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Type III0 cocycles without unbounded gaps
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Abstract. An example of type III0 cocycle without unbounded gaps of an ergodic prob-
ability measure preserving transformation will be shown.
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1. Introduction

In this note, we give an answer to M. Lemańczyk’s question about type III0
cocycles ([3]). Let T be an ergodic probability measure preserving transformation
of a Lebesgue space (X,B,m). A measurable function f : X → R is called
a cocycle with unbounded gaps if there exists a sequence of open intervals Pn
such that |Pn| → ∞ and

{f (k)(x) : x ∈ X, k ∈ Z} ∩ Pn = ∅

for all n ≥ 1. Here f (k)(x) = ∑k−1
i=0 f(T

ix), if k > 0, f (0)(x) = 0, f (k)(x) =

−∑−1
i=k f(T

ix) if k < 0. In [4] M. Lemańczyk considers cocycles whose restriction
to a measurable subset has unbounded gaps. This property is invariant up to
cohomology. His question is whether it is a generic property among all type III0
recurrent cocycles or not. We will show that there exists an example of type III0
recurrent cocycle of an ergodic probability measure preserving transformation
whose no restriction has unbounded gaps.

2. Construction

Here let us recall the notion of orbit cocycle. Let T be an ergodic probability
measure preserving transformation of a Lebesgue space (X,B,m). Each measur-
able function f : X → R is called a cocycle. Denote by

R = R(T ) = {(x, T kx) : x ∈ X, k ∈ Z}
and call it the relation generated by T . An orbit cocycle is any measurable
function ψ : R→ R satisfying

ψ(x, y) + ψ(y, z) = ψ(x, z)
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for all (x, y), (y, z) ∈ R. Since T acts freely, the set of all cocycles is bijectively
mapped to the set of all orbit cocycles by the map

f → ψ

where
ψ(x, y) = f (k)(x) if y = T kx.

If B ∈ B then put
RB = R∩ (B ×B).

The corresponding restricted orbit cocycle ψB is defined as

ψB(x, y) = ψ(x, y), (x, y) ∈ RB .

Let {Ns}s≥0 be a sequence of positive integers satisfying that

∞
∑

s=1

1√
Ns

<∞, N0 = 0

and set Ms = N1 + N2 + · · · +Ns and Is = {2Ms−1 + 1, 2Ms−1 + 2, · · · , 2Ms}.
Define the infinite product probability measure space

(X,m) =

∞
∏

s=1

∏

i∈Is
({0, 1}, {1/2, 1/2})

and let B be the smallest sigma algebra which makes each coordinate variable of
X measurable. The transformation of X which we consider is the adding machine
transformation T defined for x = (xn) ∈ X by

Tx = (x1, x2, . . . ) + (1, 0, 0, . . . )

where the addition is the coordinatewise addition with right carry. Then,

R = {(x, y) ∈ X ×X : xn = yn for all but a finite number of n}.

Define an orbit cocycle ψ(x, y) by setting for (x, y) ∈ R

ψ(x, y) =

∞
∑

s=1

2s(
∑

i∈Is
xi −

∑

i∈Is
yi).

Notice that the sum is a finite sum.
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Theorem 2.1. The above cocycle ψ of R is of type III0, recurrent and does not
admit any restricted cocycle with unbounded gaps.

In a series of lemmas and propositions, we will complete the proof of Theo-
rem 2.1.
Let n ≥ 1 and define the probability space (Xn,mn) =

∏2n
1 ({0, 1}, {12 , 12}).

Definition 2.1. Let A,B ⊂ Xn and φ : A → B be an bijection. Suppose φ
satisfies the two conditions:

1.
∑2n
1 φ(x)i − xi = 1, ∀x ∈ A.

2. The subset A is maximal in the sense that if φ′ : A′ → B′ is another
bijection satisfying the condition (1) and if A′ ⊃ A, then A = A′.

We call such a map φ a lacunary map and write A = Dom(φ), B = Im(φ).

Lemma 2.1. Any lacunary map φ satisfiesmn((Dom(φ))
c) = O( 1√

n
) as n→∞.

Proof: Set S2n(x) =
∑2n
1 xi, and Ek = {S2n(x) = k}, 0 ≤ k ≤ 2n. If k < n then

♯Ek < ♯Ek+1. This means ∪n−1k=0Ek ⊂ Dom φ. On the other hand, ♯Ek > ♯Ek+1,
if k ≥ n. Therefore, ♯((Dom φ)c ∩ Ek) = ♯Ek − ♯Ek+1, k ≥ n. Hence,

m((Dom φ)c) =
1

2n

2n
∑

k=n

(♯Ek − ♯Ek+1)

= (♯En − ♯E2n)/22n

< ♯En/2
2n

=
(2n)!

22nn!n!
.

