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Which topological spaces have

a weak reflection in compact spaces?

Martin Maria Kovár

Abstract. The problem, whether every topological space has a weak compact reflection,
was answered by M. Hušek in the negative. Assuming normality, M. Hušek fully char-
acterized the spaces having a weak reflection in compact spaces as the spaces with the
finite Wallman remainder. In this paper we prove that the assumption of normality may
be omitted. On the other hand, we show that some covering properties kill the weak
reflectivity of a noncompact topological space in compact spaces.

Keywords: weak reflection, Wallman compactification, filter (base), net, θ-regularity,
weak [ω1,∞)

r-refinability

Classification: Primary 54D35, 54C20; Secondary 54D20

1. Preliminaries and introduction

Let X be a topological space. Recall that the Wallman compactification of X
is defined as the set ωX = X ∪{y | y is a nonconvergent ultra-closed filter in X},
where ‘ultra-closed’ means maximal among all filters, having a base consisting of
closed sets. The sets S(U) = U ∪{y | y ∈ ωX r X, U ∈ y}, where U is open in X ,
constitute an open base of ωX (see [3]). Recall that every point of the remainder
ωX r X is closed in ωX ; hence ωX r X is a T1-space.
Any compactification γX of X is said to be a a weak reflection of X in the

class of compact spaces if for every compact Y and every continuous mapping
f : X → Y there exists a mapping g : γX → Y continuously extending f .
The notion of weak reflection is a natural generalization of the concept of re-

flection. It is well-known that any continuous mapping f : X → Y to a compact
Hausdorff space Y may be uniquely factorized through the Čech-Stone compacti-
fication βcX of the completely regular T1-modification cX of X . Then the space
βcX is the reflection of X in compact Hausdorff spaces. Note that for a com-
pact Hausdorff space Y , the Wallman compactification ωX also has the extension
property described above, but ωX is not necessarily Hausdorff.
It is natural to ask whether every topological space has, at least, a weak re-

flection in general compact spaces. This question was asked by J. Adámek and
J. Rosický [1] and was answered in the negative by M. Hušek [4]. In fact, he
described some spaces having a weak reflection in compact spaces (Theorem H.1)
and some spaces having no weak reflection in compact spaces (Theorem H.2). He
also fully characterized all normal spaces which have a weak reflection in compact
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spaces; they are exactly the spaces with the finite Wallman (or, equivalently, Čech-
Stone) remainder. In the first part of this paper we show that the assumption of
normality may be omitted. In the second part we prove that the presence of some
covering properties (close to paracompactness) imply that such spaces, if they are
noncompact, have no weak reflection in compact spaces. Note that the covering
properties, including compactness and paracompactness, are regarded without
any separation axiom. A topological space is (countably) compact if every (count-
able) open cover of the space has a finite subcover. A topological space is said
to be paracompact if its every open cover has an open locally finite refinement.
Rimcompactness is also regarded without the separation axioms. A topological
space is called rimcompact, if every point of the space has a local base of open
sets with compact boundary.
The following Hušek’s theorems will be our starting point. For the proofs, the

reader is referred to [4].

Theorem H.1. If the Wallman remainder of a topological space X is finite, then
the Wallman compactification of X is the weak reflection of X in compact spaces.

Theorem H.2. If a topological space X contains an infinite family {Xn}n∈N
of

closed noncompact subsets such that Xn ∩Xm is compact for n 6= m, then X has
no weak reflection in compact spaces.

2. Results

Before we prove our main theorem, we need the following three lemmas.

Lemma 1. Let X be an infinite topological T1-space. Then X contains an infi-
nite subspace with the discrete topology or an infinite subspace with the topology

of finite complements.

Proof: Suppose that X does not contain an infinite subspace having the topol-
ogy of finite complements. Since X is infinite, we may assume, without loss of
generality, that N = {1, 2, . . . } ⊆ X . Evidently, every M ⊆ N with N r M finite
is open in N. By induction we construct a discrete subspace of X :

(1). Let N1 = N. By the assumption, N1 has not the topology of finite com-
plements. Hence there exists x1 ∈ N1 such that x1 has an open neighbourhood
U1 with N1 r U1 infinite. We put N2 = N1 r U1.

