 6= ∅ for all α, β ∈ A.
To this end apply an argument similar to the proof of Proposition 1 of [16]. Let
α, β ∈ A and α 6= β. By (∗) one can find U ∈ γα, V ∈ γβ and a point z ∈ σ such
that {xα, z} ⊆ V and {xβ , z} ⊆ U . Then by the definition of γα and γβ , we have
F (xα, z, xβ) ∈ Oα ∩Oβ 6= ∅. �

The following result was earlier announced by the author in [12] for τ = ℵ0.

2.4 Theorem. Let Π =
∏

i∈J Pi be a product of spaces satisfying Nag(Pi) ≤ τ
for all i ∈ J , and suppose that f : Π → X is an M -mapping onto a Tikhonov
space X . Then every regular cardinal λ > τ is a weak precaliber for X and
celτX ≤ τ .

Proof: It suffices to put Z = Π in Theorem 2.1. The inequality celτ ≤ τ follows
from [13, Theorem 2.2]. �

2.5 Remark. The subspace Z of the product Π in Theorem 2.1 could not be an
arbitrary dense set in Π even if the index set J is one-point, i.e. Nag(Π) ≤ τ . In
fact, every space is an image of some dense subspace of a compact space under
an M -mapping. Indeed, for a given space X let Xd be a discrete group with the
underlying set X . Then the identity mapping idX : Xd → X is obviously an
M -mapping and Xd is dense in the compact space βXd.

2.6 Remark. A proof of the ‘weak precaliber’ part of Theorem 2.4 can be es-
sentially simplified in comparison with the proof of Theorem 2.1. Indeed, let us
have defined the points xα ∈ Π with f(xα) ∈ Oα for all α < λ. For every α < λ
there exists a standard open set Vα ∋ xα in Π such that f(Vα) ⊆ Oα. Then

Vα = π−1
D(α)

πD(α)Vα for some finite subset D(α) of J . By the usual △-lemma,

the family ξ = {D(α) : α < λ} contains a quasidisjoint subfamily of the same
cardinality λ, so we can assume that ξ is quasidisjoint itself and has a root R,
|R| < ℵ0. Put E(α) = D(α) \ R for each α < λ. The family {E(α) : α < λ} is
disjoint, and one can find a point q ∈ ΠJ\R such that q|E(α) = xα|E(α) for all

α < λ. Denote Π∗R = ΠR × {q}. Then Vα
⋂
Π∗R 6= ∅, and hence f(Π∗R)

⋂
Oα 6= ∅
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for all α < λ. Since Nag(Π∗R) = Nag(ΠR) ≤ τ , it remains to apply the argument
of Case 1 and Final step of the corresponding proof.

2.7 Corollary. If an M -space X is a continuous image of a product of Lindelöf
Σ-spaces, then every regular uncountable cardinal is a weak precaliber for X and
X is ℵ0-cellular.

Proof: Every continuous mapping onto an M -space is an M -mapping. The
conclusion now follows from Theorem 2.4. �

2.8 Corollary. IfX is a dense subspace of a Lindelöf Σ-group, then every regular
uncountable cardinal is a weak precaliber for X .

Proof: The ‘weak precaliber’ property is hereditary with respect to dense sub-
spaces. It remains to note that a topological group is an M -space and apply
Corollary 2.7. �

It is known that the cellularity can be raised by multiplying of two spaces [14].
Recently Todorčević [15] constructed (in ZFC only) an example of a topological
group H with c(H ×H) > c(H). However, the latter is impossible in the class of
subgroups of Lindelöf Σ-groups.

2.9 Proposition. Let G be a subgroup of a Lindelöf Σ-group. Then c(G×H) =
c(H) for every infinite topological group H .

Proof: There exists a Lindelöf Σ-group Ĝ containing G as a subgroup. Then
K = cl

Ĝ
G is a closed subgroup of Ĝ, and hence is a Lindelöf Σ-group. Since G

is dense in K, every uncountable regular cardinal is a weak precaliber for G by
Corollary 2.8. In particular, this is the case for τ+ where τ = c(H). For the
following argument, topological group structures of G and H are unessential. Let
γ be a family of open sets in G × H , |γ| = τ+. It suffices to find two distinct
elements of γ with a non-empty intersection. We can assume that each element of
γ has the form U ×V for some open sets U ⊆ X and V ⊆ Y . For every subfamily
µ of γ denote µ̃ = {p1(O) : O ∈ µ}, where p1 is the projection of G×H onto G.
Since τ+ is a weak precaliber for G, one can find a subfamily µ of γ such that
|µ| = τ+ and U ∩ U ′ 6= ∅ for all U,U ′ ∈ µ̃. The inequality c(H) ≤ τ implies that
p2(O)∩p2(O