Apply Stirling’s formula, the right hand ∼ 1√
nπ
. �

Definition 2.2. By [R]∗ we denote the set of all measurable injective maps
g : A→ B = g(A), where A and B are measurable subsets of X , such that

gx ∈ {y | (y, x) ∈ R}, a.e. x ∈ A.

Such maps are called R-partial transformations.
Note that R-partial transformations preserve the restricted measures.

Proposition 2.1. For any measurable subset E ⊂ X of positive measure, the
restricted cocycle ψE of RE does not have unbounded gaps.
Proof: Let E ⊂ X . Notice that for a.e. x ∈ E,

lim
n→∞

m(E ∩ [x1, · · · , xn]n1 )
m([x1, · · · , xn]n1 )

= 1.
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For each s ≥ 1, we let φs be a lacunary map for
∏

i∈Is({0, 1}, {1/2, 1/2}). Let φs
act on X by setting

φs(x)i =

{

(φs([x]Is))i−2Ms−1
if i ∈ Is,

xi otherwise.

Then φs ∈ [R]∗ and ψ(φsx, x) = 2s, x ∈ Dom(φs).
For a.e. x ∈ E, there exists an integer T ≥ 1 such that

m(E ∩ [x1, · · · , xn]n1 )
m([x1, · · · , xn]n1 )

>
3

4
, ∀n ≥ 2NT .

By ǫ1ǫ1 · · · ǫ2MT
we denote the word x1x2 · · ·x2MT

. It follows from Lemma 2.1
and the assumption on {Ns}s≥1 that we may assume that

∞
∏

s=T+1

m(Dom φs) >
3

4
.

We are going to show that

m(x ∈ E | ∃ y ∈ E such that (y, x) ∈ R, ψ(y, x) = l2T+1) > 0, ∀ l ≥ 1.
Then this means ψE does not admit unbounded gaps.
Notice that

m([ǫ1 · · · ǫ2MT
]2MT

1 ∩⋂∞
s=T+1Dom φs)

m([ǫ1 · · · ǫ2MT
]2MT

1 )
= m(

∞
⋂

s=T+1

Dom φs)

>
3

4
.

Hence,
m([ǫ1 · · · ǫ2MT

]2MT

1 ∩ E ∩⋂∞
s=T+1Dom φs)

m([ǫ1 · · · ǫ2MT
]2MT

1 )
>
1

2
.

Set

E′ = [ǫ1 · · · ǫ2MT
]2MT

1 ∩ E ∩
∞
⋂

s=T+1

Dom φs,

and for each l ≥ 1 let l · 2T+1 =∑L
s=1 2

sls be a dyadic expansion. Set I = {s ∈
[T + 1, L] | ls = 1}, then I 6= ∅. Let us define an R-partial transformation f by
setting for x ∈ E′, s ≥ 0, j ∈ Is,

f(x)j =

{

(φs(x))j , if j ∈ Is, for some s ∈ I,
xj otherwise.

Since f is measure preserving, it follows that f ∈ [R]∗ with Dom f = E′ and
that

m(f(E′) ∩ [ǫ1 · · · ǫ2MT
]2MT

1 ∩ E)
m([ǫ1 · · · ǫ2MT

]2MT

1 )
>
1

4
> 0.

If we set F = {x ∈ E′ | f(x) ∈ E}. Then, m(F ) > 0, f(F ) ⊂ E, ψ(f(x), x) =

l2T+1, ∀x ∈ F . �
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Proposition 2.2. The orbit cocycle ψ is recurrent.

Proof: For each s ≥ 0 let θs be a transformation of
∏

i∈Is({0, 1}, {1/2, 1/2})
which transitively acts on each set {x |S2Ns

= j}, 0 ≤ j ≤ 2Ns. θs can naturally
act on the infinite product probability measure space (X,m). Then, θs ∈ [R]∗ and
ψ(θs(x), x) = 0, x ∈ X . Now for any measurable subset E of positive measure,
we have an integer T and a word ǫ1 · · · ǫ2MT

such that

m(E ∩ [ǫ1 · · · ǫ2MT
]2MT

1 )

m([ǫ1 · · · ǫ2MT
]2MT

1 )
>
1

2
.

Since θT+1 is measure preserving, we have

m(E ∩ [ǫ1 · · · ǫ2MT
]2MT

1 ∩ θT+1(E ∩ [ǫ1 · · · ǫ2MT
]2MT

1 )) > 0.

Thus, we see that

m(x ∈ E | ∃ y ∈ E such that y 6= x, (y, x) ∈ R and ψ(y, x) = 0)

≥ m(x ∈ E | θT+1(x) ∈ E)
> 0.

This means ψ is recurrent. �

Remark 2.1. The cocycle defined by

f(x) = ψ(x, y), where y = x+ (1, 0, 0, · · · )

is integrable with mean 0 and hence recurrent. This was kindly told the author
by M. Lemańczyk.

