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More on the complexity of cover graphs

Jaroslav Nešetřil, Vojtěch Rödl

Abstract. In response to [3] and [4] we prove that the recognition of cover graphs of finite
posets is an NP-hard problem.
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Classification: 06A06, 68R10, 68Q15

1. Introduction

Given a (finite) poset P = (X, <) we define its cover graph as the undirected
graphGP = (X, E) where {x, y} ∈ E if y covers x in P (i.e. if x < y and x < z < y
for no z). Sometimes the terms Hasse diagram or Hasse graph are used.
In [3] (cf. Theorem 4.1.) we claimed the following:

Theorem 1.1. The following decision problem is NP-hard.

Instance: A (undirected) graph G.
Problem: Is G a cover graph of a poset?

We thank B. Toft and his student J. Thostrup who turned our attention to
a gap in our argument. In [4], we outlined how our argument may be saved
using a recent result of Lund and Yannakakis. The purpose of this note is to
present a full proof together with some remarks and comments which relate this
problem to other research. Meanwhile, G. Brightwell found another proof of the
main result. His proof is simpler and more transparent than ours. Yet we believe
that this proof (outlined in [4]) deserves a publication as the present method is
perhaps an interesting combination of nontrivial techniques and has some further
applications (see a forthcoming paper by V. Rödl and L. Thoma).
Given an undirected graph G = (V, E) a Hasse orientation of G is any orien-

tation of G which does not contain either a cycle or a quasicycle. (A quasicycle
in a directed graph is a sequence of vertices x1, x2, . . . , xn together with arcs
(xi, xi+1), i = 1 . . . , n − 1 and (x1, xn).) Alternatively, a Hasse orientation of G
is any acyclic orientation of G which stays acyclic even after the reversal of an
arbitrary arc.
It follows that non-cover graphs contain in any acyclic orientation a quasicycle

and thus a monotone path. This indicates that the recognition of cover graphs
may be related to chromatic number. However appealing this may seem to be,
the details are quite subtle.
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Particularly, we make use of explicit construction of expanders [1], efficient
packing of sparse graphs [5] and, perhaps most importantly, a recent result of
Lund and Yannakakis on NP hardness of approximation of chromatic number (cf.
Theorem 2.5 in [2]):

Theorem 1.2 [2]. For every constant g > 1 there exists a constant c = c(g) such
that the following problem is NP-hard:

Given a graph G distinguish between the case that G is colorable with c colors
and the case that χ(G) > gc.

In fact, Lund and Yannakakis proved that distinguishing between χ(G) ≤ c
and χ(G) ≥ gc is NP hard. This is, however, equivalent with the statement of
Theorem 1.2.
In below, we use the existence of c(4) and we set k0 = c(4).
While the general scheme of the proof given here is the same as in [3], the

details are more technical and involved.
2. Lemmas and reduction

We start with the following two lemmas:

Lemma 2.1. For every K there is a polynomial reduction G → Ḡ such that

(1) χ(G) = χ(Ḡ) whenever χ(G) ≤ K;
(2) χ(Ḡ) ≤ K and a K-coloring of Ḡ is known.

Proof: Put G = G × KK (the direct product). Clearly (1) holds and a K-
coloring of G is induced by a coloring of KK .

�

Lemma 2.2. For every K there is a polynomial reduction which assigns to every
graph Ḡ with known coloring V (Ḡ) = V1 ∪ V2 ∪ · · · ∪ VK a cover graph G∗ with

the following properties:

(1) χ(Ḡ) = χ(G∗);
(2) for every k < K, if χ(Ḡ) = k, then there exists a Hasse orientation of

G∗ which does not contain an oriented path of length k (i.e. with k + 1
vertices).

The proof of Lemma 2.2 is given in Section 3.

Construction 2.3. Fix k > 2. Given a graph H = (V, E) define a graph Hk

as follows: For every path P = (x0, e1, x1, . . . , e4k, x4k) of length 4k we choose

vertices xP
0 , xP

1 , xP
2 , . . . , xP

4k and aP , bP (all these vertices are distinct for different
paths) and add them to H together with the edges of the form:

{xi, x
P
i } for i = 0, 1, . . . , 4k,

{xP
i−1, x

P
i } for i = 1, 2, . . . , 4k,

{xP
0 , aP }, {xP

k , aP }, {xP
2k, aP },

{xP
2k, bP }, {xP

3k, bP }, {xP
4k, bP }.
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The resulting graph will be denoted Hk.
See Fig. 1.
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Figure 1

Clearly | Hk |<| V | +(3 + 4k) |V |4k+1.
This construction is similar to the one used in the preprint version of [3]. Its

usefulness follows from the following two lemmas.