′) 6= ∅ for some distinct O,O′ ∈ µ where p2 is the projection of G×H
onto H . Since O and O′ have rectangular form, we conclude that O∩O′ 6= ∅. �

By Theorem 1.1 of [9], every topological group G with l(G) ≤ τ is 2τ -cellular,
i.e. celτ (G) ≤ 2τ . Roughly speaking, this result was proved by making use of
a ‘good’ lattice of open mappings of G onto quotient groups of countable pseu-
docharacter. Again, we show that the existence of an appropriate M -mapping is
responsible for this phenomenon.

2.10 Theorem. Let f : Π → X be an M -mapping of a space Π with l(Π) ≤ τ
onto X . Then celτ (X) ≤ 2τ .

Proof: Suppose the contrary. Then there exists a sequence {(Kα, Oα) : α < λ}
such that Kα ⊆ Oα ⊆ X , Kα is a non-empty closed Gτ -set in X , Oα is open in
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X and Kβ ∩Oα = ∅ whenever β < α < λ; λ = (2τ )+. Diminishing Kα and Oα if
necessary, we can assume that for each α < λ there exists a continuous mapping
ϕα of X onto a space Xα of weight at most τ such that Kα = ϕ

−1
α ϕαKα.

Let F : Π3 → X be a continuous mapping with the property F (x, y, y) =
F (y, y, x) = f(x) for all x, y ∈ Π. For every α < λ pick a point xα ∈ Π with
f(xα) ∈ Kα and define a continuous mapping ψα,β : Π → Xα by ψα,β(x) =
ϕαF (xα, xβ , x) for all α, β < λ and x ∈ Π. Note that ψβ,β = ϕβ ◦ f for all β < λ.
Denote T = {xα : α < λ} and Tα = {xβ : β < α}; α < λ. If g : Π → Y is an
arbitrary mapping to a space Y with w(Y ) ≤ τ , then |Y | ≤ 2τ ; therefore there
exists an ordinal δ(g) < λ such that g(Tδ(g)) = g(T ).

The following step is a transfinite construction on α < λ. Put ν(0) = 0.
Suppose that for some α < τ+ we have already defined ordinals ν(β) < λ for
all β < α. If α is limit, we put ν(α) = supβ<αν(β). Otherwise α = β + 1

for some β and we put Gα = {ψγ,γ′ : γ, γ′ ≤ β} and denote by Hα the family
{△Ψ : Ψ ⊆ Gα, |Ψ| ≤ τ}, where △Ψ is the diagonal product of mappings of Ψ.
Obviously, |Hα| ≤ 2τ and the weight of the space g(Π) does not exceed τ for each
g ∈ Hα. Therefore we can define ν(α) as the maximum of the ordinals ν(β) and
sup{δ(g) : g ∈ Hα}. Clearly, ν(α) < λ. This completes our construction.
Put ν = supα<τ+ν(α), G = {ψγ,γ′ : γ, γ′ < ν} and h = △G. The crucial

statement is that the set C = clΠTν has the property h(T ) ⊆ h(C). Indeed, by
the construction, for every subfamily Ψ of G with |Ψ| ≤ τ we have (△Ψ)(T ) ⊆
(△Ψ)(Tν), and the statement follows from the fact that l(C) ≤ τ .
Choose a point z ∈ C with h(z) = h(xν). We have F (z, z, xν) = f(xν) ∈ Kν ⊆

Oν , and the continuity of F in the first argument implies that there exists an open
neighbourhood V of z in Π such that F (x, z, xν) ∈ Oν for all x ∈ V . Since z is in
the closure of Tν , one can find α < ν with xα ∈ V . Thus we have F (xα, z, xν) ∈
Oν . To get a contradiction it remains to show that F (xα, z, xν) ∈ Kα.
Since ψα,β ∈ G for all β < ν, from the choice of the point z it follows that

ϕαF (xα, xβ , xν) = ϕαF (xα, xβ , z) for each β < ν. Using the continuity of F in
the first argument, we get

ϕαF (xα, z, xν) = ϕαF (xα, z, z) = ϕαf(xα) ∈ ϕα(Kα).

