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Some commutative neutrix
convolution products of functions

BRIAN FISHER, ADEM KILIGMAN

Abstract. The commutative neutrix convolution product of the locally summable func-
tions cos_ (Az) and cos4 (ux) is evaluated. Further similar commutative neutrix convo-
lution products are evaluated and deduced.

Keywords: neutrix, neutrix limit, neutrix convolution product

Classification: 46F10

In the following we let D be the space of infinitely differentiable functions
with compact support and let D’ be the space of distributions defined on D. The
convolution product f*g of two distributions f and g in D’ is then usually defined
by the equation

(fx9)(2),0) = {f(y), (9(x), d(x +y)))
for arbitrary ¢ in D, provided f and g satisfy either of the conditions
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side,

see Gel'fand and Shilov [5].
Note that if f and g are locally summable functions satisfying either of the
above conditions then

[ee] [e.e]
1 (F9)@ = [ f@e—tdt= [ s g0 a
— 0o —o
It follows that if the convolution product f * g exists by this definition then
(3) (fx9) =Ffxg' =fxg.

This definition of the convolution product is rather restrictive and can only be
used for a small class of distributions. In order to extend the convolution product
to a larger class of distributions, the commutative neutrix convolution product
was introduced in [3] and was extended in [2]. In the following, we give a further
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generalization. We first of all let 7 be a function in D satisfying the following
conditions:

i)  7(z) =7(-2),

(i) 0<7(z) <1,
(iii) 7(z) =1for |z] < %,
(iv)  7(x) =0 for |z| > 1.

The function 7, is now defined by

1, |z| <,
(z) = { T(Wa — v, x>,
W+t oz < -y,

for v > 0.
We now define the extended neutrix convolution product.

Definition 1. Let f and g be distributions in D' and let f,(z) = f(z)7,(z) and
gv(z) = g(x)1,(x) for v > 0. Then the neutrix convolution product f []g is
defined as the neutrix limit of the sequence {f, x g, }, provided that the limit h
exists in the sense that

1\111:)1;0111<fu *gu7¢> = <hv ¢>v

for all ¢ in D, where N is the neutrix, see van der Corput [1], having domain N’
the positive reals and range N the real numbers, with negligible functions finite
linear sums of the functions

A"y, "y, vHeN, M cos Ay, VP sin A A£0,7=1,2,...)

and all functions which converge to zero in the usual sense as v tends to infinity.

Note that in this definition the convolution product f, *g, is defined in Gel’fand
and Shilov’s sense, the distribution f,, and g, having bounded support. It is clear
that if the neutrix convolution product f[*|g exists then the neutrix convolution
product g[#] f exists and f[]g = g[+ f.

In the original definition of the neutrix convolution product, the domain of
the neutrix N was the set of positive integers N’ = {1,2,... ,n,...} and the
negligible functions were finite linear sums of the functions

nMn" " n, In"n A>0,r=1,2,...)

and all functions which converge to zero in the usual sense as n tends to infinity.
In [2], the set of negligible functions was extended to include finite linear sums of
the functions
e (> 0).
It is easily seen that any results proved with the original definition hold with
the new definition. The following theorem proved in [3] therefore holds.
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Theorem 1. Let f and g be distributions in D’ satisfying either condition (a)
or condition (b) of Gel’fand and Shilov’s definition. Then the neutrix convolution

product f[¥]g exists and
fldg=fxg.

A number of neutrix convolution products have been evaluated. For example,
a [zt see [3], nz_[]Inzy see [6] and Inz_ [{]27, see [4].

We now define the locally summable functions ef‘i_x, e M cosy (M), cos_(Az),
siny (Az) and sin_ (Az) by

N { M >0, N\ { 0, x>0,
€+ = e = Az
07 r < 07 (& 5 T < 07
() { cos(Az), x>0, (A1) { 0, x>0,
cosy(Ax) = cos—(Az) =
+ 0, x <0, cos(A\x), x<0,
sin(Az), x>0, 0, x>0,
i O) — i (O) —
sint-(Ac) { 0, v<p, =00 { sin(\z), < 0.

It follows that
cos—(Ax) + cosy(Azx) = cos(Azx), sin_(Az) + sing (Az) = sin(Az).
The following theorem was proved in [2]

Theorem 2. The neutrix convolution product (z"e*) (z%€el™) exists and

24 A
(r)\x)(s,uiv)iDrDse—i- + et
x el z°el”) = Dy ui)\_u ,

where Dy = 0/0X and Dy, = 0/0p, for X # pand r,s = 0,1,2, ..., these neutrix
convolution products existing as convolution products if A > p and

(2" eMT) (xsei‘_x) = —B(r+1,s+ 1)z lsgna . M
for all A and r,s = 0,1,2,..., where B denotes the Beta function.
We now prove the following theorem.

