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On a method for a-posteriori error estimation

of approximate solutions to parabolic problems

J. Weisz

Abstract. The aim of the paper is to derive a method for the construction of a-posteriori
error estimate to approximate solutions to parabolic initial-boundary value problems.
The computation of the suggested error bound requires only the computation of a finite
number of systems or linear algebraic equations. These systems can be solved paral-
lelly. It is proved that the suggested a-posteriori error estimate tends to zero if the
approximation tends to the true solution.
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Introduction

In this note we deal with the linear parabolic initial-boundary value problem

(1)

ut −∆u = f0 in Ω× I,

u = 0 on ∂Ω× I,

u(0;x) = 0 on Ω.

We are interested in the construction of a-posteriori error estimate to the approx-
imate solution to this problem. In the literature, there are two approaches to this
problem. The first one [1] is especially designed for the estimation of the error of
a finite-element approximation to (1). The second approach [2] is based on the
construction of the conjugate problem to (1) and approximation of the solution
to the conjugate problem. The approximations to the solution to the conjugate
problem are constructed independently on the computed approximation to the
original problem.
The method presented in this paper is also based on the construction of the

conjugate problem but it exploits the approximate solution to the original problem
in order to construct an a-posteriori error estimate. A similar construction was
used in [4] in order to derive a-posteriori error estimate to some nonlinear elliptic
boundary value problems. Problem (1) is considered only for the sake of simplicity.
Generalization to more complex parabolic problems is sketched in Remark 4.
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Notations, preliminaries, problem formulation

We suppose that Ω ⊂ R2 is a simply connected bounded domain with lip-
schitzian boundary and f0 ∈ L2(Ω). We shall adopt the following notations:

T ∈ R, T > 0, I = (0, T ), U = L2(0, T ;W
1,2
0 (Ω)), H = L2(0, T ;L

2
2(Ω)),

V0 = {v ∈ W 1,2(Ω) |
∫

Ω v dx = 0}, V = L2(O, T ;V0). The norms in U, V ,
are defined by

‖u‖ = ‖∇u‖L2(0,T ;L22)(Ω)
,

where ∇ denotes the gradient with respect to the “space” variable. The inner
product in H will be denoted by [., .] and the duality pairing between U∗ and
U or V ∗ and V by 〈., .〉. The adjoint of a linear continuous operator B will be
denoted by B∗. Let f ∈ U∗ be the functional defined by 〈f, u〉 =

∫

Ω f0u dx. Let
us introduce the operators

K ∈ L(U,H), Ku = ∇u,

M : {u ∈ U | u′ ∈ U∗, u(0) = 0}, Mu = u′,

N : H→ H, Nh = h−w,

where u′ is the time derivative of u in the sense of distributions and w ∈ H is
an arbitrary (but fixed) element satisfying K∗w = f . Such an element can be
constructed e.g. by the formula

w =

(

−

∫ x1

0
f0(s, x2) ds, 0

)

.

Under the above notations, problem (1) can be formulated in the weak sense:
Find u ∈ U satisfying

(2) u′ +K∗NKu = 0, u(0) = 0, i.e. u′ +K∗Ku = f, u(0) = 0.

It is well known [3] that the solution to (2) exists and is unique. Moreover it can
be approximated e.g. by the Galerkin-Rothe method, i.e. a sequence un ∈ U, n =
1, 2, . . . satisfying un → u in U can be constructed.
Our problem is now (as usual by the a-posteriori error estimation) to construct

a sequence cn ∈ R, n = 1, 2, . . . satisfying

‖un − u‖ ≤ cn → 0, for n → ∞

if un → u in U . The estimate cn is allowed to be dependent on the computed
approximation un.

Results

From [2] we can derive the following inequality which will be the basis of our
method.
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Assertion 1 [2]. For arbitrary un ∈ U ,zn ∈ H it holds

(3) ‖un − u‖U ≤ ‖Mun +K∗zn‖U∗ + ‖NKun − zn‖H.

Our problem is thus reduced to the problem of construction of a sequence zn
satisfying

‖Mun +K∗zn‖U∗ + ‖NKun − zn‖H → 0

if un → u in U . In the paper [2] we can find the following suggestion:

Assertion 2 [2]. If zn ∈ H, zn → z0 in H where z0 is the solution to the problem

(4) z0 +w +K

∫ t

0
K∗z0 ds = 0, z0 ∈ H,

∫ t

0
K∗z0 ds ∈ U,

then the right hand side in (3) tends to zero.

Introducing a new variable v(t) =
∫ t
0 zds it is easy to show that z0 = v

′ where
v is the solution to the problem

(5)
v′ +w +KK∗v = 0,

v(0) = 0, K∗v ∈ U, v′ ∈ H.

Thus in order to estimate the error of un we have to approximate the solution
to (4) or (5) which is again an initial-boundary value problem (i.e. of the same
rate of difficulty as the original problem). Moreover proceeding in this way we
do not exploit the computed approximation of u. In the paper [2] it is required
that K∗zn ∈ H and K∗zn → Mu in H and the ‖.‖U∗ term in (3) is estimated by
the more comfortable H norm. Here we shall proceed in another way. Our first
requirement is to choose zn so that the uncomfortable ‖.‖U∗ term in (3) vanishes.
There are many possibilities how to satisfy this requirement. Our choice is the
following one: Put zn = NKũn, where ũn ∈ U is the (unique) solution to the
problem

(6) K∗NKũn = −Mun,

i.e.

(7) K∗Kũn = K∗w − Mun.