Lemma 2.4. Let H = (V, E) be a cover graph with a Hasse-orientation of H
which contains no monotone path of length k. Then Hk is a cover graph.

Lemma 2.5. Let H = (V, E) be a cover graph and let every Hasse-orientation
of H contains a directed path of length 4k. Then Hk fails to be a cover graph.

Proof of Lemma 2.4: Let ~E be a fixed Hasse orientation of H without mono-
tone paths of length k. Put E(Hk) = F and extend the orientation ~E to an

orientation ~F of F by putting (for any path P = (x0, x1, . . . , x4k) in H):

(xP
i , xP

j ) ∈ ~F for {xi, xj} ∈ E(P ) such that (xi, xj) ∈ ~E

(xi, x
P
i ) ∈ ~F for xi ∈ V (P )

(xP
i , aP ) ∈ ~F and (xP

j , bP ) ∈ ~F whenever {xP
i , aP } ∈ F, {xP

j , bP } ∈ F

(See Fig. 2.)
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Figure 2

~F is clearly an acyclic orientation. We prove that it does not contain a quasi-
cycle.

For a contradiction, suppose that ~F contains a quasicycle y0, y1, . . . , yt, (see
Fig. 3).

❍ ❍ ❍ ❍ ❍❍❍❍ ● ● ●

y y y0 1 t

Figure 3

If yt ∈ V (H), then we have a quasicycle in ~E — a contradiction.

Suppose yt = xP
j . Then yi 6= aP , yi 6= bP for i = 0, 1, 2, . . . , t (this follows by

definition of ~F ).

We distinguish two cases: if y0 /∈ V (H) then necessarily y0 = xP
i and we get

a contradiction. If y0 ∈ V (H), then there exists s < t such that y0, y1, . . . , ys ∈
V (H), ys+1 = xP

r , ys+2 = xP
r+1, . . . , yt = xP

t+r−s−1 for some r.

(P = (x0, x1, . . . , x4k)). As {y0, yt} ∈ F we infer that y0 = xt+r−s−1 and hence

xt+r−s−1 = y0, y1, . . . , ys = xr

is an oriented path from xt+r−s−1 to xr while

xr, xr+1, . . . , xt+r−s−1

is an oriented path from xr to xt+r−s−1 and thus there is an oriented cycle in ~E
— a contradiction.
The last possible position of yt is yt = aP or yt = bP . Assume without loss

of generality that yt = bP ; then all y0, y1, . . . , yt−1 are of the form yi = xP
i+j for

some integer j. In fact {xj , xj+1, . . . xj+t−1} is a set of consecutive vertices of
path P . But then these vertices form a directed path which (by definition of ~F )

gives a directed path of length k or 2k in ~E (depending on position of vertices y0
and yt−1 — a contradiction. �

Proof of Lemma 2.5: Let H and Hk be as above. Put F = E(Hk) and for

contradiction assume that ~F is a Hasse orientation. Let ~E be the orientation
induced by ~F on E. By the assumption, E contains a monotone path

P = (x0, x1, . . . , x4k)

with the orientation, say from x0 towards x4k.

We observe that if (xP
i , xi) ∈ ~F , then,
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(xP
i , xP

i+1) ∈ ~F and consequently, (xP
i+1, xi+1) ∈ ~F , . . . , (xP

4k , x4k) ∈ ~F .
Hence, it follows that there exists i0 such that

(xi, x
P
i ) ∈ ~F if i < i0

(xP
i , x) ∈ ~F if i ≥ i0

(xP
i , xP

i+1) ∈ ~F i = 0, 1, . . . i0 − 2
and i = i0, . . . 4k − 1

while (xP
i0

, xP
i0−1) ∈ ~F

(See Fig. 4.)
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Now, if i0 ≤ 2k, then we cannot complete the Hasse orientation for edges
incident with bP and if i0 > 2k we cannot find an orientation for edges incident
to aP . A contradiction. �

The above lemmas may be combined to yield the main result:

Proof of Theorem 1.1: Put k0 = c(4) and set K = 4k0 + 1.
Combining Theorem 1.2 and Lemma 2.1, we infer that the following problem is
NP-hard:
Given a graph Ḡ with χ(Ḡ) ≤ K and a known K-coloring V (Ḡ) = V1 ∪ V2 ∪