(2k). Suppose that there exist points x1, x2, . . . , xk ∈ N, open sets
U1, U2, . . . , Uk and infinite sets N1 = N, Ni+1 = Ni r Ui, i = 1, 2, . . . , k such that
the following conditions are satisfied:

(i)k xi ∈ Ni ∩ Ui for i = 1, 2, . . . , k,
(ii)k if k ≥ 2 then {x1, x2, . . . , xi−1} ∩ Ui = ∅ for i = 2, 3, . . . , k.

We shall prove (2k+1).
Since Nk+1 is infinite, it cannot have the topology of finite complements. Then

there exists a point xk+1 ∈ Nk+1 and its open neighbourhood Uk+1 with Nk+2 =
Nk+1 r Uk+1 infinite. It follows from (i)k and from the definition of the sets Ni
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that xi /∈ Ni+1 ⊇ Nk+1 for i = 1, 2, . . . , k. Hence {x1, x2, . . . , xk} ∩ Nk+1 = ∅.
The set {x1, x2, . . . , xk} is closed; therefore, without loss of generality, we may
choose the set Uk+1 such that {x1, x2, . . . , xk} ∩ Uk+1 = ∅. That completes the
induction.
Let D = {x1, x2, . . . }. We will show that D has the discrete topology. Indeed,

for every p = 2, 3, . . . it follows from (ii)p that
{

x1, x2, . . . , xp−1
}

∩ Up = ∅. For
every p, i = 1, 2, . . . by (i)p+i we obtain that xp+i ∈ Np+i ⊆ Np+1 = Np r Up. It

follows that Up ∩
{

xp+1, xp+2, . . .
}

= ∅. Now, we have Up ∩ D =
{

xp

}

, which
completes the proof. �

The following lemma is contained in [4] as Corollary 1. We repeat it with the
proof because of completeness.

Lemma 2. Let X be a topological space. Suppose that ωX r X contains an
infinite subspace with discrete topology. Then there exists a sequence H1, H2, . . .
of closed noncompact subsets of X which are pairwise disjoint.

Proof: Assume, without loss of generality, that N ⊆ ωX r X and the topology
of N, induced from ωX , is discrete. Let O be the collection of all open sets in X .
There exist open sets Un ∈ O, n ∈ N such that n ∈ S(Un) and m /∈ S(Un) for
n 6= m. Since Un ∈ n, there is some closed Gn ∈ n with Gn ⊆ Un. The sets
Hn = Gn r

⋃n−1
i=1 Ui, where n ∈ N, constitute the desired family.

Indeed, every Hn is closed and disjoint from Hm for m 6= n. The noncom-
pactness of Hn follows from the fact that every n ∈ N ⊆ ωX r X constitutes
a nonconvergent ultra-closed filter in X . �

To prove our main theorem, we need yet a lemma which is complementary to
Lemma 2.

Lemma 3. Let X be a topological space. Suppose that ωX r X contains an
infinite subspace having the topology of finite complements. Then there exists

a sequence H1, H2, . . . of closed noncompact subsets of X which are pairwise

disjoint.

Proof: We may assume, without loss of generality, that N ⊆ ωX r X and the
topology of N, induced from ωX , is the topology of finite complements. Denote
by O the collection of all open sets in X . By induction we define the desired
sequence:

(1). Let N1 = N, x1 = 1, y1 = 2. There exists an open set U1 ∈ O such that
x1 /∈ S(U1) and y1 ∈ S(U1). Since N1 ∩ S(U1) 6= ∅, the set N1 r S(U1) is finite
and then the set N2 = N1 ∩ S(U1) is infinite. Since x1 /∈ S(U1) it follows that
U1 /∈ x1 which implies that X r U1 ∈ x1. We put H1 = X r U1. Evidently, H1
is closed in X and nonempty since H1 ∈ x1. Moreover, it is noncompact because
x1 is a nonconvergent ultra-closed filter in X .
(2k). Suppose that for some k ≥ 1 there exist open sets U1, U2, . . . , Uk ∈ O,

sets N1, N2, . . . , Nk+1 ⊆ N and noncompact closed sets H1, H2, . . . , Hk ⊆ X such
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that

(i)k U1 ⊇ U2 ⊇ · · · ⊇ Uk,
(ii)k Ni+1 = Ni ∩ S(Ui) for i = 1, 2, . . . , k,
(iii)k Nk+1 is infinite,
(iv)k Hi ⊆ (X r Ui) ∩ Ui−1 for i = 2, 3, . . . , k.

