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A generalization of Magill’s Theorem

for non-locally compact spaces

Gary D. Faulkner, M. Cristina Vipera

Abstract. In the theory of compactifications, Magill’s theorem that the continuous image
of a remainder of a space is again a remainder is one of the most important theorems
in the field. It is somewhat unfortunate that the theorem holds only in locally compact
spaces. In fact, if all continuous images of a remainder are again remainders, then the
space must be locally compact. This paper is a modification of Magill’s result to more
general spaces. This of course requires restrictions on the nature of the function.
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Introduction

The theorem known as Magill’s theorem is the following:

Theorem [M1]. For a locally compact space X , the following are equivalent:

1. Y is a remainder of X .
2. Y is the continuous image of a remainder of X .
3. Y is a continuous image of βX \ X .

This theorem is a cornerstone of the theory of compactifications. It is easy to
see that any space X having the property that each continuous image of βX \X
is a remainder must have a one-point compactification. This forces the space
to be locally compact. It is very difficult, however, to find hypotheses involving
something weaker than local compactness and still have a robust theorem. The
point of this paper is to try exactly that.

Results

All spaces considered are at least Tychonoff. Let X , Y be spaces. We will say
that Y is a remainder of X , if there exists a Hausdorff compactification αX of
X such that Y = αX \ X. We denote by πβα the natural map from βX onto
αX . Because of the following easily established Proposition, we can without loss
of generality restrict our considerations to perfect maps.

Proposition 1. Let Y = αX \ X be a remainder of X . Then πβα|βX\X :

βX \ X → Y is a (surjective) perfect map.
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Definition. For any map f : X → Y , we put

Mf = ∪{f−1(p) : |f−1(p)| > 1}.

If X is compact, as would be the case if X were the remainder of a locally
compact space, then Mf is compact. We will say that a closed continuous map f

is supercompact if Mf is compact.

Clearly every supercompact map has compact fibers so it is perfect. One can
prove that every quotient map such that Mf is compact, is also closed, hence
supercompact.
For any map f : X → Y , we will say that E ⊂ X is saturated with respect to

f if f−1(f(E)) = E.

The following lemma uses arguments similar to [M2, Theorem 13].

Lemma 2. Let K be a compact Hausdorff space and let q be a quotient map
from K onto a space Z. Let F be a closed subset of K such that Mq ⊂ F and
suppose that q(F ) is Hausdorff. Then Z is Hausdorff.

Proof: Let x1, x2 be distinct points of Z. The only nontrivial case is when x1, x2
are in G = q(F ). Since F is saturated, G is closed, in Z and hence normal (since
it is Hausdorff and compact). Let U1, U2 be open subsets of G which contains
x1, x2, respectively, and such that U1 ∩ U2 = ∅. Let Vi be an open subset of Z
such that Vi∩G = Ui, i = 1, 2, and let W1, W2 be disjoint open subsets of K such
that q−1(Ui) ⊂ Wi. Put Si = Wi ∩ q−1(Vi). One has Si ∩ F = q−1(Ui). Since q
is injective on K \F , the sets Si are saturated, hence q(S1) and q(S2) are disjoint
open subsets of Z which contain x1, x2 respectively. �

Let Y be a Hausdorff space and let f : βX \ X → Y be a quotient map. We
denote by qf the map 1X ∪ f : βX → X ∪ Y and by τf the quotient topology
induced by qf on X ∪ Y (the union is assumed to be disjoint). Then (X ∪
Y, τf ) is a compact (not necessarily Hausdorff) space in which the image of X is
dense. Suppose (X ∪ Y, τf ) is Hausdorff. Then qf is closed and so that qf |X is
a homeomorphism. Then it follows that Y is a remainder of X .

Proposition 3. Let Y be a Hausdorff space and let f : βX\X → Y be a quotient
map. Then (X ∪ Y, τf ) is Hausdorff if and only if qf (ClβX(Mf )) is Hausdorff.

