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On the extremality of regular

extensions of contents and measures

Wolfgang Adamski

Abstract. Let A be an algebra and K a lattice of subsets of a set X. We show that
every content on A that can be approximated by K in the sense of Marczewski has an
extremal extension to a K-regular content on the algebra generated by A and K. Under
an additional assumption, we can also prove the existence of extremal regular measure
extensions.
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1. Introduction

If A, B, are algebras of subsets of some set X with A ⊂ B, then Plachky [9]
has shown by a Krein-Milman argument that every (finite) content on A has an
extremal extension to a content on B. In [2], this result has been generalized
in the following way. If K, L are lattices of subsets of X with K ⊂ L, then
every K-regular content on α(K), the algebra generated by K, has an extremal
extension to an L-regular content on α(L). It is the aim of this note to give the
following further generalization. If A is an algebra and K a lattice of subsets of
X , then every content on A which can be approximated by K in the sense of
Marczewski [7] has an extremal extension to a K-regular content on α(A ∪ K).
Under an additional assumption, we can also prove the existence of extremal
regular measure extensions. Note that extremal measure extensions are considered
always under some additional assumptions ([2]) or for special situations (e.g. if
the target σ-algebra is generated from a given one by adjunction of a family which
either consists of pairwise disjoint sets or is well ordered by inclusion [3], [4], [5]),
since, in general, extremal measure extensions do not exist (see [9], [11]).
Now we fix the notation. X will always denote an arbitrary set. Let C be a sub-

set of P(X), the power set of X . We write α(C), σ(C) for the algebra, σ-algebra
generated by C, respectively. Furthermore, Cδ denotes the family of all countable
intersections of sets from C. C is said to be semicompact if every countable sub-
family of C having the finite intersection property has nonvoid intersection. C is
called a lattice if ∅ ∈ C and C is closed under finite unions and finite intersections.
For a lattice C, we denote by F(C) := {F ⊂ X : F ∩ C ∈ C for every C ∈ C}
the lattice of so-called “local C-sets”. Obviously, X ∈ F(C) and C ⊂ F(C); in
addition, we have C = F(C) iff X ∈ C.
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If D is another subset of P(X), then C is said to be sequentially dominated
by D if whenever (Cn ∈ C)n∈N and Cn ↓∅, there exists a sequence (Dn ∈ D)n∈N

such that Dn ↓∅ and Cn ⊂ Dn for all n ∈ N . Note that a semicompact family is
sequentially dominated by any family D with X ∈ D.
By a content (measure) we always understand a [0,∞)-valued, finitely (count-

ably) additive set function defined on an algebra.
Consider a lattice K ⊂ P(X) and a content µ on the algebra A ⊂ P(X). Under

the assumption K ⊂ A, µ is called K-regular if µ(A) = sup{µ(K) : K ∈ K, K ⊂
A} for all A ∈ A. For the following concept going back to Marczewski [7], we will
use the terminology of [8]:
K is said to µ-approximate A if for every A ∈ A and every ε > 0, there exist sets
B ∈ A and K ∈ K such that B ⊂ K ⊂ A and µ(A − B) < ε hold. Note that in
case K ⊂ A, K µ-approximates A iff µ is K-regular.

2. The main results

In this section we consider an algebra A and two lattices K, L of subsets of X
with K ⊂ L as well as a content µ on A such that K µ-approximates A.
If B ⊃ A is another algebra, then ba(µ,B) denotes the family of all contents

on B that extend µ. In addition, we define ba(µ,B,K) := {ν ∈ ba(µ,B) : K
ν-approximates B} and ca(µ,B,K) := {ν ∈ ba(µ,B,K) : ν is a measure}. Note
that ba(µ,B), ba(µ,B,K) and ca(µ,B,K) are convex sets. If D is any of these
sets, then exD denotes the set of extreme points of D.

Lemma 2.1. Let B ⊃ A be another algebra and ν ∈ ba(µ,B,K). Then ν ∈
ex ba(µ,B,K) iff ν ∈ ex ba(µ,B).