Theorem 3. The neutrix convolution products cos—(A\x) [¥] cost (uz), cos—(Ax)
[¥]sin (px), sin_ (Az) [*] cost (puz) and sin_ (Az) [¥]siny (ux) exist and
Asin_ (Az) + psing (pz)

0 cos—(Aa) Foss (ua) = =3
) pcos—(Ax) + pcosy (ux

(5) cos—(Az) []siny (pnz) = — ( )\2) —p? =
- Acos—(Ax) + Acosy (ux

©) sin- (va) Fcos. (ua) = ~ 2= £ 0ne(00),

. . psin_ (Ax) 4+ Asing (pux
(7) sin- () B () = — =R £ATR0),
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for A # £p.
PRrROOF: We first of all note that since

sin(Ax + pv) = sin(Az) cos(uv) + cos(Az) sin(uv),
it follows that

(8) N—limsin(Az + pv) = N=limvsin(Ax + pv) =0
V—00 V—00

for p # 0. Similarly

9) N—lim cos(Az + pv) = N=limv cos(Az + puv) =0
V—00 V—00

for u # 0.

We now put [cos—(Az)]y = cos—(Az)7,(z) and [cost(ux)], = cosy(pz)Ty ().
Since [cos4 (px)], and [cos— (Az)], are locally summable functions with [cos— (Az)],
and [cost(px)], having compact support, the convolution product [cos—(Az)], *
[cosy(ux)]y is defined by equation (1) and so

[e.9]

(10) [cos—(Ax)], * [cost (ux)], = / [cos— (At)]y[cost (u(x — t))]y dt.

—00
When —v <z <0,

T

/OO [cos—(At)]y[cost(p(z — t))]y dt = / cos(At) cos[u(x — t)] dt+

+ /__l: » cos(At) cos[p(x — )], (t) T (x — t) dt

_sin(Az) — sin[ux — (A — p)v]

= +
2(A — )
sin(Az) + sin[uz + (A + p)v] —
0
2(A 4+ ) +O00™)
and it follows that
0o .
(11) Netim | [cos— (M) [cos (e — )]y dt = 250AL).
V—00 | J_ o A2 — ,u2

on using equation (8).
When v > 2z >0,

0 0
/ [cos—(At)]y[cost(p(z — t))]y dt = /_ cos(At) cos[pu(x — t)] dt+

—00

+ /m:i;l:,,u cos(At) cos[pu(x — €)1 (t) T (x — t) dt
_ sin(ue) —sinfpz + (A~ w)(@ —v)]
2(A — )
 singue) + sinfuz — A+ 1)@ — )
2(A 4+ )

+0@™)
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and it follows that
g psin(ua)
(12) N—lim [cos— (At)]y [cos (pu(x — )|y dt = —5——5",
Vv—00 ) _o A2 — 1%
on using equation (8).
It now follows from equations (10), (11) and (12) that for arbitrary ¢ in D

N—lim{[cos— (Aa)]y * [cos.+ (1)} () = —5——g {sin_(Az), $(x))+

V—00 A2 — 1%

noo .
+ m<51n+(ﬂiv)a o(z))
and equation (4) follows.
We now prove equation (5). Putting [siny (ux)]y, = sing (puz) 7, (), we have as
above
oo

(13) [cos—(Ax)]y * [sing (px)], = / [cos— (At)]y [sing ((u(x — )], dt.

— 0
When —v <2 <0,

T

/OO [cos— (At)]y [sing (u(x — t))], dt = / cos(At) sin[u(x — t)] dt+

" /__V_ _ cos(M) sinfu(a — )]m ()7 (2 — 1) dt

_ ~ cos(Az) — cos[uz — (A — p)v]

+
2(A = p)
cos(Ax) — cos[ux + (A + p)v] —

o)

and it follows that

[e.e]
(14) N-lim [ [cos— (A)]y[sine (u(z — )]y dt = —M,
V=00 ) _xo A% — 1%

on using equations (9).
When v > 2 >0,

o 0
/ [cos— (At)]y [sing (u(x — t))], dt = /_ cos(At) sinfu(x — t)] dt+

+ /mi;:,u cos(At) sin[u(x — t)]7, ()1 (z — t) dt
_ _cos(uz) —coslpx + (A — )@ —v)]
200 — )
n cos(ux) — cos[pr — (A + p)(x — v)]
2()\ + )

+0(™),
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and it follows that

(15) N—Ilim o0 [COS_()\t)]V[Sin—i-(u(x _ t))]u dt — _MCOS()\:C)

v—0oo J_oo 22 — /142 )
on using equations (9).
Equation (5) now follows as above on using equations (13), (14) and (15).
Replacing « by —z in equation (5) and interchanging A\ and p we get
A Acos_ (A
— cosy (px) [*]sin— (A\z) = — 0%+ (,uxg + )\QCOS (Az)
p2 —

Equation (6) now follows since the convolution is commutative.