Proof: If qf (ClβX (Mf )) is Hausdorff, then we can apply Lemma 2, putting
K = βX , Z = X ∪ Y , q = qf and F = ClβX(Mf ). �

From Proposition 3 it easily follows that:

Theorem 4. Let X, Y be spaces and let f be a supercompact map from βX \X
onto Y . Then Y is a remainder of X .

In the proof of Theorem 3.7 in [T], it is proved that, if βX\X is realcompact and
C∗-embedded in βX , then, for each compactification αX of X , ClβX\X (Mπβα

)

must be compact. The proof of that theorem is based on the following fact
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[T, Lemma 3.6]: if βX \ X is C∗-embedded in βX and αX is any compactifica-
tion of X , then Mπβα

does not contain any copy of N which is C-embedded in

βX \ X . Now suppose that βX \ X is normal and every noncompact closed sub-
set of βX \ X is not pseudocompact (for instance, let βX \ X be paracompact).
Also, suppose again that βX \ X is C∗-embedded in βX . Then ClβX\X (Mπβα

)

must be compact. Otherwise, Mπβα
would contain a copy of N C-embedded in

ClβX\X (Mπβα
), hence in βX \ X . Then one has:

Corollary 5. Suppose βX \X is C∗-embedded in βX and realcompact or para-
compact. Then Y is a remainder of X if and only if Y it is a supercompact image
of βX \ X .

Corollary 6. Suppose X is not locally compact. If Z = βX \X is C-embedded
in βX and realcompact or paracompact, then there is a space Y and a perfect
surjective map f : Z → Y which cannot be the restriction to Z of any πβα from
βX to a compactification αX of X .

Proof: The hypotheses imply that Z is not pseudocompact. LetA = {an}n∈N ⊂
Z a C∗-embedded copy of N. Let us identify a2n−1 and a2n for every n and let Y
be the quotient space and f be the quotient mapping. Clearly f is closed, because,
for every closed subset F of Z, f−1(f(F )) = F ∪ B, where B is a subset of A, so
it is closed. It is easy to see that Y is Hausdorff, hence f is perfect. But ClZ(Mf )
is not compact, so there is no compactification αX such that f = πβα|Z . �

Thus, although supercompactness seems unnecessarily strong, in some cases it
is necessary. It is also true [T] that given any space Y there is a space X such
that βX \ X = Y and βX \ X is C∗-embedded in βX .

Now we will give more applications of Lemma 1 and Proposition 3.
For a compactification αX , we put Cα(X) = {f ∈ C∗(X) : f extends to αX}.

If f ∈ Cα(X), we denote by fα the unique extension of f to αX . If F ⊂ Cα(X),
we denote by Fα the set of the extensions.
We will say that a family F ⊂ C∗(X) generates the compactification αX if

F ⊂ Cα(X) and Fα separates points of αX . Every F ⊂ C∗(X) which separates
points from closed sets of X generates a compactification of X .

Theorem 7. Let Y be a Hausdorff space. Then Y is a remainder of X if and
only if there is a continuous map f from βX \ X onto Y such that the family

G(f) = {g ∈ C∗(X) | gβ is constant on the fibers of f} separates points from
closed subsets of X .

Proof: If Y = αX \ X is a remainder of X , then G(f) = Cα(X) separates points
from closed subsets of X .
Conversely we will prove that (X ∪ Y, τf ) is Hausdorff. Put G = qf (ClβX(βX \
X)). It is easy to see that G = Cl(X∪Y,τf )

(Y ). By Lemma 2, it suffices to prove

that G is Hausdorff. First, let y1, y2 ∈ Y and let V1, V2 be disjoint open subsets
of Y with yi ∈ Vi. Put Hi = Y \ Vi. Then Cl(X∪Y,τf )(H1), Cl(X∪Y,τf )(H2)
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are (closed) subsets of G, whose union is G, and such that yi /∈ Cl(X∪Y,τf )(Hi),

i = 1, 2. This proves that y1, y2 are separated by disjoint open subsets of G.
Now, let αX be the compactification generated by G(f). Let j : X ∪ Y → αX

be defined by j(x) = πβα(q
−1
f (x)). Clearly πβα is constant on the fibers of f ,

hence of qf , and so j is well defined. Since πβα = j ◦ qf , j is continuous and
surjective. Let y1, y2 be points of G such that at least one of them is not in Y .
Then j(y1), j(y2) are distinct points of αX , hence they are separated by disjoint
open subsets W1, W2 of αX . Then j−1(Wi) ∩ G, i = 1, 2 are open subsets of G
which separates y1, y2. �

Theorem 8. Let f : βX \ X → Y be a perfect surjective map such that
ClβX (Mf ) ∩ X = {x1, . . . , xn}.
Then the following are equivalent:

(i) Y is the remainder of a compactification αX of X and f = πβα|βX\X .

(ii) There exist pairwise disjoint open sets Ui in ClβX(Mf ), such that xi ∈ Ui,
i = 1, dots, n and the f(Ui \ X) are still pairwise disjoint.

Proof: First, we prove that (i) implies (ii). If Y = αX \ X, then we can take, in
αX , pairwise disjoint open neighborhoods V1, . . . , Vn of x1, . . . , xn, respectively,
and put Ui = π−1

βα
(Vi) ∩ ClβX (Mf ), for each i.

Now, we will prove the converse. Let qf , (X∪Y, τf ) be defined as in Proposition 3.
We need only to prove that qf (ClβX (Mf )) is Hausdorff. Put q = qf |ClβX(Mf )

and S = ClβX\X(Mf ), so that ClβX(Mf ) = S ∪ {x1, . . . , xn}. Then S is locally

compact and, since f |S is perfect, then T = f(S) is also locally compact. Clearly,
one has q(ClβX (Mf ) = T ∪ {x1, . . . , xn}. Let U ′

i = Ui ∩ S, i = 1, . . . , n, and

let K = S \
⋃n

i=1 U ′
i , K1 = f−1(f(K)). K is clearly compact, hence K1 is also

compact. If we put Wi = U ′
i \ K1, for each i, then Wi = f−1(f(Wi)), so that

the f(Wi) are open and pairwise disjoint in T . Furthermore, the f(Wi) are not
relatively compact in T . Then f(K), f(W1), . . . , f(Wn) determine an n-point
compactification κT = T ∪ {y1, . . . , yn} where f(Wi) ∪ {yi} is a neighborhood of
yi for each i. We can suppose that yi = xi, i.e. that the underlying set of κT is
qf (ClβX(Mf ). We want to prove that the topology of κT is less fine than the
(quotient) topology induced by q. Since the two topologies coincide on T , we need
only to prove that, for each i and for each basic neighborhood of xi in κT , the
inverse image with respect to q is open. Let H be any compact subset of T . One
has q−1((f(Wi)∪{xi})\H) = (Wi ∪{xi})\ f−1(H) = Ui \ (K1∪f−1(H)), which
is open. Then qf (ClβX (Mf ), with the quotient topology, is Hausdorff. �

Corollary 9. If Z = βX \ X and |ClβX(Z) \ Z| = 1, then every perfect image
of Z is a remainder of a compactification αX of X and f = πβα|βX\X .

Note that Corollary 9 provides a new proof to Corollary 2.3 in [R].
Even if the space X satisfies the hypotheses of Corollary 6, it can happen that

every perfect image of βX \X is a remainder of X . For instance, if βX \X ∼= N,
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every perfect image of βX \ X is homeomorphic to N. But, in general, there
exist perfect images of βX \ X which are not remainders of X (see the following
example).

Example. As we indicated earlier it is known that, for every Tychonoff space Z,
there exists a space X such that Z ∼= βX \X and βX \X is C∗-embedded in βX .
So suppose βX \ X ∼= R and C∗-embedded in βX . Then [0,+∞) is a perfect
image of βX \X , but it is not a remainder of X , because it is not a supercompact
image of βX \ X . In fact, suppose f : R → [0,+∞) is supercompact. Let
(a, b) ⊂ R be an open interval containing Mf . Then f(−∞, a] and f([b,+∞)
are closed, connected and noncompact and they must be disjoint. But this is not
possible in [0,+∞).

