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An inequality for the coefficients of a cosine polynomial

Horst Alzer

Abstract. We prove: If

1

2
+

nX
k=1

ak(n) cos(kx) ≥ 0 for all x ∈ [0, 2π),

then

1− ak(n) ≥
1

2

k2

n2
for k = 1, . . . , n.

The constant 1/2 is the best possible.
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In order to determine the saturation classes of optimal and quasi-optimal se-
quences (for details we refer to [1]), R.A. DeVore [1] proved in 1970 the following
interesting integral inequality involving trigonometric polynomials.

Proposition. Let n and k be integers with n ≥ k ≥ 1. For all non-negative
trigonometric polynomials Tn of degree ≤ n with 1π

∫ π
−π Tn(x) dx = 1 we have∫ π

−π
(sin

kx

2
)2Tn(x) dx ≥

1

256π

k2

n2
.

If we only consider cosine polynomials of the form

(1) Tn(x) =
1

2
+

n∑
k=1

ak(n) cos(kx),

then the Proposition states that the inequality

(2) 1− ak(n) ≥ c1(k
2/n2)

with c1 = 1/(128π
2) is valid for all non-negative functions Tn and for all k ∈

{1, . . . , n}.
In 1970 E.L. Stark [2] discovered a better bound for 1− ak(n). He established

that (2) holds with c2 = π2/36. This result was improved by Stark in 1976. In [3]
he proved the validity of (2) with c3 = π/9. In the same paper he mentioned that
the “problem of determining the optimal constant . . . remains open” [3, p. 71].
To the best of my knowledge no solution of this problem has been published until
now. It is the aim of this note to show that the best possible constant is c = 1/2.
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Theorem. For all non-negative cosine polynomials (1) we have

(3) 1− ak(n) ≥
1

2

k2

n2
(k = 1, . . . , n).

The constant 1/2 is the best possible.

Proof: As in [3] we define

u = uk(n) =
π

[n/k] + 2
(1 ≤ k ≤ n).

([x] denotes the greatest integer ≤ x.) Then we have

(4)
π

3

k

n
≤ u ≤

π

3
.

Since the function x 7→ (1− cos(x))/x2 is strictly decreasing on (0, π], we obtain

(5)
1− cos(u)

u2
≥
1− cos(π/3)

(π/3)2
,

so that (5) and the left-hand inequality of (4) yield

(6) 1− cos(u) ≥ 9u2/(2π2) ≥ k2/(2n2).

From (6) and

(7) |ak(n)| ≤ cos(u)

we conclude
1− ak(n) ≥ 1− cos(u) ≥ k2/(2n2).

If we set Tn(x) =
1
2 +

1
2 cos(nx), then the sign of equality holds in (3) for k = n,

so that the constant 1/2 cannot be replaced by a greater number. �

Remarks. (1) The proof of the Theorem reveals that the inequality (3) is strict
for k = 1, . . . , n − 1.

(2) The “extremely important” [3, p. 71] inequality (7) is due to J. Egerváry
and O. Szász; see [4]. Concerning different proofs and extensions of (7) we refer
to [3] and the references therein.

References

[1] DeVore R.A., Saturation of positive convolution operators, J. Approx. Th. 3 (1970),
410–429.
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