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ω
ω-directedness and a question of E. Michael

Peg Daniels

Abstract. We define ωω-directedness, investigate various properties to determine whether

they have this property or not, and use our results to obtain easier proofs of theorems
due to Laurence and Alster concerning the existence of a Michael space, i.e. a Lindelöf
space whose product with the irrationals is not Lindelöf.
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1. Introduction

E. Michael used CH to construct a Lindelöf space Z whose product with the
irrationals ωω is not Lindelöf. He asked if such an example can be found in ZFC
[M].
Suppose there is such a (ZFC) space Z, and let X = Z × ωω. Then X can be

written as a union, X =
⋃

f∈ωω Xf , where each Xf is a closed Lindelöf space,

and f ≤ g implies Xf ⊂ Xg. To do this, let Xf = Z × {g ∈ ωω : g ≤ f} (where
g ≤ f means ∀n(g(n) ≤ f(n))). Each {g ∈ ωω : g ≤ f} is compact, so each Xf is
Lindelöf.
Let us call a property P ωω-directed if a space X has property P whenever

X =
⋃

f∈ωω Xf , where Xf is a closed subspace of X having property P , and

f ≤ g implies Xf ⊂ Xg.
In this paper we investigate various properties to determine whether they are

ωω-directed, and use our results to obtain easier proofs of the following theorems
due to Laurence and Alster.

Theorem (Laurence). If b > ω1, there is no concentrated Michael space.

Theorem (Alster). If b > ω1, and X is Lindelöf, then X × ωω is ω1-compact;
furthermore if X × ωω is metalindelöf, then X × ωω is Lindelöf.

2. ωω-directedness and Michael’s question

Clearly the property of having cardinality ≤ c is ωω-directed. What about the
property of being countable? Suppose X =

⋃
f∈ωω Xf , each Xf closed in X and

|Xf | ≤ ω. Suppose X is not countable. Let {xα : α < ω1} ⊂ X , and for each
α < ω1, let fα ∈ ωω be such that xα ∈ Xfα. Now note that if 〈fα : α < ω1〉 is
bounded in ≤∗, i.e. there is an f ∈ ωω such that ∀α < ω1{n : fα > f(n)} finite,
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then ∀α < ω1 ∃ gα =
∗ f (i.e. {n : gα(n) 6= f(n)} is finite) with fα ≤ gα; there are

only countably many such gα, so we would have a g ∈ ωω and an uncountable
set S ⊂ ω1 such that ∀α ∈ S, fα ≤ d; then {xα : α ∈ S} ⊂

⋃
α∈S Xfα ⊂ Xg,

but as Xg is countable we would have a contradiction. Thus if every ω1-sequence
from ωω is bounded, the property of being countable is ωω-directed. We shall see
momentarily that the converse is also true.

Definition 2.1. For f, g ∈ ωω, f ≤∗ g if and only if {n : f(n) > g(n)} is finite.
�

Definition 2.2. A sequence 〈fα : α < κ〉 from ωω is unbounded if and only if
there is no f ∈ ωω such that ∀α < κ(fα ≤∗ f); if a sequence is not unbounded,
we say it is bounded. �

Definition 2.3. b is the least cardinal κ such that there is an unbounded se-
quence from ωω of cardinality κ. �

b is a regular cardinal.

Proposition 2.4. The property of being countable is ωω-directed if and only if

b > ω1.

Proof: We have seen in previous paragraphs that if b > ω1, then the property
of being countable is ωω-directed.

Suppose that b = ω1. We construct a space X =
⋃

f∈ωω Xf , where each Xf is

closed and countable, but X is uncountable.

Let 〈gα : α < ω1〉 be unbounded. Without loss of generality, α < β implies
that gα <∗ gβ [vD]. Our space X is {gα : α < ω1}, with the subspace topology
of ωω. ∀ f ∈ ωω, let Gf = {g ∈ X : g ≤ f}. We first show Gf is countable. Let
α < ω1 be such that gα 6≤∗ f . Suppose β > α. gα <∗ gβ , so if gβ ≤ f , then
gα ≤∗ f , a contradiction. We have shown that if β > α, then gβ 6≤ f , that is,
that Gf ⊂ {gβ : β ≤ α}. Thus Gf is countable. Finally we show each Gf is
closed. Suppose gα is a limit point of Gf , not in Gf . gα 6≤ f . Let n be such
that gα(n) > f(n). Let gβ ∈ Gf ∩ [gα|n+1]. gβ ∈ Gf implies gβ(n) ≤ f(n), but
gβ ∈ [gα|n+1] implies gβ(n) = gα(n) > f(n), a contradiction. �

By a similar argument, we have

Theorem 2.5. For cfκ > ω, the property of having cardinality < κ is ωω-

directed if and only if b > κ. �

As we mentioned in the introduction, Michael showed under CH that there is
a Lindelöf Z such that Z × ωω is not Lindelöf. For this example, we need some
terminology. A space X is concentrated about A ⊂ X if each neighborhood of A
contains all but countably many points of X . Under CH, there is an uncountable
B ⊂ ωω such that B ∪ Q, as a subspace of R, is concentrated about Q.
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Let Z = B ∪ Q, with the points of B isolated. Then Xf = Z × {g : g ≤ f}
is a closed Lindelöf subspace of Z × ωω, but Z × ωω is not Lindelöf because
{(g, g) : g ∈ B} is a closed discrete subset.
In fact, there is such a B if and only if b = ω1.
Laurence [L] defines a concentrated Michael space to be a Lindelöf space X

that is concentrated about a closed subset A, and having the property that A×ωω

is Lindelöf (or equivalently, normal), but X × ωω is not.
He constructs such a space assuming b = ω1, and shows there is no such space

if b > ω1. Here we show his latter result to be a corollary to Proposition 2.4.

Corollary 2.6 (b > ω1). There is no concentrated Michael space.

Proof: Suppose X is a Lindelöf space concentrated about a closed subset A such
that A×ωω is Lindelöf. We show X ×ωω is Lindelöf, assuming b > ω1. Suppose
U is an open cover of X ×ωω. Let V ⊂ U be countable, with ∪V covering A×ωω.
Let H = (X × ωω) \ ∪V .

Claim. π2(H) is countable.

Suppose that the claim holds. Then H is the countable union of Lindelöf sets,
hence Lindelöf, and so also may be covered by a countable subcollection of U .

Proof of Claim: Suppose π2(H) is uncountable. For each i ∈ π2(H), let xi ∈

X \A be such that (xi, i) ∈ H . Let K = {(xi, i) : i ∈ π2(H)}. K ∩ (A×ωω) = ∅.
We now show |π2(H) ∩ Pg| ≤ ω, for each g ∈ ωω, where Pg = {f ∈ ωω : f ≤ g}.
Suppose |π2(H)∩Pg| ≥ ω1. For each a ∈ A, let Wa = {Un,α×Vn,α : n ≤ ma} be
a finite basic open cover of {a} × Pg, each element of which is disjoint from K.
W = {

⋂
n≤ma

Un,a : a ∈ A} covers A. For each α ∈ ω1, let iα ∈ π2(H)∩Pg. Since
W must cover all but countably many points of X , let α ∈ ω1 be such that xiα ∈
∪W . Let aα be such that xiα ∈

⋂
n≤maα

Un,aα
. (aα, iα) ∈ ∪Waα

, so let n ≤ maα

be such that (aα, iα) ∈ Un,aα
× Vn,aα

. Then (xiα , iα) is in (Un,aα
× Vn,aα

) ∩ K,
a contradiction. So π2(H)∩Pg is countable. By Proposition 2.4, being countable
is ωω-directed under b > ω1, and so π2(H) is countable. �

Theorem 2.7. For cfκ > ω, the property of being κ-compact is ωω-directed if

and only if b > κ.

Proof: Since not being κ-compact means there is a subset {xα : α < κ} with
no limit point, it is easy to see how to produce an argument similar to that in
Theorem 2.6 if b > κ. �

A lemma we will find useful for the converse, as well as in other applications
is:

Lemma 2.8. Let 〈fα : α < b〉 be unbounded. For each f ∈ ωω, let α(f) be the
least α such that fα 6<∗ f . Then f ≤ g implies α(f) ≤ α(g), and sup{α(f) : f ∈
ωω} = b.
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Proof of Lemma 2.8: Suppose f ≤ g and α(f) > α(g). By definition of α(f),
fα(g) <∗ f . But then fα(g) <∗ g, a contradiction. �

Proof of Theorem 2.7, continued: Suppose b = κ. Let 〈fα : α < b〉 be
unbounded and define α(f) for each f ∈ ωω as in the lemma; let X = κ and let
Xf = α(f) + 1. Clearly X witnesses the non-ωω-directedness of κ-compactness.