Example. In Corollary 5 we cannot drop the hypothesis that βX \ X is C∗-
embedded. In fact, let W be a space such that βW \ W ∼= I and let p ∈ βW \W
be the point corresponding to 1 in the homeomorphism. Let X = W ∪ {p},
so that Z = βX \ X ∼= [0, 1). Clearly |ClβX(Z) \ Z| = 1, hence every perfect
image of [0, 1) is a remainder of X . But, clearly, there exist perfect images of
[0, 1) which are not supercompact images. For instance, let Y = {(x, 0) : 0 ≤
x < 1} ∪ (

⋃

n≥2{(1 − 1/n, y) : 0 ≤ y ≤ 1/n} ⊂ R2. It is easy to see that Y is

a perfect image of [0.1). Suppose f : [0, 1) → Y is supercompact and surjective.
Let z = (1 − 1/m, 0) /∈ f(Mf ), which is compact. Let K be a compact and

connected neighborhood of z which misses f(Mf ) and K1 = f−1(K). Then f |K1
is a homeomorphism from K1 to K. Therefore K1 must be a closed interval,
while K cannot be homeomorphic to an interval, a contradiction.

Example. Suppose βX \X is C∗-embedded in βX and homeomorphic to [0, ω1).
Let Y be the quotient space of [0, ω1) obtained by identifying τ + 1 and τ + 2,
for each limit ordinal τ < ω1. Clearly the quotient space is again [0, ω1) and the
quotient map f is perfect, so, by Corollary 9, there exists a compactification αX
of X with αX \ X = [0, ω1) and f = πβα|βX\X . Clearly f is not supercompact

but αX \ X is still a supercompact image of βX \ X .
Now we rephrase a theorem by Rayburn into a form more relevant to our needs.

Theorem 10 [R, Theorem 1.3]. Let Z = βX \X and let f : Z → Y be a perfect
surjective map. Then the following are equivalent:

(i) Y is the remainder of a compactification αX of X and f = πβα|βX\X .

(ii) There exists a compactification γY of Y and an extension f̃ : ClβX(Z)→

γY such that f̃ |ClβX(Z)\Z is injective.

Note that Corollary 9 also follows from Theorem 10. The hypothesis implies
that Z is locally compact. If f : Z → Y is perfect and surjective, then Y is also
locally compact. Then we can take as γY the one-point compactification of Y .
It is easy to see that the natural extension f̃ of f to ClβX (Z) is continuous and,
obviously, injective on ClβX(Z) \ Z.
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Corollary 11. Let Z = βX \ X be C∗-embedded in βX and let f : Z → Y be
a perfect surjective map. Then the following are equivalent:

(i) Y is the remainder of a compactification αX of X and f = πβα|βX\X .

(ii) The extension f̃ : ClβX(Z)→ βY is injective on ClβX(Z) \ Z.

Proof: It is easy to see that, if f : Z → Y is perfect and surjective and there
exists a compactification γY of Y such that the extension of f from βZ to γY is
injective on the remainder, then γY = βY . We can then use the above theorem.

�

These results and the theorem of Rayburn (Theorem 9) suggest the following
general problem: given a perfect surjective map f : Z → Y and a compactification
κZ of Z, find conditions which ensure that there exists a compactification γY of Y
and an extension of f , f̃ : κZ → γY such that f |κZ\Z is injective. In particular:

find conditions on f for f̃ : βZ → βY to be injective on βZ \ Z. This question is
certainly central to our results.

Lemma 12. Let f : Z → Y be a perfect surjective map and let f̃ : βZ → βY be
its extension. Suppose that

(i) For all closed completely separated subsets A and B of Z, there exists
a relatively compact open subset U of Z such that f(A \U) and f(B \U)
are completely separated.

Then

(ii) f̃ |βZ\Z is injective.

If Z is locally compact, then (ii) implies (i).