· · · ∪ VK

distinguish between χ(Ḡ) ≤ k0 and χ(Ḡ) = K.
Using Lemma 2.2, we then infer the following:
(∗) Given a cover graph G∗ with χ(G∗) ≤ K and with an (unknown) Hasse

orientation having no oriented path of length χ(G∗), the problem distinguishing
between χ(G∗) ≤ k0 and χ(G∗) = K is NP-hard.
We also observe that any acyclic directed graph of chromatic number at least

4k + 1 contains a directed path of length 4k.
Finally, setting H = G∗ and applying Construction 2.3 to H we obtain a graph

F = Hk0 which by Lemmas 2.4, 2.5 and (*) has the following properties:
if χ(G∗) ≤ k0 then F is a cover graph,
if χ(G∗) = K then F fails to be a cover graph,
and hence, by (*) above, deciding if F is a cover graph is NP-hard. �
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3. Proof of Lemma 2.2

Let K be fixed and the graph Ḡ with k-coloring V (Ḡ) = V1 ∪ . . . ,∪VK be
given. We will use the well known result of O. Gabber and Z. Galil [1], who, for
any m = t2, t ≥ t0 gave an explicit construction of (m, 5, d0)-expander graphs

Γm, d0 = (2−
√
3)/4. Explicitly, they constructed graphs Γm with the following

properties:

(1) Γm is a 5-regular bipartite graph withm (white) verticesX = {x1, . . . , xm}
and m (black) vertices Y = {y1, . . . , ym}. (Thus Γm = (X, Y, E).)

(2) For any X ′ ⊂ X the set Γ(X ′) of neighbors of X ′ (in Y ) satisfies:

| Γ(X ′) |≥ (1 + d0(1−
| X ′ |

m
)) | X ′ | .

We are going to introduce the j − th power Γ
j
m of the graphs Γm:

Construction of Γ
j
m

For each j = 1, 2 . . . consider the bipartite graph Γ
j
m = (X, Y, F ) where

{x, y} ∈ F if in Γm there exists a path of length at most 2j + 1 between x
and y and x ∈ X , y ∈ Y .
Denoting by ∆(G) the maximal degree of a graph, we have clearly

(a) ∆(Γm) = 5 and

∆(Γ
j
m) < 5

2j+2 for j = 1, 2, . . . .

We will also use the following:

Fact 3.1. For every ǫ > 0 there exists j such that for eachm, the bipartite graph

Γ
j
m = (X, Y, F ) satisfies

(b) For any X ′ ⊂ X, Y ′ ⊂ Y , |X ′| > ǫ|X |, |Y ′| > ǫ|Y | there is an edge
{x, y} ∈ F where x ∈ X ′, y ∈ Y ′.

Proof: For given ǫ > 0 take j so large that ǫ(1 + d0ǫ)
j+1 > 1− ǫ. For a contra-

diction, assume that there are sets X ′, Y ′ contradicting the statement (b).
For i ≤ 2j + 1 let Xi ⊂ X(Yi ⊂ Y ) be the set of vertices that can be reached

from X ′ by a path of length at most i in Γm. Due to our assumption, we have
| Y2j+1 |< (1 − ǫ)m (otherwise, Y ′ ∩ Y2j+1 6= 0, meaning that there is an edge
{x, y} ∈ F , x ∈ X ′, y ∈ Y ′). The graph Γm is regular and hence it contains

a perfect matching, thus also Γ
j
m contains this perfect matching. This means for

i < j that Γm(Y2i+1) = X2i+2 satisfies | X2i+2 |≥| Y2i+1 |.
Summarizing, we infer (due to our assumption that | X2i |≤| Y2j+1 |< (1−ǫ)m)

| Y2i+1 |=| Γ(X2i) |≥

≥
[

1 + d0

(

1− | X2i |
m

)]

| X2i |≥ (1 + ǫd0) | X2i |≥ (1 + ǫd0) | Y2i−1 |
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for any i = 1, 2, . . . j and hence also

| Y2j+1 |≥ (1 + ǫd0)
j+1 | X ′ |≥ ǫ(1 + d0ǫ)

j+1 | X |≥ (1− ǫ) | X |= (1 − ǫ)m,

contradicting our assumption.
Next, we will use the following modification of a result of N. Sauer and J. Spen-

cer [5].

Fact 3.2. Let G1 = (V, F1) and G2 = (V, F2) be two bipartite graphs with the
same vertex set V . Assume 2∆(G1)∆(G2) < m =| V | /2.
Let V = X ∪ Y , |X | = |Y | = m. Then there exists an algorithm which

is polynomial in m and which finds a permutation π : V → V , π(X) = X ,
π(Y ) = Y so that F1 ∩ F2(π) = ∅, where

F2(π) = {{π(v), π(v′)}; {v, v′} ∈ F2}.