Next we will show that ψ is of type III0. For this, let us recall a “T-set” T (ψ)
of a cocycle ψ ([1]) which is the set of all real numbers t such that there exists
a real measurable function ξ(x) satisfying

eitψ(y,x) =
eiξ(y)

eiξ(x)
, a.e. x.

Lemma 2.2 ([1]). Let t ∈ R. Then, t ∈ T (ψ) if and only if there exists a se-
quence of real numbers {an,t}n≥1 such that

lim
n→∞ eit

Pn
j=1{Xj(x)−aj,t} exists a.e. x

where for x ∈ X , Xj(x) = Xj(xj) = 2sxj , if j ∈ Is, s ≥ 1.
Proof: (←) Set

eiξt(x) = lim
n→∞

eit
Pn

j=1{Xj(x)−aj,t}.
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Then

eiξt(y)

eiξt(x)
= lim
n→∞

eit
Pn

j=1{Xj(y)−Xj (x)}

= eitψ(y,x).

(→) Let for each i ≥ 1 gi(k) = k + 1 (mod 2). For each n ≥ 1, 1 ≤ i ≤ n and
ǫi = 0 or 1, we have

exp(i{ξt(gǫ11 x1, · · · , gǫnn xn, xn+1, · · · ) + t{X1(g
ǫ1
1 x1) + · · ·+Xn(gǫnn xn)}})

= exp(i{ξt(x) + t{X1(x1) + · · ·+Xn(xn)}}).

The orbit of (x1 · · · , xn) by the group generated by the transformations gǫ11 ×
gǫ22 × · · · × gǫnn is the whole set

∏n
i=1{0, 1}. Hence,

eiξt(x)+t
Pn

i=1Xi(x) = eiξn+1,t(x),

where ξn+1,t(x) is a function of xn+1, xn+2, · · · . If we put

eiCn+1,t =
E(eiξn+1,t)

|E(eiξn+1,t)|

then, by the martingale convergence theorem,

lim
n→∞

e−it
Pn

j=1Xj+iCn+1,t = lim
n→∞

E{eiξt | ∏n
j=1Fj}

|E{eiξt | ∏n
j=1Fj}|

=
eiξt

|eiξt |
= eiξt .

Here, Fj denotes the sub σ-algebra generated by the cylinder sets [0]j and [1]j .
If we set

an,t = Cn+1,t − Cn,t, C0,t = 0,

then
lim
n→∞

eit
Pn

j=1{Xj(x)−aj,t} exists a.e. x.

�

Lemma 2.3 ([1]). Let t ∈ R. Then, t ∈ { k2s | s ≥ 0, k ∈ Z} if and only if
lims→∞ e2πi2

st = 1.

Proof: (→) Obvious.
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(←) Let t =∑∞
s=0

ts
2s , where ts ∈ {0, 1}. Suppose t /∈ { k2s | s ≥ 0, k ∈ Z}. Then,

there are infinitely many s such that

ts = 1 and ts+1 = 0.

On the other hand, there exists an integer L ≥ 1 such that
|e2πi2st − 1| <

√
2, ∀ s ≥ L.

So, one can get an s such that ts = 1, ts+1 = 0, s ≥ L+ 1.
Then,

e2πi2
s−1t = e

2πi{ 1
2
+

ts+2

23
+

ts+3

24
+··· }

.

Hence
|1− e2πi2s−1t| >

√
2.

This is a contradiction. �

Lemma 2.4 ([1]). T (ψ) = 2π{ k2s | k ∈ Z, s ≥ 0}.
Proof: Let t = 2π · k2s . Then,

eit
Pn

j=1Xj(x) = e2πi
k
2s

PMs−1
j=1 Xj(x), ∀n > Ms−1.

By Lemma 2.2, we see that t ∈ T (ψ).
Conversely, let t ∈ T (ψ). Then, again by Lemma 2.2, there exists a sequence

of real numbers {an,t} such that
lim
n→∞ eit

Pn
j=1{Xj(x)−aj,t} exists a.e. x.

Since m(Xn(x) = 0) =
1
2 , this implies

eitan,t → 1, as n→∞.
Hence,

eitXn → 1 a.e.
On the other hand

m(eitXn = eit2
s

) =
1

2
, if n ∈ Is.

Therefore, eit2
s → 1 as s→∞. Thus by Lemma 2.3, we see that t ∈ 2π{ k2s | k ∈

Z, s ≥ 0}. �

Proposition 2.3. The cocycle ψ is of type III0.

Proof: It is known ([2]) that T (ψ) coincides with the L∞ spectrum of the
associated flow of the cocycle ψ and hence by Lemma 2.4 we see that L∞-spectrum
of the associated flow is the set 2π{ k2n |n ≥ 1, k ∈ Z}. This implies that the flow
is neither the translation of the real line nor periodic flow, that is, ψ is of type
III0 ([2]). �
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