Proof: For a closed set A in Z, let us denote by A∗ the set ClβZ(A) \ A. Since

f is perfect, f̃(A∗) ⊂ βY \ Y . Now, suppose f satisfies (i) and let p, q be distinct
points of βZ \ Z. Let p ∈ V , q ∈ W , where V, W are open in βZ and have
disjoint closures. If we put A = ClβZ(V ) ∩ Z and B = ClβZ(W ) ∩ Z, then A
and B are completely separated, p ∈ A∗, q ∈ B∗. Let U be as in the hypothesis,
so that p ∈ (A \ U)∗, q ∈ (B \ U)∗. Furthermore, f̃((A \ U)∗) ∩ f̃((B \ U)∗) ⊂

f̃(ClβZ(A\U))∩ f̃ (ClβZ(B \U)) = ClβY (f(A\U))∩ClβY (f(B \U)) = ∅. Then

f̃(p) 6= f̃(q).

Now suppose Z is locally compact, and f̃ |βZ\Z is injective. Let A, B be closed

and completely separated, so that, f̃(A∗) ∩ f̃(B∗) = ∅. Then F = f̃(ClβZ(A)) ∩

f̃(ClβZ(B) is a compact subset of Y . If K = f−1(F ), K is also compact. Let U
be a relatively compact neighbourhood of K. Then ClβY (f(A\U))∩ClβY (f(B \

U)) = f̃(ClβZ(A \ U) ∩ f̃(ClβZ(B \ U) = ∅. �

Thus we have:

Theorem 13. Let Z = βX \ X be C∗-embedded in βX and let f : Z → Y
be perfect and surjective. Suppose that f satisfies the condition (i) in the above
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lemma. Then there is a compactification αX of X with Y = αX \ X and f =
πβα|βX\X . If Z is locally compact, the converse is also true.

Lemma 14. Let Z be paracompact and let f : Z → Y be a perfect map. Then
the following are equivalent:

(i) f is supercompact.
(ii) For every pair A, B of disjoint closed subsets of Z, f(A)∩f(B) is compact.

Proof: If f is supercompact and A, B are closed and disjoint, then f(A)∩ f(B)
is closed and it is a subset of f(ClZ(Mf )), which is compact.
Conversely, suppose that f satisfies (ii), but it is not supercompact. Then Mf

contains a copy N of N which is C-embedded in ClZ(Mf ), hence closed in Z.
Since the fibers of f are compact, N meets infinitely many fibers, so we can choose
an infinite set A = {an}n∈N ⊂ F such that N ∩ f−1(f(an)) = {an} for each n.
Clearly A is closed in Z. Let B = {bn}n∈N such that, for each n, f(bn) = f(an)
and bn 6= an. Then B is also closed. Suppose not and let {bnλ

} be an ultranet
in B converging to z ∈ Z \B. The corresponding ultranet {anλ

} is nontrivial, so

it converges to a point p ∈ βZ \ Z. If f̃ : βZ → βY is the extension of f , one

has f̃(p) = f̃(z) ∈ Y . This is impossible because f is perfect. Then A and B are
disjoint closed sets such that f(A)∩f(B) = f(A) is not compact, a contradiction.

�

Example. The above lemma is not true for normal spaces. If Z = [0, ω1), then
every closed continuous map from Z into a space Y satisfies (ii). In fact, if A and
B are closed and disjoint, one of them is compact. However we have earlier seen
that there are mappings f : [0, ω1)→ [0, ω1) which are not supercompact.

Note. In the proof of Lemma 12 we have seen that, if f satisfies (ii), then, for A
and B closed and completely separated, f(A) ∩ f(B) is compact. To prove that,
we did not use local compactness.

By the above note, Corollary 5, and Lemma 14, one has:

Theorem 15. Suppose Z = βX \ X is paracompact and C∗-embedded in βX
and let f : Z → Y be a perfect surjective map. Then the following are equivalent:

(i) Y is the remainder of a compactification αX of X and f = πβα|Z .
(ii) If A, B are disjoint closed subsets of Z, then f(A) ∩ f(B) is compact.