Proof: Assume ν ∈ ex ba(µ,B,K) and let ν = 12 (ν1+ ν2) with ν1, ν2 ∈ ba(µ,B).

Since 12νi ≤ ν and ν ∈ ba(µ,B,K) we have νi ∈ ba(µ,B,K) for i = 1, 2. Thus we
infer ν1 = ν2 from the extremality of ν. This proves ν ∈ ex ba(µ,B). The other
part of the claim is obvious. �

Lemma 2.2. If Q ∈ F(K)−A and B := α(A ∪ {Q}) then ex ba(µ,B,K) 6= ∅.

Proof: (1) For every E ∈ P(X), we define µ∗(E) := inf{µ(A) : E ⊂ A ∈ A}
and µ∗(E) := sup{µ(A) : E ⊃ A ∈ A}. It is well known ([6]) that B = {(A1 ∩
Q)∪ (A2−Q) : A1, A2 ∈ A} and ν(B) := µ∗(B ∩Q)+µ∗(B −Q), B ∈ B, defines
an element ν of ba(µ,B).

(2) To prove ν ∈ ba(µ,B,K) let B ∈ B and ε > 0 be given. Then B =
(A1 ∩Q)∪ (A2 −Q) with some A-sets A1, A2. Since µ∗(B −Q) = µ∗(A2 −Q) =
sup{µ(A) : A ∈ A, A ⊂ A2 − Q}, there is an A-set C satisfying C ⊂ A2 − Q and
µ∗(B−Q) < µ(C)+ ε

4 . In addition, there exist sets C0 ∈ A and K0 ∈ K such that
C0 ⊂ K0 ⊂ C and µ(C) < µ(C0)+

ε
4 . This together yields µ∗(B−Q) < µ(C0)+

ε
2 .

Furthermore, one can choose sets C1 ∈ A and K1 ∈ K such that C1 ⊂ K1 ⊂ A1
and µ(A1 − C1) < ε

2 which implies µ∗((A1 ∩ Q) − C1) ≤ µ(A1 − C1) < ε
2 and

hence µ∗(A1 ∩Q) ≤ µ∗((A1 ∩Q)−C1)+µ∗(A1∩Q∩C1) < µ∗(C1 ∩Q)+ ε
2 . Now
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B∗ := (C1 ∩ Q) ∪ (C0 − Q) ∈ B, K∗ := (K1 ∩ Q) ∪ K0 ∈ K, B∗ ⊂ K∗ ⊂ B and
ν(B) = µ∗(B∩Q)+µ∗(B−Q) < µ∗(A1∩Q)+µ(C0)+

ε
2 < µ∗(C1∩Q)+µ(C0)+ε =

µ∗(C1 ∩ Q) + µ∗(C0 − Q) + ε = ν(B∗) + ε. Thus ν ∈ ba(µ,B,K).

(3) To prove ν ∈ ex ba(µ,B,K) it suffices to show ν ∈ ex ba(µ,B). For an
arbitrary ε > 0, choose A ∈ A such that Q ⊂ A and µ(A) < µ∗(Q) + ε. Then
ν(A △ Q) = ν(A − Q) = µ∗(A − Q) = µ(A) − µ∗(Q) < ε. From [9], Theorem 1
and the associated Remark 2, we infer ν ∈ ex ba(µ,B). �

If B is an algebra satisfying A ∪ K ⊂ B, then ba(µ,B,K) is the family of all
K-regular contents on B that extend µ. According to [1, Theorem 3.4], µ can
be extended to a K-regular content on α(A ∪ F(K)). The following basic result
shows that even an extremal extension exists.

Theorem 2.3. ex ba(µ, α(A ∪ E),K) 6= ∅ for every sublattice E of F(K).

Proof: (1) Fix some sublattice E of F(K) and define Γ := {(M, ̺) : M is
a sublattice of E and ̺ ∈ ex ba(µ, α(A ∪M),K)}. Note that ({∅}, µ) ∈ Γ. We
order the elements of Γ in the following way: (M, ̺) ≤ (M′, ̺′) iffM ⊂ M′ and
̺′ is an extension of ̺.