We shall prove that (2k+1) is fulfilled.
By (iii)k there are two distinct points xk+1, yk+1 ∈ Nk+1 and an open set

Uk+1 ∈ O such that xk+1 /∈ S(Uk+1) a yk+1 ∈ S(Uk+1). Because Nk+1 ⊆ S(Uk)
by (ii)k, one can easily check that we may assume Uk+1 ⊆ Uk. Hence (i)k+1 is
fulfilled. We put Nk+2 = Nk+1∩S(Uk+1). The set N∩S(Uk+1) is open in N and
nonempty because it contains yk+1. Hence its complement N r S(Uk+1) is finite;
thereforeNk+1rS(Uk+1) is also finite. It follows thatNk+2 is infinite. Notice that
(ii)k+1 and (iii)k+1 are satisfied. Since xk+1 /∈ S(Uk+1), it follows Uk+1 /∈ xk+1
and then X r Uk+1 ∈ xk+1. On the other hand, since xk+1 ∈ Nk+1 ⊆ S(Uk), we
have Uk ∈ xk+1. Then there exists a set Gk+1 ∈ xk+1, closed in X , such that
Gk+1 ⊆ Uk. We put

Hk+1 = Gk+1 ∩ (X r Uk+1).

Evidently, Hk+1 is closed in X and since Hk+1 ∈ xk+1 it is nonempty. Moreover,
it is noncompact because xk+1 is a nonconvergent ultra-closed filter in X . Since
Gk+1 ⊆ Uk it follows that Hk+1 ⊆ (X r Uk+1) ∩ Uk. Hence (iv)k+1 is fulfilled,
which completes the induction.
Now, let p, s ∈ N, p < s. Then, by (iv)s and (i)s−1, it follows that Hs ⊆

Us−1 ⊆ · · · ⊆ Up. On the other hand, by (iv)p we have Hp ⊆ X r Up, which
implies that Hp ∩ Hs = ∅. It follows that {Hi}i∈N

is the desired sequence. �

Theorem 1. Let X be a topological space. The following statements are equiv-
alent:

(i) The Wallman compactification of X is its weak reflection in compact

spaces.

(ii) The space X has a weak reflection in compact spaces.
(iii) There exists k ∈ N such that any pairwise disjoint family of closed sets in

X contains at most k noncompact elements.
(iv) Every infinite sequence H1, H2, . . . of closed sets such that Hp ∩ Hq is

compact for p 6= q has a compact member.
(v) Every infinite pairwise disjoint family of closed sets in X has a compact
member.

(vi) The Wallman remainder of X is finite.

Proof: We will show that (i) ⇒ (ii) ⇒ (iv) ⇒ (v) ⇒ (vi) ⇒ (i) and (vi) ⇒
(iii) ⇒ (v). But (i) ⇒ (ii), (iii) ⇒ (v) and (iv) ⇒ (v) are clear; Theorem H.2
implies that (ii)⇒ (iv). The implication (vi)⇒ (i) follows from Theorem H.1.

(v) ⇒ (vi): Suppose that ωX r X is infinite. Since the Wallman remainder
is always a T1-space, it follows from Lemma 1 that ωX r X contains an infinite
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discrete subspace or an infinite subspace with the topology of finite complements.
Then, by Lemma 2 or Lemma 3, we obtain that there is a sequence H1, H2, . . .
of subsets of X which are closed, noncompact and pairwise disjoint.

(vi)⇒ (iii): Let k ∈ N be the cardinality of ωX r X . Assume that for m ∈ N

there are pairwise disjoint, closed and noncompact sets H1, H2, . . . , Hm ⊆ X .
Then, since every Hi is noncompact and closed, there are nonconvergent ultra-
closed filters y1, y2, . . . , ym ∈ ωX r X such that Hi ∈ yi for every i = 1, 2, . . . , m.
Since Hp ∩ Hq = ∅ for p 6= q, it follows that yp 6= yq. Therefore m ≤ k, which
completes the proof. �

If X is a normal T1-space, then its Wallman and Čech-Stone compactifications
coincide. Hence the following Hušek’s result [4] has here its natural place:

Corollary 1 (Hušek). A normalT1-space has a weak reflection in compact spaces
if and only if its Čech-Stone remainder is finite.