Now suppose F ⊂ C∗(X), where X is locally compact. For each h ∈ F let
Ih be a closed interval containing the image of h. It is known that the smallest
compactification to which every element of F extends, denoted by ωFX , can
be constructed as follows: put on the disjoint union X ∪

∏

h∈F Ih the topology

generated by sets of the form W ∪
(

e−1F (W ) \ F
)

, where W is a basic open set of
∏

h∈F Ih, eF is the diagonal map of F and F is any compact subset of X ; ωFX
is the closure of X in that space, which is compact [CFV, Proposition 1.2].
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Lemma 16. Let f : Z → Y be a perfect surjective map and let κZ be a com-
pactification of Z. Put

F = {g ◦ f : g ∈ C∗(Y ) and g ◦ f ∈ Cκ(Z)}.

Then

(i) There exists a compactification γY of Y and an extension of f , f̃ : κZ →

γY such that f̃ |κZ\Z is injective

implies

(ii) Fκ separates points of κZ \ Z.

If Z is locally compact, then the converse is also true.

Proof: First we prove that (i) implies (ii). Let p, q ∈ κZ \ Z be distinct. Then

f̃(p) 6= f̃(q). Therefore there exists g ∈ Cγ(Y ) such that gγ(f̃(p)) 6= gγ(f̃(q)).

But, clearly, gγ ◦ f̃ is an extension of g ◦ f to κZ, then one has g ◦ f ∈ F and
(g ◦ f)κ(p) 6= (g ◦ f)κ(q).
Now suppose that Z is locally compact and that Fκ separates points of κZ \ Z.
Put G = {g ∈ C∗(Y ) : g ◦ f ∈ F}. Since f is surjective, g 7→ g ◦ f is an
injective map from G onto F . Let γY be the smallest compactification to which
every element of G extends. Then γY can be obtained as the closure of Y in
Y ∪

∏

g∈G Ig with the topology described above. The hypothesis implies that κZ
is the smallest compactification to which every element of F extends. Therefore
κZ can be obtained as the closure of Z in Z ∪

∏

g◦f∈F Ig◦f = Z ∪
∏

g∈G Ig. We

can define f̂ : Z ∪
∏

g∈G Ig → Y ∪
∏

g∈G Ig by f̂(p) = f(p) if p ∈ Z and f̂(p) = p

otherwise. We will prove that f̂ is continuous. Let U =W∪
(

e−1G (W ) \ F
)

a basic

open subset of Y ∪
∏

g∈G Ig . Then f̂−1(U) = W ∪
(

(eG ◦ f)−1(W ) \ f−1(F )
)

.

One has eG ◦ f = eF and, since f is perfect, f−1(F ) is compact. Then f̂−1(U) is

a basic open set. Clearly, f̂(κZ) = γY . Then we can take f̃ = f̂ |κZ . �

Note. If F is defined as in the above theorem, then it is easy to see that F =
{h ∈ Cκ(Z) : h is constant on the fibers of f}.

The following is true for any Z.

Lemma 17. Let f : Z → Y be a perfect surjective map and let f̃ : βZ → βY be
its extension. Put

F = {h ∈ C∗(Z) : h is constant on the fibers of f}.

Then the following are equivalent:

(i) f̃ |βZ\Z is injective.

(ii) Fβ separates points of βZ \ Z.
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Proof: We need only to prove that (ii) implies (i). Let us identify βY with

e(Y ), where e : Y →
∏

g∈C∗(Y ) Ig is the diagonal map of C
∗(Y ). Let f̃ : βZ →

∏

g∈C∗(Y ) Ig be the extension of f to βZ, which is defined by f̃(x) = {(g ◦

f)β(x)}g∈C∗(Y ). Then f̃(βZ) = βY . Furthermore, since {(g◦f)β : g ∈ C∗(Y )} =

Fβ separates points of βZ \ Z, f̃ |βZ\Z is injective. �

Theorem 18. Let f : Z = βX \ X → Y be perfect and surjective. Put

E = {h ∈ C(ClβX\X (Z)) : h is constant on the fibers of f}.