(2) Now we show that Γ is inductively ordered. Consider a chain (Mi, ̺i)i∈I

in Γ. ThenM :=
⋃

i∈I Mi is a sublattice of E and α(A∪M) =
⋃

i∈I α(A∪Mi).
For C ∈ α(A ∪ M), define ̺(C) := ̺i(C) provided that C ∈ α(A ∪ Mi). ̺
is a content on α(A ∪ M) that extends every ̺i. It is easy to see that ̺ ∈
ba(µ, α(A ∪M),K).
To prove ̺ ∈ ex ba(µ, α(A ∪ M),K) consider τ1, τ2 ∈ ba(µ, α(A ∪ M),K)

with ̺ = 1
2 (τ1 + τ2). Fix some i0 ∈ I and define τ̂j := τj | α(A ∪ Mi0) for

j = 1, 2. Then τ̂j ∈ ba(µ, α(A ∪ Mi0)), j = 1, 2, and ̺i0 =
1
2 (τ̂1 + τ̂2). Since

̺i0 ∈ ex ba(µ, α(A ∪Mi0),K), we infer τ̂1 = τ̂2 from 2.1.
Now consider an arbitrary A ∈ α(A ∪ M). Then A ∈ α(A ∪ Mi0) for some

i0 ∈ I and hence τ1(A) = τ̂1(A) = τ̂2(A) = τ2(A). Thus τ1 = τ2 which proves
̺ ∈ ex ba(µ, α(A ∪M),K).
Consequently, (Mi, ̺i) ≤ (M, ̺) ∈ Γ for all i ∈ I. So Γ is inductively ordered.

(3) By Zorn’s lemma, there is a maximal element (M̃, ˜̺) in Γ. We will show
M̃ = E which implies that ˜̺ is the desired extremal element of ba(µ, α(A∪E),K).

Assume that there is a set Q ∈ E − M̃. Denoting by Ǩ the lattice generated

by M̃ ∪ {Q}, we have α(A ∪ Ǩ) = α(B ∪ {Q}) with B := α(A ∪ M̃). It follows
Q /∈ B. By 2.2, there exists an element µ̌ ∈ ex ba(˜̺, α(A ∪ Ǩ),K).
Next we shall prove µ̌ ∈ ex ba(µ, α(A ∪ Ǩ),K) which implies (Ǩ, µ̌) ∈ Γ. On

the other hand, (M̃, ˜̺) ≤ (Ǩ, µ̌) and M̃ 6= Ǩ which, however, is in contrast to

the maximality of (M̃, ˜̺).
It is obvious that µ̌ ∈ ba(µ, α(A ∪ Ǩ),K). To prove the extremality of µ̌, let

µ̌ = 12 (µ1+µ2) with µ1, µ2 ∈ ba(µ, α(A∪ Ǩ),K) and define µ̃i := µi | α(A∪M̃),

i = 1, 2. For B ∈ B, ˜̺(B) = µ̌(B) = 1
2 (µ̃1(B) + µ̃2(B)), i.e. ˜̺ = 1

2 (µ̃1 + µ̃2).
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Since ˜̺ ∈ ex ba(µ, α(A ∪ M̃)) by 2.1, we infer µ̃1 = µ̃2 = ˜̺. Consequently,
µ1, µ2 ∈ ba(˜̺, α(A ∪ Ǩ)). As µ̌ ∈ ex ba(˜̺, α(A ∪ Ǩ)) by 2.1, we obtain µ1 = µ2
proving µ̌ ∈ ex ba(µ, α(A ∪ Ǩ),K). �

Corollary 2.4. ex ba(µ, α(A ∪ E),L) 6= ∅ for every sublattice E of F(L).

Proof: Since K ⊂ L and K µ-approximates A, so does L. Thus our claim follows
from 2.3 (with L instead of K). �

In case A = α(K), the assumption that K µ-approximates A is equivalent to
K-regularity of µ. Thus we obtain from 2.4

Corollary 2.5 ([2, Theorem 2.3]). Every K-regular content on α(K) admits an
extremal extension to an L-regular content on α(L).