In the next part we will show that there is a number of topological spaces which
have no weak reflection in compact spaces. In fact, we may say that most ‘non-
pathological’ spaces, satisfying some of higher covering properties (which will be
specified later), are exactly the case. For example, any paracompact noncompact
space has no weak reflection in compact spaces, which is an easy consequence of
Hušek’s Theorem H.2. Among others, we will generalize this observation in the
following section.
Let X be a topological space. A filter base Φ in X has a θ-cluster point x ∈ X if

every closed neighbourhoodH of x and every F ∈ Φ have a nonempty intersection.
The filter base Φ θ-converges to its θ-limit x if for every closed neighbourhood H
of x there is F ∈ Φ such that F ⊆ H . Evidently, any θ-limit of a filter base is
its θ-cluster point. A net ϕ(B, >) has a θ-cluster point (a θ-limit) x ∈ X if x is
a θ-cluster point (a θ-limit) of the derived filter base {{ϕ(α) | α > β} | β ∈ B}.
A topological space X is said to be θ-regular [5] if every filter base (or equiva-

lently [6], every net) in X with a θ-cluster point has a cluster point. It is shown
in [6] that the class of θ-regular spaces contains all regular, rimcompact and all
paracompact spaces as well. Recall that the topological space X is said to be
(strongly) locally compact [5] if every x ∈ X has a compact (closed) neighbour-
hood. Evidently, a strongly locally compact space is θ-regular.

Corollary 2. IfX is a θ-regular space having a weak reflection in compact spaces,
then X is strongly locally compact.

Proof: We leave to the reader to check that if X is a θ-regular space, then every
two points x ∈ X , y ∈ ωXrX have in ωX open disjoint neighbourhoods (for more
detail, see [7]). Let ωX r X = {y1, y2, . . . , yn} and let x ∈ X be a fixed point;
U1, U2, . . . Un be open neighbourhoods of y1, y2, . . . , yn such that x /∈ clωX Ui for
every i = 1, 2, . . . , n. We put K = ωX r

⋃n
i=1 Ui. Then K ⊆ X is the desired

closed compact neighbourhood of x. �

The following example illustrates the necessity of the assumption of θ-regularity
in Corollary 2.
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Example 1. There exists a topological spaceX with the weak compact reflection
which is not locally compact.

Construction: Let X = N ∪ {0}. Let us define a topology on X by taking the
sets V (m) = {k · 2m|k = 0, 1, . . . } for m = 0, 1, . . . and U(a) = {1, 2, . . . , a} for
a = 1, 2, . . . as its subbase.
One can easily check that any two infinite closed sets in X have a nonempty

intersection. Then there exists at most one nonconvergent ultra-closed filter in
X . Hence ωX r X is finite.
We will show that the point 0 ∈ X has no compact neighbourhood. Let H be

a neighbourhood of 0. Then there is some m = 1, 2, . . . with 0 ∈ V (m) ⊆ H .
The family Ω = {V (m+ 1)} ∪ {U(a)|a = 1, 2, . . . } is a cover of X . Since the set
V (m)r V (m+ 1) ⊆ H r V (m+ 1) is infinite, no finite subfamily of Ω covers H .
Observe that X is not locally compact, but it has the weak compact reflection.

�

Corollary 3. A regular non-locally compact space has no weak reflection in

compact spaces.

Corollary 4. A rimcompact non-locally compact space has no weak reflection

in compact spaces.

Lemma 4. Let X be a topological space having a weak reflection in compact
spaces. Then every sequence {xn}n∈N

whose points are closed in X has a cluster
point.

Proof: Suppose that the sequence {xn}n∈N
consists of points which are closed

in X and has no cluster point inX . Let η : N×N → N be any one-to-one mapping

between N × N and N. Then the sets Hk =
{

xη(k,n)|n = 1, 2, . . .
}

, where k ∈ N,

constitute an infinite sequence of pairwise disjoint, closed and noncompact sets.
Now, Theorem 1 completes the proof. �

Definition 1. Let X be a topological space and x, y ∈ X be two points. We say
that y absorbs x if every open neighbourhood of y contains x. A set Y ⊆ X is
said to be an absorbing set of X if every x ∈ X is absorbed by some y ∈ Y . An
absorbing set of X is called point-closed if its every point is closed in X .

Lemma 5. Let X be a topological space which is T0 and θ-regular. Then X
contains a point-closed absorbing set.