We finally prove equation (7). Putting [sin—(Az)], = sin— (Az)7,(x), we have

as above
o0

(16) [sin— (Az)], * [sing (px)], = / [sin— ()], [sing (pu(z — t))]y dt.

—00
When —v <2 <0,

xT

/ ™ sin_ (A [sins (s — )], dt = / sin(\) sinfpu(z — £)] di+

—00 4

+ / i) sinfu( — 0)]n () (@ — 1) di

_V_V7V

_ sin(Az) + sinfuz + (A + p)v]

2(A + ) +
sin(Az) — sinfuz — (A — p)v] 3
- +0(™"
20— 1) )
and it follows that
oo .
(17) N —lim [sin_ ()], [sing (u(z — t))], dt = _M7
V=00 J—oo A2 — 2

on using equations (9).
When v > 2z >0,

00 0
/ [sin— (At)], [sing (u(x — t))], dt = /_ sin(At) sin[u(x — t)] dt+

+ /xij:,,u sin(At) sinfu(z — t)]7, ()70 (x — t) dt
_ _sin(pr) —sinfpz = A+ p)(x —v)]
20+ )
_ sin(uax) —sinfpz + (A = p)(z —v)]
20\ — )

+0w™),
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and it follows that

o0

(18) N-lim [ [sin_ (At)]y[sing ((z — 1))y dt = —

V=0 ) _xo A2 — [1,2

Asin(px)

on using equations (9).
Equation (7) now follows as above on using equations (16), (17) and (18).

Corollary. The neutrix convolution products [1 — H(x)][*]cost (ux), cos— (Az)[x]
H(z), [1 — H(x)][¢]siny (uz) and sin_ (\z) [*| H(x) exist and

(19) [1 — H(x)][{cost(ux) = —p L sing (ux),

(20) cos— () [{] H(z) = AL sin_ (\z),

(21) [1— H(x)] []siny (uz) = [ — H(z) + cos (ux)],
(22) sin_ (\z) [f]] H(z) = —A"YH(z) + cos—(\z)],

for A\, u # 0, where H denotes Heaviside’s function.

ProOF: Equations (19) and (20) follow from equations (4) and (5) respectively
on putting A = 0 and equations (20) and (21) follow from equations (4) and (6)
respectively on putting p = 0. (]

Further results can be easily deduced. For example, it is easily proved that

Asing (Az) — psing (pz)
A2 — M2

cosy (Ax) * cosq (ux) =

)

for A # £pu, and it follows that

cos(Ax) [#] cost (ux) = cos—(Ax) [+] cost (pux) + cost (Az) * cost (ux)
Asin(Ax)
PV

Replacing x by —z in this equation we get

Asin(Ax)

cos(Az) [+ cos— (pz) = — N2

and so

cos(Az) [] cos(pz) = cos(Az) [] cos— (puz) + cos(Az) [#] cost (ux) = 0.

635
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Theorem 4. The neutrix convolution products cos—(Ax) [*] cost(Ax), cos—(Azx)
sing (Az), sin— (Ax) [*] cost (Az) and sin_ (A\z) [«]siny (Az) exist and

(23)

cos_(\z) [{] coss (Ar) = 2Xz[cos— (Ax) — cosy (Ax)] + sin_ (Ax) — siny (A\x)

4\ ’

(24)

cos_ (\z) [ sing. (\z) = 2)\z[sin_ (\zx) — S:)l\—‘_(/\x)] + cos(A\x) 7
(25)

sin_ (\z) [ cosy (\z) = — 2 z[siny (A\x) — s;r/l\_ (Ax)] + cos(Az) ,
(26)

sin_ (\z) [F] sing. (\z) = 2Xz[cost(Ax) — cos_(/\z)j + sin_ (Az) — siny (Az) 7
for X # 0.
Proor: We have
1) feos- (Wl +leoss Ol = [ feos- (A0l leos (A — )], .