�

Alster [A] has shown that (a) b > ω1 implies that if X is Lindelöf, then X×ωω

does not contain an uncountable closed discrete set, and hence that (b) if b > ω1,
X is Lindelöf, and X × ωω is metalindelöf, then X × ωω is Lindelöf. His result
(a) follows easily from our work:

Corollary 2.9 (b > ω1). If X is Lindelöf, then X × ωω does not contain an

uncountable closed discrete set, i.e. X × ωω is ω1-compact.

Proof: Suppose X is Lindelöf. As each X × {g ∈ ωω : g ≤ f} is Lindelöf,
each is ω1-compact; this property is ωω-directed under b > ω1 (Theorem 2.7), so
X × ωω =

⋃
f∈ωω (X × {g ∈ ωω : g ≤ f}) is ω1-compact. �

3. Other ωω-directed properties

Very few properties seem to be ωω-directed, even consistently. It is easy to
check that the properties of being T0, T1, or connected are ωω-directed. Besides
having a cardinality≤ κ and being κ-compact, the properties of being hereditarily
Lindelöf and hereditarily of density κ also depend on the size of b.

Theorem 3.1. For cfκ > ω, the property of being hereditarily k-Lindelöf is
ωω-directed if and only if b > κ.

Proof: Since a space X is not hereditarily κ-Lindelöf if and only if there is
a subset {xα : α < κ} ⊂ X such that for each α < κ, xα /∈ {xβ : β > α}, the
argument proceeds as before for b > κ. For b = κ, the X = κ of Theorem 2.7
again works. �

Theorem 3.2. For cfκ > ω, the property of being hereditarily of density ≤ κ is
ωω-directed if and only if b > κ.

Proof: Note that a space X is not hereditarily of density ≤ κ if and only if there

is a set {xα : α < κ} such that for each α < κ, xα /∈ {xβ : β < α}. �

4. ZFC counterexamples

We found easy counterexamples to many properties, although the problem may
be more difficult if we require higher separation axioms. We first present our easy
counterexamples, and then give a counterexample for separability.
Let α(b) be the set α with the topology as follows: U is open in α(b) if

and only if |α \ U | < b. If α < b, then α(b) is discrete. Let X = b(b) and
Xf = α(f)(b). Then X witnesses that T2 is not ωω-directed. It also gives a T1
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counterexample showing the hereditary disconnectedness, 0-dimensionality, and
strong 0-dimensionality properties are not ωω-directed.

PR≤2(b(b)) denotes the Pixley-Roy topology on [b(b)]
≤2, i.e. the basis is sets

of the form [A, U ] = {B ∈ [b(b)]≤2 : A ⊂ B ⊂ U}, where A ∈ [b(b)]≤2 and U is
open in b(b). This space is normal, since the singletons can be mutually separated.
With this as our space X and Xf = PR≤2(α(f)(b)), we have a counterexample
showing that the Fréchet, sequential, k-space, closed sets are Gδ, metric, extreme
disconnectedness, character ≤ b, and density ≤ b properties are not ωω-directed.

Now let X = b + 1, with the usual topology on b, and a basic open set about
b having the form (α, b] \ {γ > α : γ is a limit ordinal}. Xf = (α(f) + 1) ∪ {b}.
X witnesses that T3 is not ωω-directed.

Let X be (b+ 1)× (ω + 1) \ {(b, ω)}. (A “Tychonoff plank” counterexample.)
X is T3 1

2

. X witnesses that T4, Lindelöf, paracompactness, metacompactness,

subparacompactness, and collectionwise normality properties are not ωω-directed.

If we let X be as above, except isolate all the points not on the edges, we have
a T3 1

2

counterexample witnessing that the countable paracompactness, collection-

wise Hausdorffness, and hereditary normality properties are not ωω-directed.

The irrationals, ωω, with Xf = {g ∈ ωω : g ≤ f}, show that compactness prop-
erties (including local, countable, pseudo-, and sequential) are not ωω-directed.

For our counterexample for separability we need the following definition:

Definition 4.1. If A ⊂ P(ω), A is an independent family (i.f.) if and only
if, whenever m, n ∈ ω and a1, . . . , am, b1, . . . , bn are distinct members of A,
|a1 ∩ · · · ∩ am ∩ (ω \ b1) ∩ · · · ∩ (ω \ bn)| = ω.

Clearly “ω” can be replace by any countable set. Note that there is always an
i.f. of size c (see [K]), and hence of size b.

