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An invariance principle in L2[0, 1] for

non stationary ϕ-mixing sequences

Paulo Eduardo Oliveira, Charles Suquet

Abstract. Invariance principle in L2(0, 1) is studied using signed random measures. This
approach to the problem uses an explicit isometry between L2(0, 1) and a reproducing
kernel Hilbert space giving a very convenient setting for the study of compactness and

convergence of the sequence of Donsker functions. As an application, we prove a L2(0, 1)
version of the invariance principle in the case of ϕ-mixing random variables. Our result
is not available in the D(0, 1)-setting.

Keywords: reproducing kernel Hilbert space, random measure, invariance principle, ϕ-
mixing

Classification: 60F17, 60G57

1. Introduction

The space D[0, 1] with the Skorokhod topology has been the traditional setting
for the study of invariance principles. In this paper we interpret the Donsker
functions appearing in the invariance principle as random elements of L2(0, 1),
and prove a L2(0, 1) invariance principle. As the L2(0, 1) topology is weaker than
the Skorokhod topology in D(0, 1), we will be interested in sequences of random
variables for which the D(0, 1) invariance principle is not known to hold. We
present a general approach to prove invariance principles in L2(0, 1) and give an
application to some ϕ-mixing non stationary sequences.
Throughout the paper let (Xn)n≥1 be a sequence of random variables on some

probability space (Ω,A, P ) with EXn = 0, EX2n < +∞. Put

Sn =

n
∑

i=1

Xi and s2n = E(S
2
n), n ≥ 1.

Define random elements Wn in L2(0, 1) by:

Wn(t) = s−1n S[nt] t ∈ [0, 1], n ≥ 1,

where [x] represents the largest integer less or equal to x. Let W denote the
standard brownian motion, considered as random element in L2(0, 1). We say
that (Xn) fulfills the invariance principle if Wn converges in distribution to W .
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The ϕ-mixing coefficients of the sequence (Xn) are defined by:

ϕ(k) = sup{|P (B | A)− P (B)| : A ∈ Fn
1 , P (A) > 0, B ∈ F∞

n+k, n ≥ 1},
where Fm

n = σ{Xi : n ≤ i ≤ m}, 1 ≤ n ≤ m ≤ ∞. We call (Xn) ϕ-mixing
if ϕ(k) → 0. The first central limit theorem for ϕ-mixing strictly stationary
sequence (Xn) was proved by Ibragimov [6] in 1962 under the assumption:

∑

k≥1

ϕ(k)1/2 < +∞.

This mixing rate was used by Billingsley [1] and Davydov [3] to prove the
first invariance principles for ϕ-mixing strictly stationary sequences. For such
sequences, Herrndorf [5] gives a necessary and sufficient condition (assuming no
mixing rate) for the D(0, 1) invariance principle. Samur [12] gives necessary and
sufficient conditions for the invariance principle in distribution for strictly sta-
tionary ϕ-mixing triangular arrays of Banach space valued random vectors.
In the non stationary case, Peligrad [10] proves the D(0, 1)-invariance principle

assuming no mixing rate, under the Lindeberg condition and the hypothesis:

(1) sup
m≥0, n≥1

1

s2n
E(Sm+n − Sm)

2 < +∞.

Clearly (1) implies supn≥1 EX2n < +∞. In this paper we obtain the L2(0, 1)
invariance principle for non stationary sequences verifying the weaker requirement
supn≥1 s−2n

∑n
i=1 EX2i < +∞ and Ibragimov’s mixing rate.

Our approach uses an embedding of signed measures on [0, 1] into a reproducing
kernel Hilbert space ([4], [13]). It provides a tool to prove tightness and conver-
gence of some random elements in L2(0, 1), which is particularly well adapted
to the treatment of the Donsker functions. This method, based on the ideas of
Berlinet [2] and Jacob [7], has been used in [8], where the main feature of the
use of random measures was the study of relative compactness of the sequence of
Donsker functions. Still, in [8] to prove the convergence towards a brownian mo-
tion, the method used was typical of D[0, 1]. Following [15] we may use methods
which are better adapted to an Hilbert space setting. We recall the study of tight-
ness in a more general form than in [8] and then reduce the proof of the invariance
principle to a central limit theorem for suitably chosen triangular arrays.