However, Kα = ϕ−1α ϕα(Kα), whence it follows that the point p = F (xα, z, xν)
belongs to Kα. Thus p ∈ Oν ∩Kα 6= ∅ and α < ν, a contradiction with the choice
of Kα and Oν . �

2.11 Remark. An easy examination of the above proof shows that we have not
used the continuity of the mapping F : Π3 → X in all its power. In fact, just the
separate continuity of F in its arguments is necessary. This enables to consider
groups with a separately continuous multiplication (and continuous inverse); let
us call them quasitopological. Thus we have the following.

2.12 Corollary. A quasitopological group G with l(G) ≤ τ satisfies celτ (G) ≤
2τ .
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This corollary of Theorem 2.10 is a slight generalization of [9, Theorem 1.1].
Note that one cannot improve Corollary 2.12 by showing celτ (G) ≤ τ even for
a topological group G. Indeed, if X is a one-point τ -Lindelöfication of a discrete
set of cardinality greater than τ , then the free Abelian group G = A(X) satisfies
l(G) ≤ τ and c(G) > τ (see [11] for details).

2.13 Problem. Does Theorem 2.10 remain valid for a weakly τ -Lindelöf space
Π (i.e. for a space each open cover of which contains a subfamily of cardinality
≤ τ with a dense union)?

The following problem is closely connected with the previous one.

2.14 Problem. Let S be a weakly Lindelöf subspace of a product
∏

i∈J Pi and
suppose that f : S → X is an M -mapping to a second-countable space X . Does
f depend on countably many coordinates?

The answer to Problem 2.14 is “yes” if S is a subgroup of a product of topo-
logical groups Pi, or even if S is an M -subspace of a product of M -spaces Pi [4,
Theorem 1.1].
Combining the argument exposed in the proof of Theorems 2.2 and 2.10, we

can prove a result generalizing Proposition 6 of [18]. This requires the following
notation. Suppose f : Π → Y and g : Π → Z are continuous mappings and f is
onto. We write f ≺ g if there exists a continuous mapping h : Y → Z such that
g = h ◦ f .

2.15 Theorem. An image of a Σ(ℵ0)-space under an M -mapping is ℵ0-cellular.

Proof: Let f : Π → X be an M -mapping of a Σ(ℵ0)-space Π onto X and
suppose that F : Π3 → X witnesses that. If X is not ℵ0-cellular, there exists
a sequence {(Kα, Oα) : α < ω1} such that Kα ⊆ Oα ⊆ X , Kα is a non-empty
Gδ-set in X , Oα is open and Kβ∩Oα = ∅ whenever β < α < ω1. For each α < ω1
pick a point xα ∈ Π with f(xα) ∈ Kα. We can also assume that for each α < ω1
there exists a continuous function ϕα : X → [0, 1] such that Kα = ϕ−1α (1) and
X \ Oα = ϕ−1α (0). Define a continuous mapping ψα,β : Π → [0, 1] by ψα,β(x) =
ϕαF (xα, xβ , x) for all α, β < ω1 and x ∈ Π. Let two covers K and C of Π witness
that Π is a Σ(ℵ0)-space, |K| ≤ ℵ0. The family K can be chosen closed under finite
intersections.
Let α0 be a countable ordinal. Put g0 = △{ψβ,γ : β, γ ≤ α0}. Then the space

Y0 = g0(Π) is second-countable. Suppose that for some integer n we have defined
an ordinal αn < ω1 and a continuous mapping gn : Π → Yn onto a space Yn

with w(Yn) ≤ ℵ0. Since Yn is hereditarily separable, for each K ∈ K there exists
an ordinal δ = δn(K) < ω1 such that gn(K ∩ Tδ) is dense in gn(K ∩ T ), where
T = {xα : α < ω1} and Tδ = {xν : ν < δ}. Put αn+1 = max{αn, sup{δn(K) :
K ∈ K}} and gn+1 = gn△(△{ψβ,γ : β, γ ≤ αn+1}); the symbol △ stands for
the diagonal product of mappings. Thus we have defined an increasing sequence
{αn : n ∈ ω} of countable ordinals and can now put α = supn∈ωαn and g =
△{ψβ,γ : β, γ < α}. Then α < ω1 and the space Y = g(Π) is second-countable.
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From the construction it follows that the following conditions are fulfilled:

g(K ∩ Tα) is dense in g(K ∩ T ) for each K ∈ K;(1)

g ≺ ψβ,γ for all β, γ < α.(2)