Proof: We will construct a sequence of permutations πi, i = 0, 1, . . . such that
if

(1) F1 ∩ F2(πi) 6= ∅
then

(2) | F1 ∩ F2(πi+1) |<| F1 ∩ F2(πi) | .

Suppose that (1) holds for i ≥ 0 and let V (G1) = V (G2) = {υ1, υ2, . . . , υ2m}
and let {υ1, υ2} ∈ F1 ∩F2(πi); without loss of generality assume that υ1 ∈ X and
υ2 ∈ Y . Let R be the set of all indexes r for which there exists an index s such
that {υ2, υs} ∈ F1 and {υs, υr} ∈ F2(πi). Similarly, r ∈ R̄ iff {υ2, υs} ∈ F2(πi)
and {υs, υr} ∈ F1 for some s. We have | R ∪ R̄ |≤ 2∆(G1)∆(G2) ≤ m − 1 and
hence, there exists p /∈ R ∪ R̄ with υp ∈ Y .
We will construct πi+1 satisfying (2) as follows:

πi+1(v) = πi(v) if πi(v) /∈ {υ2, υp}
πi+1(υ) = vp if πi(v) = v2

and
πi+1(v) = v2 if πi(v) = vp.

Note that p 6= 2. Interchanging v2 and vp, in graph F2(πi) the edges {υ1, υ2}
in F1 and {υ1, υ2} in F2(πi+1) no longer coincide. Moreover, due to p /∈ R∪ R̄, we

do not place any other edge of G2 on an edge of G1 and thus, the total number
of common edges decreases. �

Note that for each i = 0, 1, 2 . . . we perform at most
(2m
2

)

steps to find out if
F1 ∩ F2(πi) 6= ∅.
If so, we make additional ≤ m − 2 steps to find a vertex υp. As the total

number of iterations i = 0, 1, 2 . . . is clearly bounded by
(2m
2

)

, we get that the

algorithm runs in time not exceeding O(m4) steps.
It is crucial for our proof of Lemma 2.2 that we may iterate the above packing

Lemma 3.2.
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Proposition 3.3. For every ǫ > 0 and integers K and n, there is an integer
m, m = O(n2K ) (for K fixed) and an O(m4n) algorithm that constructs n + 1
edge disjoint copies Γ(0) = (X, Y, E0), Γ(1) = (X, Y, E1), . . . ,Γ(n) = (X, Y, En)

of the graph Γj
m (from Fact 3.1) in such a way that there is no rainbow cycle of

length l ≤ 2K.
Here a cycle C is said to be a rainbow cycle if |E(C) ∩ Ei| = 1 for all i > 0.

Proof: Let ǫ > 0 (and thus also j from Fact 3.1), K ≥ 2 and n be fixed. Set

m = (n · 52j+2)2K+2. We will construct bipartite graphs Γ(0),Γ(1), . . . ,Γ(n) on
the set V = X ∪ Y , |X | = |Y | = m as follows:

Put Γ(0) = Γ
j
m. In the induction step, suppose that the graphs Γ(0), . . . ,Γ(a−1)

have been constructed in such a way that there is no rainbow cycle of length ≤ 2K.
Let G1 = (V, F1) be the graph defined by {u, v} ∈ F1 if in

⋃a−1
i=0 Ei there is

a path from u to v of length at most 2K. Put G2 = Γ
j
m. We have ∆(G2) < 5

2j+2

∆(G1) < (a · 52j+2)2K ≤ (n · 52j+2)2K .

Thus, 2∆(G1) ·∆(G2) < m and hence by Fact 3.2 there is an 0(m4) algorithm
which places G2 on G1 with no common edge and which preserves the sets X and

Y . This however gives a placement of a copy Γ(a) of Γ
j
m = G2 in such a way that

Γ(0),Γ(1), . . . ,Γ(a) do not contain a rainbow cycle of length ≤ 2K. �

Now we are ready to finish the proof of Lemma 2.2:

Let Ḡ be a given graph with a K-coloring V (Ḡ) = V1 ∪ · · · ∪ VK . Let E ¯(G) =
{e1, . . . , en}.
Set ǫ = K−1 and consider the graphs Γ(0) = (X, Y, E0), Γ(1) = (X, Y, E1), . . . ,

Γ(n) = (X, Y, En) constructed in Proposition 3.3. Put X = {x1, . . . , xm}, Y =
{y1, . . . , ym} and assume without loss of generality that the bipartite graph Γ(0)
contains a matching {xi, yi}, i = 1, 2, . . . , m.
To construct G∗, we replace each vertex v ∈ V ¯(G) by an m-element set Xv =

{xv
1, . . . , x

v
m} with the sets Xv disjoint for distinct v ∈ V (Ḡ).