2. Auxiliary results

We give next a brief description of the embedding which enables the use of
random measures. Consider the kernel functionK(s, t) = 2−max(s, t) and denote
λ1 = λ + δ1 where λ represents the Lebesgue measure on [0, 1] and δ1 the Dirac
measure with mass at point 1. As we may write

K(s, t) =

∫

[0,1]
I[s,1](u)I[t,1](u)λ1(du), s, t ∈ [0, 1],
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it follows easily that the auto-reproducing Hilbert space HK induced by K is

HK =

{

h(s) =

∫

[s,1]
g(u)λ1(du), g ∈ L2(λ1)

}

where L2(λ1) is the space of functions defined on [0, 1] up to λ1-almost everywhere
equality, which are square integrable with respect to λ1. It is easy to check that

Ψ : L2(λ1) −→ HK

g →֒ Ψ(g)(s) =

∫

[s,1]
g(u) λ1(du)

is an isometry between L2(λ1) and HK . As
∫

[0,1]2 K(s, t) µ⊗µ (ds, dt) = 0 implies

that µ is the null measure, it follows from [13] that the mapping

(2) Θ(µ)(s) =

∫

[0,1]
K(s, t) µ(dt) =

∫

[s,1]
µ[0, u] λ1(du)

defined onM, the space of signed bounded measures on [0, 1], with values in HK

is injective. This enables us to look at measures as elements of HK or L2(λ1)
using the isomorphism Ψ. As an element of L2(λ1) the measure µ is represented
by

Ψ−1 (Θ(µ)) (t) = µ[0, t].

Moreover, Suquet [13] shows that, for each h ∈ HK ,

〈h,Θ(µ)〉K =
∫

[0,1]
h(t) µ(dt)

where 〈·, ·〉K represents the inner product of HK . As we aim to prove convergence
towards a brownian motion it is useful to regard how it is represented in HK . Let
W denote the standard brownian motion in L2(0, 1) to which we may look also
as an element of L2(λ1). The random function of HK that corresponds to W is

W̃ = Ψ(W ).

Lemma 1. For every h1, h2 ∈ HK ,

E
(

〈W̃ , h1〉K〈W̃ , h2〉K
)

=

∫

[0,1]
h1(t)h2(t) λ(dt).

Proof: Put f1 = Ψ
−1(h1) and f2 = Ψ

−1(h2), so from the isometry between

L2(λ1) and HK , 〈W̃ , h1〉K =
∫

[0,1] f1(t)W (t) λ1(dt) and 〈W̃ , h2〉K =
∫

[0,1] f2(t)W (t) λ1(dt). It follows

E
(

〈W̃ , h1〉K〈W̃ , h2〉K
)

= E

[

∫

[0,1]×[0,1]
W (s)W (t)f1(s)f2(t) λ1 ⊗ λ1 (ds, dt)

]
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which, by another application of Fubini’s theorem, is equal to

∫

[0,1]×[0,1]
E (W (s)W (t)) f1(s)f2(t) λ1 ⊗ λ1 (ds, dt) =

=

∫

[0,1]×[0,1]

∫

[0,1]
I[0,s](u)I[0,t](u) λ(du) f1(s)f2(t) λ1 ⊗ λ1 (ds, dt) =

=

∫

[0,1]×[0,1]

∫

[u,1]
f1(s) λ1(ds)

∫

[u,1]
f2(t) λ1(dt) λ(du) =

=

∫

[0,1]
h1(u)h2(u) λ(du).

�

For f =
∑n

i=1 akI[ i−1
n

, i
n
) + anI{1}, we easily verify that

∫

[0,1] f(t)W (t)λ1(dt)

is a centered gaussian random variable. Using the preceding lemma, the same
holds for every f ∈ L2(λ1). So, for each h ∈ HK , 〈W̃ , h〉K is a centered gaussian
random variable with variance ‖ h ‖22, according to the lemma.

3. Relative compactness

Define the Donsker random measure

ξn =
1

sn

n
∑

i=1

Xiδ i
n

where δx is the Dirac measure with mass at point x. According to the preceding
section we may look at ξn as a random element in HK or L2(λ1). In this later
space we find

Wn(u) = Ψ
−1 (Θ(ξn)) =

1

sn
S[nu], u ∈ [0, 1].

That is, we find in L2(λ1) exactly the sequence of functions appearing in the
invariance principle. The relations explained in the previous section permit us
to look at this sequence as elements of L2(λ1) or HK as it is more convenient.
Moreover, in HK as we are looking at a random element which is the image of
a random measure we may use the further simplifications about the HK inner
product.

Theorem 1. Suppose that

(3) C = sup
n≥1

1

s2n

n
∑

k,l=1

|E(XkXl)| < +∞,
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then the sequence (Wn) is weakly relatively compact in L2(0, 1).

(Remark. In fact we will prove the weak relative compactness in L2(λ1), but
this then implies the result stated in the more interesting space L2(0, 1). Through-
out this article we will continue to do this reasoning without any further reference).