We claim that g(xα) ∈ g(clΠTα). Indeed, choose C
∗ ∈ C with xα ∈ C∗.

Denote by B a countable base of the space Y at g(xα). By (1), the family
F = {g−1(clY U)∩K∩clΠTα : U ∈ B, C∗ ⊆ K ∈ K} consists of non-empty closed
subsets of Π. The set g−1(clY U) ∩ clΠTα meets C

∗ for each U ∈ B, otherwise
by the choice of K there exists K∗ ∈ K such that C∗ ⊆ K∗ ⊆ Π \ (g−1(clY U) ∩
clΠTα), which contradicts the fact that all elements of F are non-empty. Thus, the
countable family F∗ = {g−1(clY U) ∩C

∗ ∩ clΠTα : U ∈ B} consists of non-empty
closed subsets of C∗ and by the choice of B has the finite intersection property.
Since C∗ is countably compact, we have ∅ 6= ∩F∗ = g−1g(xα) ∩ C∗ ∩ clΠTα.
Consequently, g(xα) ∈ g(clΠTα).
Pick a point z ∈ clΠTα with g(z) = g(xα). Since F (z, z, xα) = f(xα) ∈ Kα ⊆

Oα, there exists a neighbourhood V of z such that F (V ×{z}×{xα}) ⊆ Oα. From
z ∈ clΠTα it follows that xβ ∈ V for some β < α, and we have F (xβ , z, xα) ∈ Oα.
Since g(xα) = g(z), (2) implies that ψβ,γ(xα) = ψβ,γ(z), i.e. ϕβF (xβ , xγ , xα) =
ϕβF (xβ , xγ , z) for all γ < α. Taking into account the continuity of F in the first
argument and the fact that z ∈ clΠTα, we get the equalities

ϕβF (xβ , z, xα) = ϕβF (xβ , z, z) = ϕβf(xβ) = 1.

Since Kβ = ϕ−1
β
(1), the latter means that y = F (xβ , z, xα) ∈ Kβ. Thus y ∈

Kβ ∩Oα 6= ∅ and β < α, which contradicts the choice of the sequence {(Kν , Oν) :
ν < ω1}. �

Note again that the separate continuity of the mapping F : Π3 → X was only
used in the proof of the above theorem. Thus we have the following corollary.

2.16 Corollary. If a quasitopological group G is a continuous image of some

Σ(ℵ0)-space, then G is ℵ0-cellular.

2.17 Corollary. Suppose a space Π admits a quasiperfect (i.e. continuous closed
with countably compact fibers) mapping onto a space with a countable network.
Then every image of Π under an M -mapping is ℵ0-cellular.

Proof: Let h : Π → Z be a quasiperfect mapping of Π onto a space Z with
a countable network N . Since Z is regular, we can assume that N consists of
closed sets. Put C = {h−1(z) : z ∈ Z} and K = {h−1(N) : N ∈ N}. Then
the covers C and K of Π witness that Π is a Σ(ℵ0)-space. It remains to apply
Theorem 2.15. �

2.18 Problem. Suppose f : Π → X is an M -mapping of a countably compact
space Π onto X . Is then every regular uncountable cardinal a caliber for X?
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2.19 Problem (see also [13, Problem 2.4]). Does an image of a pseudocompact
space under an M -mapping have the Souslin property?

It is still unknown whether every pseudocompact M -space has the Souslin
property; see [18] for details.
We conclude with a little bit alien problem to the area.

2.20 Problem (see [13, Problem 2.5]). If X is an image of a compact space
under an M -mapping, must X be dyadic?
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[14] Todorčević S., Remarks on cellularity in products, Compositio Math. 57 (1986), 357–372.
[15] , Cellularity of topological groups, Handwritten notes.
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