Our next result is concerned with the existence of extremal measure extensions.

Theorem 2.6. If µ is a measure and K is sequentially dominated by A, then
ex ca(µ, σ(A ∪ E),Kδ) 6= ∅ for every sublattice E of F(Kδ).

Proof: Fix some sublattice E of F(Kδ) and define B := α(A ∪ E). By 2.4,
there exists an element ̺ ∈ ex ba(µ,B,Kδ). To show the countable additivity
of ̺, consider a sequence (Bn) of sets from B with Bn ↓ ∅. For any ε > 0
and n ∈ N , choose Cn ∈ B and Kn ∈ Kδ such that Cn ⊂ Kn ⊂ Bn and
̺(Bn − Cn) < ε · 2−n. Then Dn :=

⋂n
i=1Ci ⊂

⋂n
i=1Ki ⊂ Bn and ̺(Bn − Dn) ≤

̺(
⋃n

i=1(Bi − Ci)) ≤
∑n

i=1 ̺(Bi − Ci) < ε for n ∈ N . Furthermore, K ′
n :=⋂n

i=1Ki ∈ Kδ and K ′
n ↓∅. Since also Kδ is sequentially dominated by A, there

is a sequence (An) of A-sets satisfying An ↓ ∅ and K ′
n ⊂ An for n ∈ N . This

implies ̺(Bn) ≤ ̺((Bn −Dn)∪An) ≤ ̺(Bn −Dn) + ̺(An) < ε+µ(An) < 2ε for
all sufficiently large n. Therefore ̺ is a measure.
Denote by ˜̺ the unique measure extension of ̺ to σ(B) = σ(A ∪ E). Then

˜̺∈ ca(µ, σ(B),Kδ) by [8, (2.10)]. To prove ˜̺∈ ex ca(µ, σ(B),Kδ) consider ˜̺1, ˜̺2 ∈
ca(µ, σ(B),Kδ) with ˜̺ = 1

2 (˜̺1 + ˜̺2). Let ̺i := ˜̺i | B for i = 1, 2. Then ̺ =
1
2 (̺1 + ̺2). As Kδ ̺-approximates B and 12̺i ≤ ̺, Kδ also ̺i-approximates B
which implies ̺i ∈ ba(µ,B,Kδ) for i = 1, 2. Since ̺ ∈ ex ba(µ,B,Kδ), we conclude
̺1 = ̺2 and hence ˜̺1 = ˜̺2. �

Corollary 2.7. If K is semicompact, then ex ca(µ, σ(A ∪ E),Kδ) 6= ∅ for every

sublattice E of F(Kδ).

Proof: The semicompactness of K implies that both µ is a measure and K is
sequentially dominated by A. Thus the assertion follows from 2.6. �

Under the additional assumption K ⊂ A, the previous results can be strength-
ened in the following way, thus obtaining an “extremal version” of the extension
theorem 3.6 of [1].

Theorem 2.8. Assume K ⊂ A.

(a) Then ex ba(µ,B,L) 6= ∅ for every algebra B satisfying A ∪ L ⊂ B ⊂
α(A ∪F(K) ∪ F(L)).
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(b) If, in addition, µ is a measure and L is sequentially dominated by σ(A ∪
F(Kδ)), then ex ca(µ,B,Lδ) 6= ∅ for every σ-algebra B satisfying A∪L ⊂
B ⊂ σ(A ∪ F(Kδ) ∪ F(Lδ)).

Proof: We only prove (b), since the (simpler) proof of (a) can be performed in
the same way.

(1) We first consider the special case B = σ(A ∪ F(Kδ) ∪ F(Lδ)). Define
C = σ(A∪F(Kδ)), and let ν be the Kδ-regular measure on C extending µ that has
been constructed in the proof of [1, 3.6 (b)]. Since L is sequentially dominated
by C, so is Lδ. In addition, Kδ ⊂ Lδ and B = σ(C ∪ F(Lδ)). Thus, by 2.6,
there exists an element τ ∈ ex ca(ν,B,Lδ). Clearly τ ∈ ca(µ,B,Lδ). To prove

τ ∈ ex ca(µ,B,Lδ) consider τ1, τ2 ∈ ca(µ,B,Lδ) with τ = 12 (τ1 + τ2). Then

(2.1) ν(C) ≤ τi(C) for C ∈ C and i = 1, 2.