This zn clearly satisfies K∗zn +Mun = 0 and thus we have

‖un − u‖ ≤ ‖NKun − zn‖H.

The continuity of M and (K∗K)−1 together with the uniqueness of the solution
of the problem K∗Kũ = K∗w − Mu imply now that the right hand side in (3)
tends to zero (for zn = NKũn).
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However, (7) is a linear elliptic equation in an infinite-dimensional space (more
precisely for each t ∈ I it is an elliptic equation in an infinite-dimensional space).
Thus ũn cannot be computed exactly. If we replace ũn by its approximation ūn

and put zn = NKūn then K∗zn +Mun 6= 0 and the ‖.‖U∗ term in (3) will not
vanish.
Now we shall avoid this difficulty. Let wn ∈ H be the element

wn =

(
∫ x1

0
u′n(t; s, x2) ds, 0

)

satisfying the equation K∗wn = −Mun. If we denote L ∈ L(V,H) the operator

Lv = curl v =

(

−
∂v

∂x2
,

∂v

∂x1

)

,

then we have ImK = KerL∗ and ImL = KerK∗ and thus it holdsK∗(wn+Lv) =
K∗wn + K∗Lv = −Mun for arbitrary v ∈ V . Thus if z ∈ H has the form
z = wn + Lv for some v ∈ V then

(8) ‖un − u‖U ≤ ‖NKun − zn‖H = ‖NKun − (wn + Lv)‖H.

Our aim is now to minimize the right hand side of (8) i.e. to choose vn so that

vn = argminv∈V ‖NKun − (wn + Lv)‖2
H

.

Let us compute

‖NKun − (wn + Lv)‖2
H
= ‖NKun −wn‖

2
H

− 2[Lv, NKun −wn] + ‖Lv‖2
H
=

〈L∗Lv, v〉 − 2〈L∗(NKun −wn), v〉+ ‖NKun −wn‖
2
H
=

〈L∗Lv, v〉+ 2〈L∗(w +wn), v〉+ ‖NKun −wn‖
2
H

.

Thus vn is the (unique) solution to the problem

(9) v ∈ V, L∗Lv = −L∗(w +wn).

Problem (9) is in fact conjugate problem in the sense of [2] to the problem (7)
and thus it holds Lv +wn = NKũn(= zn). It means we can write

(10) ‖un − u‖U ≤ ‖NKun − (wn + Lvn)‖H → 0.

Equation (9) is again a set of elliptic equations in an infinite-dimensional space.
The aim of the following theorem is to show that it is sufficient to solve a set of
elliptic equations in a finite-dimensional space.
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Theorem 1. Let Vn, n = 1, 2, . . . be a sequence of finite-dimensional subspaces
of V satisfying

lim
n→∞

inf
y∈Vn

‖v − y‖ = 0.

for v ∈ V . Put zn = wn + Lṽn, where ṽn ∈ Vn is the (unique) solution to the
(finite-dimensional) problem

〈L∗Lṽn, φ〉 = −〈L∗(w +wn), φ〉 for all φ ∈ Vn.

Then

‖un − u‖U ≤ ‖NKun − (wn + Lṽn)‖H → 0.

Proof: Due to the continuity of (L∗L)−1 the sequence vn tends in V to the
element v0 ∈ V , which is the unique solution to the problem L∗Lv0 = −L∗(w +
w0), w0 being the solution to K∗w0 = −Mu. Since ṽn can be viewed as the
Galerkin approximation to vn we have (e.g. from [3, Theorem III.3.3])

‖vn − ṽn‖ ≤ C‖vn −Pnvn‖ ≤ C(‖Pnvn −Pnv0‖+ ‖Pnv0 − v0‖+ ‖v0− vn‖)→ 0,

where Pn ∈ L(V, Vn) is the orthogonal projector onto Vn. The assertion of the
theorem follows now from the fact that ‖Pn‖ = 1 and from (10). �

Remark 2. If φi, i = 1, 2, ..., m is the basis of Vn then

ṽn =

m
∑

i=1

ciφi,

where ci ∈ R, i = 1, 2, . . . , m is the unique solution to the system of linear
algebraic equations

(11)

m
∑

i=1

[Lφi, Lφj ]ci = −[w+wn, Lφj ], j = 1, . . . , m.

Remark 3. Let us emphasize that (11) represents a system of linear algebraic
equations for each t ∈ I. However, if the approximation un of u is piecewise linear
i.e. if it has the Rothe form

un(t;x) =
(ti − t)

ti − ti−1
un(ti−1;x) +

(t − ti−1)

ti − ti−1
un(ti;x),

where ti = iT/p, i = 1, 2, . . . , p for some p ∈ N , then the right hand side of (11)
is constant on (ti−1, ti) and thus it is sufficient to solve (11) only for a finite set
of “parameters” ti ∈ I, i = 1, 2, . . . , p. Moreover these equations are independent
each of other and thus they can be solved parallelly.
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Remark 4. The proposed method can be straightforwardly generalized for par-
abolic problems

ut −∇A∇u = f,

where A = [aij ]i,j=1,2, aij ∈ L∞(Ω) is the matrix of coefficients which is uniformly
positive definite. In the case of nonsymmetricA we can use the theory of conjugate
problems for nonpotential operators. We obtain

‖un − u‖ ≤ ‖AKun −w − (wn + Lṽn)‖H → 0,

where ṽn ∈ Vn is the solution to the problem

〈L∗A−1
0 Lṽn, φ〉 = −〈L∗A−1

0 (w +wn), φ〉, for all φ ∈ Vn.

Nonhomogeneous initial and boundary conditions can be treated by the same way.
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