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A note on existence and uniqueness

of solutions of neutral functional-differential

equations with state-dependent delays

Zdzislaw Jackiewicz

Abstract. Existence and uniqueness theorem for state-dependent delay-differential equa-
tions of neutral type is given. This theorem generalizes previous results by Grimm and
the author.
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Consider the scalar initial-value problem for state-dependent delay-differential
equations of neutral type

(1)
y′(t) = f(t, y(t), y(α(t, y(t))), y′(β(t, y(t)))), t ∈ [a, b],

y(t) = g(t), t ∈ [γ, α],

γ ≤ a < b, where γ ≤ α(t, y) ≤ t, γ ≤ β(t, y) ≤ t, and g is a given initial function.
We assume the following:

(i) g and g′ are Lipschitz-continuous with constants Lg and Lg′ respectively;

(ii) f(a, g(a), g(α(a, g(a))), g′(β(a, g(a)))) = g′(a), where g′(a) denotes the
left hand side derivative.

Moreover, suppose that in their respective domains f , α and β satisfy the following
conditions with nonnegative Lipschitz constants:

(iii) |f(t1, y1, u1, z1)− f(t2, y2, u2, z2)|
≤ L1(|t1 − t2|+ |y1 − y2|+ |u1 − u2|) + L2|z1 − z2|, L2 < 1;

(iv) |α(t1, y1)− α(t2, y2)| ≤ A1|t1 − t2|+A2|y1 − y2|;
(v) |β(t1, y1)− β(t2, y2)| ≤ B1|t1 − t2|+ B2|y1 − y2|.

The problem (1) with γ = a was studied by Grimm [1]. He proved an existence
result for (1) assuming that f is bounded by some constant M , L2 < 1, and
B1 + B2M ≤ 1. He also proved a uniqueness result when β is independent of y.
In the recent paper [2] the author relaxed this very restrictive assumption at the
expense of the additional condition L2(1 + B1 + B2G) < 1, where G is some
constant depending on f and g. This condition means that the dependence of f
on the last argument is not too strong. It is the purpose of this note to improve
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further the results given in [1] and [2]. We prove the existence and uniqueness
theorem for (1) (with β depending both on t and y), where the inequality L2(1+
B1 +B2G) < 1 is replaced by the weaker conditions L2 < 1 and B1 +B2G ≤ 1.
For any continuous functions y and z on [γ, b], put

F (t, y, z) := f(t, y(t), y(α(t, y(t))), z(β(t, y(t)))),

and define

M : = sup{|F (t, 0, 0)| : t ∈ [a, b]}; C1 := (g
′

[γ,a] +M)/(1− L2);

C2 : = 2L1/(1− L2); Y := (g[γ,a] + C1/C2) exp((b − a)C2);

Z : = max{C1 + C2Y, (M + 2L1Y )/(1− L2)}; G := max{Lg, Z};

D : = max{Lg′ , L1(1 +G(1 +A1 +A2G))/(1 − L2(B1 +B2G))}.

Here x[c,d] := sup{|x(t)| : t ∈ [c, d]} for any function x. We have the following:

Theorem. Assume that (i)–(v) hold, L2 < 1, and B1 +B2G ≤ 1. Then (1) has
a solution y whose derivative is Lipschitz-continuous. Moreover, this solution is
unique in the space of continuously differentiable functions on [γ, a].

Proof: For h ∈ J := {h | h = (b− a)/n, n ≥ n0}, where n0 is a positive integer,
put ti = a+ ih, i = 0, 1, . . . , n, and as in [2] define the modified Euler sequences
{yh}h∈J and {zh}h∈J by

(2)

yh(ti + rh) = yh(ti) + rhzh(ti),

zh(ti + rh) = (1− r)zh(ti) + rzh(ti+1),

zh(ti+1) = F (ti+1, yh, zh),

i = 0, 1, . . . , n − 1, r ∈ (0, 1], where yh(t) = g(t) and zh(t) = g′(t) for t ∈
[γ, a]. Note that (2) is, in general, implicit in zh, but in view of L2 < 1 it has
a unique solution (yh, zh) for any h ∈ J . We will first show that {yh}h∈J and
{zh}h∈J are relatively compact in the space C[γ, b] of continuous functions on
[γ, b]. Proceeding as in [2] it follows that {yh}h∈J and {zh}h∈J are uniformly
bounded by Y and Z, respectively, and that {yh}h∈J are uniformly Lipschitz-
continuous with the constant G. The proof that {zh}h∈J are also uniformly
Lipschitz-continuous is more delicate than in [2]. The proof is by induction.
Assume that

(3) |zh(t1)− zh(t2)| ≤ D|t1 − t2|, t1, t2 ∈ [γ, ti],

and we will show that this inequality is also true for t1, t2 ∈ [γ, ti+1] (obviously

(3) holds for t1, t2 ∈ [γ, t0]). Define on [γ, ti+1] the iterations z
[ν]
h
(t) = zh(t) for

t ∈ [γ, ti], ν = 0, 1, . . . , and

z
[0]
h
(ti + rh) = zh(ti),

z
[ν+1]
h

(ti+1) = F (ti+1, yh, z
[ν]
h
),

z
[ν+1]
h

(ti + rh) = (1− r)zh(ti) + rz
[ν+1]
h

(ti+1),
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r ∈ (0, 1], ν = 0, 1, . . . . It follows by the induction with respect to ν that

{z
[ν]
h

}∞ν=0 are uniformly bounded by Z and uniformly Lipschitz-continuous on
[γ, ti+1] with the same constant D. Indeed, this is true for ν = 0 and, assuming
that it is true for ν, routine manipulations yield

|z
[ν+1]
h

(ti+1)| ≤ M + 2L1Y + L2Z ≤ Z,

and

|z
[ν+1]
h

(ti+1)− z
[ν+1]
h

(ti)|

≤ L1(1 +G(1 +A1 +A2G))h+ L2D(B1 +B2G)h ≤ Dh.

The last inequality follows from the definition of D. In view of the Ascoli-Arzela

theorem the sequence {z
[ν]
h

}∞ν=0 is relatively compact in C[γ, ti+1] and since the

solution (yh, zh) of (2) is unique, we have z
[ν]
h

−zh[γ,ti+1] → 0 as ν → ∞. Therefore,

{zh}h∈J are uniformly Lipschitz-continuous on [γ, ti+1] with the same constantD.
By induction with respect to i, this is also true on [γ, b]. Consequently, {yh}h∈J

and {zh}h∈J are relatively compact in C[γ, b] and from this point the proof is
exactly the same as the proof of Theorem 2 in [2]. We prove the existence by
showing that there is a subsequence of {yh}h∈J convergent to the solution y of
(1) and we prove the uniqueness by contradiction. �
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