Assume that (2.1) fails to be true. Then ν(C) > τi(C) for some C ∈ C and
some i ∈ {1, 2}. Thus we can find a Kδ-setK satisfyingK ⊂ C and ν(K) > τi(C).
Choosing a sequence (Kn) in K such that Kn ↓ K, we obtain the contradiction
infn µ(Kn) = infn ν(Kn) = ν(K) > τi(C) ≥ τi(K) = infn τi(Kn) = infn µ(Kn).
Thus (2.1) holds true.
Since also τi(X) = µ(X) = ν(X) for i = 1, 2, we infer from (2.1) τ1 | C =

τ2 | C = ν. Thus τ1, τ2 ∈ ca(ν,B,Lδ) which together with τ ∈ ex ca(ν,B,Lδ)
implies τ1 = τ2. So τ ∈ ex ca(µ,B,Lδ).

(2) Now we consider an arbitrary σ-algebra B satisfying A∪L ⊂ B ⊂ E where
E := σ(A ∪ F(Kδ) ∪ F(Lδ)). By the special case (1), there exists an element
̺ ∈ ex ca(µ, E ,Lδ). Then ν := ̺ | B ∈ ca(µ,B,Lδ). To prove ν ∈ ex ca(µ,B,Lδ)

consider ν1, ν2 ∈ ca(µ,B,Lδ) with ν = 1
2 (ν1 + ν2). For every E ∈ E , ̺(E) =

sup{̺(L) : L ∈ Lδ, L ⊂ E} = sup{ν(L) : L ∈ Lδ, L ⊂ E} = 12 (sup{ν1(L) : L ∈

Lδ, L ⊂ E}+ sup{ν2(L) : L ∈ Lδ, L ⊂ E}) ≤ 1
2 (ν̃1(E) + ν̃2(E)) where ν̃i denotes

an arbitrary content on E that extends νi, i = 1, 2. It follows ̺ ≤ 1
2 (ν̃1 + ν̃2) as

well as 12 (ν̃1(X) + ν̃2(X)) =
1
2 (ν1(X) + ν2(X)) = µ(X) = ̺(X) which implies

(2.2) ̺ =
1

2
(ν̃1 + ν̃2).

From (2.2) we infer both the countable additivity and the Lδ-regularity of ν̃i,
i = 1, 2. Therefore ̺ ∈ ex ca(µ, E ,Lδ) and (2.2) imply ν̃1 = ν̃2 and hence ν1 = ν2.
So ν ∈ ex ca(µ,B,Lδ). �

An immediate consequence of 2.8 (b) is [2, Theorem 2.4], various applications
of which are gathered in Section 3 of [2].
The assumptions of 2.8 (b) are, in particular, satisfied if the lattice L is semi-

compact. Thus we obtain
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Corollary 2.9. If L is semicompact and K ⊂ A holds, then ex ca(µ,B,Lδ) 6= ∅

for every σ-algebra B satisfying A ∪ L ⊂ B ⊂ σ(A ∪ F(Kδ) ∪ F(Lδ)).

The following result is an application of 2.9.

Corollary 2.10. Let C, D be lattices of subsets of X such that C ⊂ D ⊂ F(Cδ).
If C is semicompact and A ⊂ σ(D), then every C ∩A-regular content on A admits
an extremal extension to a Cδ-regular measure on σ(D).

Proof: The claim follows with K = C ∩ A and L = C from 2.9. �

The assumptions of 2.10 are, in particular, satisfied if C, D are the lattices of
compact, respectively closed, subsets of a Hausdorff topological space. Thus one
obtains from 2.10 an “extremal version” of Henry’s extension theorem (cf. [10,
Theorem 16, p. 51]).
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