If Y is the remainder of a compactification αX of X and f = πβα|Z , then E
separates points of ClβX(Z)\Z. If Z is locally compact, the converse is also true.

Theorem 19. Let f : Z = βX \X → Y be perfect and surjective. Also, suppose
that Z is C∗-embedded in βX . Put

F = {h ∈ C∗(Z) : h is constant on the fibers of f}.

Then the following are equivalent:

(i) Y is the remainder of a compactification αX of X and f = πβα|Z .

(ii) Fβ separates points of βZ \ Z.

Lemma 20. Let f : Z → Y be a perfect surjective map, and let κZ be a com-
pactification of Z. Then the following are equivalent:

(i) Each p ∈ κZ \Z has a local basis Wp such that for each W ∈ Wp, W ∩Z
is saturated with respect to f .

(ii) There exists a compactification γY of Y and an extension f̃ of f , f̃ :

κZ → γY such that f̃ |κZ\Z is injective.

Proof: First we prove that (i) implies (ii). Put S = κZ \ Z and consider the

disjoint union Y ∪ S with the quotient topology induced by f̃ = f ∪ 1S . We
need only to prove that space is Hausdorff. First let p, q ∈ S and let W ∈ Wp,

W ′ ∈ Wq be disjoint. Then they are saturated with respect to f̃ , hence their
images are disjoint open neighborhoods of p and q, respectively, in Y ∪ S. Now,
suppose p ∈ S and q ∈ Y . Since f is perfect, f−1(q) is closed in κZ. Let V and
V ′ be disjoint open subsets of κZ which contain p and f−1(q) respectively. Let
W ∈ Wp such that W ⊂ V . Since f is closed, V ′ ∩ Z contains an open subset

U of Z, containing f−1(q), which is saturated with respect to f . Let W ′ be an
open subset of κZ such that U = W ′ ∩ Z. We can choose W ′ contained in V ′.
Therefore, both W and W ′ are saturated with respect to f̃ , and their images
contain p and q respectively. Finally, if p, q ∈ Y , then we can take disjoint open
subsets V, V ′ of κZ which contain f−1(p) and f−1(q) respectively. As before, V

and V ′ contain open subsets of κZ, saturated with respect to f̃ , which contain
f−1(p) and f−1(q) respectively.
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Conversely, let p ∈ κZ \ Z and let V be a neighborhood of p in κZ. We need to
prove that there exists a neighborhood W , of p such that p ∈ W ⊂ V and W ∩Z
is saturated with respect to f . Put F = κZ \V , G = f̃(F ). Then G is closed and

f̃(p) /∈ G. Then we can take W = κZ \ f̃−1(G). �

And finally we have:

Theorem 21. Let f : Z = βX \ X → Y be perfect and surjective. Then the
following are equivalent:

1. Y is the remainder of a compactification αX of X and f = πβα|Z .
2. For every p ∈ ClβX(Z) \Z there is a local basis Wp of p in ClβX(Z) such
that, for each W ∈ Wp, W ∩ Z is saturated with respect to f .

References

[CFV] Caterino A., Faulkner G.D., Vipera M.C., Two applications of singular sets to the theory
of compactifications, Rend. Ist. Mat. Univ. Trieste 21 (1989), 248–258.

[E] Engelking R., General Topology, Heldermann, Berlin, 1989.
[M1] Magill K.D., A note on compactifications, Math. Z. 94 (1966), 322–325.
[M2] , The lattice of compactifications of a locally compact space, Proc. London

Math. Soc. 18 (1968), 231–244.
[R] Rayburn M.C., On Hausdorff compactifications, Pacific J. of Math. 44 (1973), 707–714.
[T] Fu-Chien Tzung, Sufficient conditions for the set of Hausdorff compactifications to be

a lattice, Ph.D. Thesis, North Carolina State University.

Department of Mathematics, North Carolina State University, Raleigh,

NC 27695-8205, USA

Dipartimento di Matematica, Università di Perugia, Via Vanvitelli 1,
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