Proof: For every x, y ∈ X let x 6 y (or, equivalently, y > x) if and only
if y absorbs x. Clearly, the relation 6 is transitive and reflexive. Since X is
a T0-space, 6 is also antisymmetric; hence it is an order on X . Let M ⊆ X be
a nonempty set which is a chain with respect to 6. Pick any fixed x ∈ M and
take a closed neighbourhood G of x. For any y ∈ M , y > x it follows, since y
absorbs x, that y /∈ X r G. Hence y ∈ G, which implies that the net idM (M, >)
θ-converges to x. Since X is θ-regular, idM (M, >) has a cluster point, say z ∈ X .
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Let U be an open neighbourhood of z and take x ∈ M . It follows that
there is some y ∈ M , y > x such that y ∈ U . But y absorbs x, hence x ∈
U as well. It follows that z absorbs every point of M which means that z
is an upper bound of M . By Zorn’s Lemma, every x ∈ X is absorbed by
some element of X which is maximal with respect to the order 6. Let Y =
{y| y ∈ X, y is maximal with respect to 6}. Obviously, Y is an absorbing subset
of X . Let y ∈ Y , x ∈ X , x 6= y. It is not possible for x to absorb y since y
is maximal. Then there exists an open neighbourhood V of x such that y /∈ V .
Therefore the set {y} is closed in X and then Y is point-closed. �

Corollary 5. Let X be a topological space having a weak reflection in compact
spaces. If X is θ-regular or T1, then it is countably compact.

Proof: For a T1-space, the assertion is an immediate consequence of Lemma 4.
Let X be a θ-regular space having a weak reflection in compact spaces. It suffices
to show that every sequence {xn}n∈N

in X has a cluster point.
At first, assume that X is a T0-space. By Lemma 5, X has a point-closed

absorbing set, say Y ⊆ X . Then every xn is absorbed by some yn ∈ Y . It follows
from Lemma 4 that the sequence {yn}n∈N

has a cluster point, say x ∈ X . Now,
since yn absorbs xn, one can easily check that x is a cluster point of {xn}n∈N

.
Finally, suppose that X is not T0 in general. For any x, y ∈ X we put x ∼ y

if and only if the points x, y absorb each other. The relation ∼ is a relation of
equivalence on X ; in fact, equivalent points have the same open neighbourhoods.
Choose from each class of equivalence, associated with ∼, exactly one point z ∈ X
and denote by Z the set of all such points z. Clearly, Z is an absorbing set of
X which is a T0-space in the induced topology. It is easy to show that Z has
a weak reflection in compact spaces and also is θ-regular. It follows from the
previous paragraph that every sequence in Z has a cluster point. If {xn}n∈N

is
any sequence in X , by an analogous trick as before we choose for every xn some
zn ∈ Z absorbing xn. Then the cluster point of {zn}n∈N

, say x ∈ Z ⊆ X , is
a cluster point of {xn}n∈N

. That completes the proof. �

Example 2. Let X be the space constructed in Example 1. Then X has the
weak compact reflection, but it is not countably compact. Observe that the space
X is neither T1 nor θ-regular.

In the following, for any set S, the cardinality of S is denoted by |S|. Let Φ be
a family of subsets of X , x ∈ X . We denote by ord(x,Φ) = |{F |F ∈ Φ, x ∈ F}|.
Recall that a topological space X is said to be weakly [ω1,∞)

r-refinable if for any
open cover Ω, of uncountable regular cardinality, there exists an open refinement
which can be expressed as

⋃

α∈A Φα where |A| < |Ω| and if x ∈ X there is some
α ∈ A such that 0 < ord(x,Φα) < |Ω|. This property is due to J.M. Worrell
and H.H. Wicke; they proved that a countably compact weakly [ω1,∞)

r-refinable
space is compact. For the proof we refer the reader to [2]. The proof needs no
separation axiom and works for general topological spaces. Remark that the class
of weakly [ω1,∞)

r-refinable spaces contains the classes of paracompact spaces,
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metacompact spaces and also a number of their generalizations (para-Lindelöf, σ-
para-Lindelöf, screenable, σ-metacompact, meta-Lindelöf, submeta-Lindelöf, sub-
metacompact, weakly θ-refinable, weakly δθ-refinable spaces; for more detail, see
[2]). The following corollary shows that such spaces, if they are noncompact and
satisfy some slight separation axioms, have no weak reflection in compact spaces.

Corollary 6. Let X be a noncompact topological space which is θ-regular or
T1. If X is weakly [ω1,∞)

r-refinable, then it has no weak reflection in compact

spaces.

Proof: In the light of the result of Worrell and Wicke, the assertion immediately
follows from Corollary 5. �

Since any paracompact space is θ-regular [6] and weakly [ω1,∞)
r-refinable,

the formerly mentioned case of a noncompact paracompact space now also easily
follows from Corollary 6.
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