Proof: We will take the random measures ξn as random elements in HK . Then,
to prove the theorem, it is enough to verify

lim
N→+∞

sup
n∈N

∫

HK

+∞
∑

i=N

〈h, fi〉2K Pn(dh) = 0

and

sup
n∈N

∫

HK

‖ h ‖22 Pn(dh) < +∞,

where Pn is the distribution of ξn in HK and (fi)i∈N
is an orthonormal basis of

HK . The first condition by Parthasarathy [9] is classical. In [14], the second one
is added in order to avoid trivial counterexamples. As

∫

HK

+∞
∑

i=N

〈h, fi〉2K Pn(dh) = E

(

+∞
∑

i=N

〈Θ(ξn), fi〉2K

)

=

+∞
∑

i=N

E

(

∫

[0,1]
fi dξn

)2

=

+∞
∑

i=N

1

s2n

n
∑

k,l=1

fi
(k

n

)

fi
( l

n

)

E(XkXl)

≤
+∞
∑

i=N

1

s2n

n
∑

k,l=1

∣

∣

∣

∣

fi
(k

n

)

fi
( l

n

)

∣

∣

∣

∣

|E(XkXl)|

≤
(

sup
x∈[0,1]

+∞
∑

i=N

f2i (x)

)

1

s2n

n
∑

k,l=1

|E(XkXl)| ≤ C sup
x∈[0,1]

+∞
∑

i=N

f2i (x)

which converges to zero according to Dini’s theorem. The other condition is
trivially verified by choosing N = 0 in the previous computation. �

In [8] condition (3) was already proved to be a sufficient condition for the weak
relative compactness (in the case s2n = O(n)). However, the proof presented there
was very dependent of a particular basis of HK , whereas here we have a proof for
a general basis. To study the weak convergence of the sequence Wn we will look
at it as a sequence of random elements in HK and use the following lemma.

Lemma 2 ([13]). Let (ξn, n ≥ 1) be a sequence of random measures. Then
Θ(ξn) converges weakly to a random element Z in HK if:

(i) {Θ(ξn), n ≥ 1} is weakly relatively compact,
(ii) for each h ∈ HK ,

∫

h dξn is weakly convergent to 〈Z, h〉K .
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Remark that the limit Z is not necessarily a random measure, as it will be the
case in the invariance principle. In our setting

∫

h dξn =
1

sn

n
∑

i=1

h
( i

n

)

Xi

and we want to prove the weak convergence towards a centered gaussian random
variable. The problem is then reduced to the proof of a central limit theorem for
a triangular array.

4. The invariance principle in the ϕ-mixing case

In this section we will suppose the random variables Xn, n ∈ N, to be ϕ-
mixing. For the proof of the invariance principle, we will use Lemma 2. We
must then find sufficient conditions for the central limit theorem to hold for the
triangular array

Yi,n =
1

sn
h
( i

n

)

Xi i = 1, . . . , n, n ≥ 1.

Our result will be based on a theorem by Utev [16], according to which we must
prove, for every ε > 0

(4)
jn

σ2n

n
∑

i=1

∫

{|Yi,n|>εj−1n σn}
Y 2i,n dP −→ 0,

where σ2n = E
(
∑n

i=1 Yi,n
)2
and (jn) is a sequence of integers verifying

(5) lim
k→+∞

sup
n∈N

φn(kjn) = 0,

the φn being the usual ϕ mixing coefficients but for the row Y1,n, . . . , Yn,n.

Theorem 2. Let Xn, n ∈ N, be centered ϕ-mixing random variables verifying

(6) s2n = E(S
2
n) = nℓ(n),

where ℓ is a slowly varying function. Assume:

A = sup
n≥1

1

s2n

n
∑

i=1

EX2i < +∞,(7)

+∞
∑

k=1

ϕ(k)
1

2 < +∞,(8)

∀δ > 0, lim
n→+∞

1

s2n

n
∑

i=1

∫

{|Xi|>δsn}
X2i dP = 0.(9)
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Then (Wn) converges in distribution in L2(0, 1) to a standard Brownian motion.

Proof: We first check the tightness of (Wn)n≥1 in L2(0, 1). We have:

(10)

1

s2n

n
∑

i,j=1

∣

∣EXiXj

∣

∣ ≤ 1

s2n

n
∑

i,j=1

(

EX2i
)1/2(

EX2j
)1/2

ϕ
(

|j − i|
)1/2

≤ 1

2s2n

n−1
∑

k=0

ϕ(k)1/2
n−k
∑

i=1

(

EX2i + EX2i+k

)

≤ A

+∞
∑

k=0

ϕ(k)1/2 < +∞.