Example 4.2. For each limit λ < b, let λ∗ = (λ + ω) \ λ. Let {Fλ,α : α < b}
be an i.f. of subsets of λ∗. For each α < b, let λα < b be such that α ∈ λ∗α; let
U(α) = {α}∪

⋃
{Fτ,α : τ ≥ λα+ω}. Let {U(α) \U(β) : α 6= β} be a subbasis for

a topology on b. This is our space X . Note that α ∈ U(α) \ U(β) for any β > α.
Also, if γ /∈ U(α) \ U(β), then either (1) γ /∈ U(α), in which case U(γ) \ U(α) is
an open set about γ missing U(α) \ U(β), or (2) γ ∈ U(α) ∩ U(β), in which case
for a sufficiently large δ, [U(α)] ∩ [U(β) \ U(δ)] is an open set about γ missing
U(α) \ U(β); thus the elements of the subbasis are closed, so X is completely
regular.

Let 〈fα : α < b〉 be an unbounded family in ωω, and α(f) defined as before for
f ∈ ωω. Let Xf = α(f) +ω. Xf is closed since if β ≥ α(f) +ω, U(β) misses Xf .

We wish to show that each Xf is separable. Let λ be the greatest limit ordinal
≤ α(f). We claim λ∗ is dense in Xf .
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Consider a
⋂

i≤n[U(αi) \ U(βi)] = U , such that U ∩ Xf 6= ∅. (Note each

αi ∈ Xf .) We wish to show U ∩ λ∗ 6= ∅. We first show λ ≥ λαi
+ ω for each

i. Let γ be a point in U ∩ Xf . If γ ∈ λ∗, we are done, so assume γ < λ.
Then λγ < λ. If γ = αi, then λγ = λαi

, so λαi
+ ω = λγ + ω ≤ λ. On

the other hand, if γ 6= αi, then since γ ∈ U(αi) there is a τ ≥ λαi
+ ω with

γ ∈ Fτ,αi
⊂ τ∗, so λγ = τ . λαi

+ ω ≤ τ < τ + ω = λγ + ω ≤ λ. In every case,
λ ≥ λαi

+ ω. This means that for each i, Fλ,αi
⊂ U(αi). It is easy to see then

that Fλ,αi
\ [Fλ,βi

∪{βi}] ⊂ U(αi) \U(βi). Since |
⋂

i≤n[Fλ,αi
\Fλ,βi

]| = ω by the

i.f. property, (
⋂

i≤n[Fλ,αi
\Fλ,βi

]) \ {βi : i ≤ n} 6= ∅, and an element of this set is
in U ∩ λ∗. So Xf is separable.

X , however, is not separable, since if C is a countable subset of X (or even
of cardinality < b), there is a limit λ < b such that C ⊂ λ, and for α(f) ≥ λ,
C̄ ⊂ Xf . �

5. b = ω1

If b = ω1, ω1 itself is a simpler counterexample to separability, where Xf =
α(f)+1. In this case it also provides a counterexample for perfect normality, hav-
ing a countable base, Lindelöfness (a normal example), hereditary Lindelöfness,
paracompactness and metacompactness (a normal example), and hereditary sep-
arability.

PR<ω(ω1(ω)) (with underlying set [ω1]
<ω) provides a completely regular coun-

terexample to hereditary paracompactness, under b = ω1.
Bing’s example H provides a normal counterexample to collectionwise normal-

ity under b = ω1. Here, X ⊆ 2P(ω1) is defined as follows. For each α < ω1, let

fα ∈ 2P(ω1) be defined by fα(A) = 1 if and only if α ∈ A. Let F = {fα : α < ω1}.

Recalling that the support of an x ∈ 2P(ω1) is defined to be {A ∈ P(ω1) : x(A) =

1}, let Y = {x ∈ 2P(A) \ F : | supp (x)| < ω}. Let X = Y ∪ F , where the points
of Y are isolated, and the points of F have their usual (subspace) neighborhoods

in 2P(ω1). F is close discrete in X , and by standard arguments, cannot be sepa-
rated. For each f ∈ ωω, let Xf = {fα : α < α(f)} ∪ {x ∈ Y : supp (x) ⊂ α(f)}.
Xf is closed, since if fβ is a limit point, x ∈ Xf ∩ [fβ | {β}] implies x(β) = 1,
which implies β ∈ supp (x), and since x ∈ Xf implies supp (x) ⊂ α(f), we have
β < α(f) and so fβ ∈ Xf . Xf is collectionwise normal, since any closed discrete
subset of {fα : α < α(f)} is countable.
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