When —v <2 <0,

/OO [cos— (At)]y[cost (A(x — )], dt = /x cos(At) cos[A(x — t)] dt+

—00 4

+ / T cos) cosIA (@ — O] (B ( — 1) dt

—v—v—Y
_ (z + v) cos(Ax) n sin(Az) + sin(Az + 2\v) + oW
2 4\
and it follows that
o .
(28)  N—lim | [cos (M) [coss (A(z — )] dt = 22C08AD) +sin(Az)
v—00 J_oo 4\

on using equation (8).
When v > 2 >0,

00 0
/ [cos— (At)]y[cos+ (A(x — )], dt = /_ cos(At) cos[\(z — t)] dt+

— 00

w7 st eosfale D0 (o — 0 i
_ (== V)Zcos()\x) sin(Az) + ij/l\()\x —2\v) o)
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and it follows that

(29) N—lim 00 (cosOM)][coss (A — )], df = — 2z cos(Ax) + sin(Az)

v—00  J_~o 4\ ’

on using equation (8).
Equation (23) now follows as above on using equations (27), (28) and (29).
We now prove equation (24). We have as above

oo

(30) [cos—(Ax)]y * [sing(Az)], = / [cos— (At)], [sing (A(z — t))], dt.

—00

When —v <z <0,

/OO [cos— (At)]y [sing (A(x —t))], dt = /w cos(At) sin[A(z — ¢)] dt+

—00 -V

+ /_V cos(At) sin[A(z — t)], (¢) 7 (x — t) dt

—y—yV

_ (x 4+ v)sin(A\x) n cos(Ax) — cos(Azx + 2)v)

—V
5 o +0@™)
and it follows that
o0 2 H
B1)  Nelim [ [cos_ (M) [sing (A(z — )]y dt = 225mA) £ cosAr)
v—oo J_ 5o 4N

on using equations (9).
When v > 2z >0,

o) 0
/ 05— ()] fsing (A — £))],, dt = /x cos(\) sin[A(z — £)] di+

—00 -V

+ / T cos() sinA( — O]m (D) (& — 1) dt

_V_V7V
_ (x — v)sin(A\x) n cos(Ax) — cos(Az — 2Av) + o)
2 4\
and it follows that
o0 _ .
(32) Nelim [ [cos (M) [sins (A — 1))y, dt = 222 $in) + cos(Az).
V—00 —00 4A

on using equations (9).
Equation (24) now follows as above on using equations (30), (31) and (32).
Replacing « by —z in equation (24) we get

2 z[siny (A\x) — sin_ (Az)] + cos(Ax)

— cost (Ax) [¥]sin_ (\z) = 5
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and equation (25) follows since the convolution is commutative.
We finally prove equation (26). We have

(33) [sin_ (Az)], * [sing(Az)], = /_O:O [sin_ (At)], [sing (M(z — t))], dt.
When —v <z <0,

/ ™ sin_ (Ao [sing (A — )], dt = / sin(M) sin(A(x — 1)) di+

—0o0 -V

+ /‘u ) sin(At) sin[A(z — )7 ()7 (x — t) dt
_ sin(Az) +sin(Az + 2vz)  (x — v)cos(Az) »
N ) - 5 +O(™)

and it follows that
> in(Ax) — 2\ A
(3)  N—lim / fsin_ (Ao [sing. (A(z — )] dt = S0A2) = 2Awcos(Az)
V—00 —00 4)\
on using equation (8).
When v > 2 >0,

0 0
/ [sin— (At)], [sing (M(z — 1)), dt = / sin(At) sin[A\(z — )] dt+

—0o0 -V

+ /x—u sin(At) sin[A\(x — t)]7, (¢) dt

—v—v—Y
_ (x —v)cos(Az)  sin(Az) + sin(Ax — 2\v) + o)
2 4N
and it follows that
o0 o
(35)  Nelim [ [sin_ (M), sing Mz — 1)) dt = 22c05A) = sin(Ax)
v—00 J_so 4\

on using equation (8).
Equation (26) now follows as above on using equations (33), (34) and (35).
Further results can again be easily deduced. For example, since,
sing (Az) + Az cost (Ax)
2 ’

cosy (Ax) x cosp (A\x) =

for A # 0, it follows as above that
cos(Az) [#] cost (Az) = cos—(Az) [*] cost (Ax) + cosy (Ax) * cost (Ax)
sin(Az) + 2z cos— (Ax)
- ) ’

i 2
cos(\a) [F] cos_ (\) = _sin(Az) + 4/5\17 cos+(/\a:)7

cos(Az) [/ cos(A\z) = 3 z cos(Az),
for A # 0.
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