For each edge {v, v′} = ea (for a ∈ {1, . . . , n}) we consider a copy Γ̂(a) =
(Xv, Xv′ , Êa) of Γ(a) = (X, Y, Ea) in such a way that the mapping ϕea : Γ̂(a) →
Γ(a) defined by xv

i → xi, x
v′

i → yi, i = 1, . . . , m is an isomorphism. In this

way, we obtain a graph G∗. (More formally, we set V (G∗) =
⋃

v∈V (Ḡ)Xv and

E(G∗) =
⋃n

a=1 Êa.) As Ḡ is a homomorphic image of G
∗, we have clearly χ(Ḡ) ≥

χ(G∗). To prove the opposite inequality, assume that χ(G∗) = r < χ(Ḡ) ≤ K
and consider an r-coloring of G∗. For each v ∈ V (Ḡ) let Yv ⊆ Xv be a set,

| Yv |≥ |Xυ|
r , colored by the most frequent (in Xv) color.

As χ(Ḡ) > r there exists an edge ea = {v, v′} ∈ E(Ḡ) with Yv and Yv′ colored

by the same color. Using the expanding properties of the graph Γ̂(a) (isomorphic
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to Γj
m) proved in Fact 3.1, we get that there exist vertices y ∈ Yv, y

′ ∈ Y ′
v′ such

that {y, y′} ∈ E(Γ̂(a)) ⊆ E(G∗).

Hence, G∗ does not have a proper r-coloring and χ(G∗) = χ(Ḡ).
To prove (2) of Lemma 2.2, consider a k-coloring V (Ḡ) =W1 ∪W2 ∪ · · · ∪Wk.

We define the following acyclic orientation A of G∗:

for {xv
s , xv′

t } ∈ E(G∗), xv ∈ Xv, xv′ ∈ Xv′

set (xv
s , xv′

t ) ∈ A iff v ∈ Wi, v
′ ∈ Wj and i < j.

First, observe that A does not contain an oriented path of length k.
For a contradiction, suppose now that A contains a quasicycle with edges

(xυ1
i1

, xυ2
i2
), . . . , (x

υp−1

ip−1
, x

υp

ip
), (xυ1

i1
, x

υp

ip
). Put e1 = {v1, v2}, e2 = {v2, v3}, . . . ,

ep−1 = {vp−1, vp}, ep = {v1, vp}. As A is acyclic, we infer that all the vertices

v1, . . . , vp and thus all the edges e1, . . . , ep are distinct. Clearly, p ≤ k ≤ K.
Now consider the vertices ϕe1 (x

υ1
i1
), ϕe1 (x

υ2
i2
), ϕe2 (x

υ2
i2
), ϕe2 (x

υ3
i3
), . . .

. . . , ϕep−1(x
υp−1

ip−1
), ϕep−1(x

υp

ip
), ϕep (x

υp

ip
), ϕep (xυ1

i1
).

These vertices (all of which need not be distinct) form a rainbow cycle of length
≤ 2p in the graph Γa which contradicts the nonexistence of short rainbow cycles
guaranteed by Proposition 3.3 and thus A is a Hasse orientation.

Concluding remarks.

1. The above proof gives a stronger statement about the hardness of the
recognition of cover graphs with bounded chromatic number (≤ 4k0). One could
ask if this can be further improved.
Indeed, it was proven by G. Brightwell [6] that recognition of cover graphs with

chromatic number 4 is hard.

2. Another interesting open problem is the recognition of cover graphs of finite
lattices. This is connected with the following problem:
The proof of Lemma 2.2 yields that for every K there exists a polynomial

construction which to every graph G constructs a graph G∗ with the following
properties:
(1) G∗ is triangle free;
(2) χ(G) = χ(G∗) providing χ(G) < K.
It would be interesting to refine this in both directions; for graphs of girth > 4

and for graphs with (unbounded) chromatic number.
In [7], the positive answer to this problem is given. This can be used to show

that the problem of recognition of cover graphs of finite lattices is NP-hard as
well.

Acknowledgements. Many thanks to Jan Kratochv́ıl and Luboš Thoma for
their valuable remarks.
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