So condition (3) of Theorem 1 is verified.
Now we use Utev’s theorem to show that

∑n
i=1 Yi,n converges in distribution

to a gaussian random variable N (0, ‖ h ‖22) for each h in HK . As the Yi,n differ
from the Xi by multiplication by a non random constant, we have φn ≤ ϕn. So
as (Xn) is supposed to be ϕ-mixing, choosing jn = 1, n ∈ N, (5) follows. We shall

prove that σ2n(h) = E
(

s−1n
∑n

i=1 h
(

i
n

)

Xi

)2
converges to ‖ h ‖22. Assuming this

condition for the moment, let us see how the rest of the proof goes through. In
this case, in (4), it suffices to prove the convergence to zero of the sum

n
∑

i=1

∫

{s−1n |h( i
n
)Xi|> εσn(h)}

1

s2n
h
( i

n

)2
X2i dP.

The function h is bounded, and for n large enough σn(h) ≥ 1
2‖ h ‖2, so this sum

is bounded above by

1

s2n
‖ h ‖2∞

n
∑

i=1

∫

{‖h‖
∞
|Xi|>

1

2
ε‖h‖

2
sn }

X2i dP,

which converges to zero according to (9).
To study the asymptotic behavior of σ2n(h) it is useful to write it in the form:

(11)

σ2n(h) =
1

nℓ(n)

n
∑

i,j=1

h
( i

n

)

h
( j

n

)

EXiXj

=

∫

[0,1]2
g(s)g(t)Ln(s, t)λ1 ⊗ λ1 (ds, dt),

where g = Ψ−1(h) and:

Ln(s, t) =
1

nℓ(n)

n
∑

i,j=1

EXiXjI[ i
n

,1]×[ j
n

,1]
(s, t).
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Assume for the moment that Ln(s, t) converges to min(s, t) pointwise on [0, 1]
2.

Then using (10) and the integrability of g ⊗ g on [0, 1]2, we have by dominated
convergence:

lim
n→+∞

σ2n(h) =

∫

[0,1]2
g(s)g(t)min(s, t)λ1 ⊗ λ1 (ds, dt)

=

∫

[0,1]2
g(s)g(t)

∫ 1

0
I[0,s](u)I[0,t](u)λ (du) λ1 ⊗ λ1 (ds, dt)

=

∫ 1

0

(

∫

[0,1]
g(s)I[u,1](s)λ1 (ds)

)2

λ(du)

= ‖ h ‖22.
For notational simplicity, suppose s ≤ t. We have then:

(13) Ln(s, t) =
1

nℓ(n)

[ns]
∑

i,j=1

EXiXj +
1

nℓ(n)

[ns]
∑

i=1

[nt]
∑

j=[ns]+1

EXiXj .

The square sum in (13) can be written as:

1

nℓ(n)

[ns]
∑

i,j=1

EXiXj =
[ns]ℓ([ns])

nℓ(n)
,

which converges to s as n goes to infinity by the slow variation of ℓ. So to complete
the proof it remains to verify that the rectangular term:

Rn(s, t) =
1

nℓ(n)

[ns]
∑

i=1

[nt]
∑

j=[ns]+1

EXiXj

converges to zero. We have:

(14)

Rn(s, t) ≤
1

2nℓ(n)

∑

1≤i≤[ns]
[ns]<i+k≤[nt]

(

EX2i + EX2i+k

)

ϕ(k)1/2

≤
[nt]−1
∑

k=1

ϕ(k)1/2
1

2nℓ(n)

∑

[ns]−k<i≤[ns]
1≤i≤[nt]−k

(

EX2i + EX2i+k

)

.

By Lindeberg condition (9), it is easily verified that:

(15) ∀k ≥ 1, lim
n→+∞

max
1≤m≤n−k

1

nℓ(n)

m+k
∑

i=m

EX2i = 0.
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Now (15) and the hypotheses (7) and (8) allow us to apply the dominated conver-
gence theorem (for the series) to the right hand side of (14), so Rn(s, t) converges
to zero. �

Remark. The following example shows that Theorem 2 is not contained in
Peligrad’s result. Let (X ′

n) be a strictly stationary sequence verifying EX ′
1 = 0,

EX ′2
1 = 1 and

∑

ϕ(k)1/2 < +∞. Choose a sequence (an) of constants verifying
an ≥ 1, lim sup an = +∞ and:

∃b ∈]1,+∞[ such that
∑

1≤i≤n
ai≥b

a2i = o(n),

(for instance we can take an =
√

l if n = 2l, l = 0, 1, 2 . . . and an = 1 otherwise).
Define now Xn = anX ′

n. The ϕ-mixing coefficients of (X ′
n) and (Xn) are the

same. We have supn≥1 EX2n = +∞, so Peligrad’s condition (1) is not verified.
The sequence (Xn) is easily shown to satisfy the conditions of Theorem 2.
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