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On nodal radial solutions of an elliptic

problem involving critical Sobolev exponent

J. Chabrowski

Abstract. In this paper we construct radial solutions of equation (1) (and (13)) having
prescribed number of nodes.
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Classification: 35J

1. Introduction

In this note we study the existence of nodal radial solutions of the problem

(1) −△u = K(|x|) |u|2∗−2 u in Rn,

where 2∗ = 2n
n−2 , n ≥ 3. It is known that under suitable assumptions on K,

problem (1) has infinitely many radial solutions (see for example [4] and references
given there). Recently, Bartsch and Willem [3] showed that the problem

(2) −△u+ b(|x|)u = f(|x| , u) in Rn,

with f having a subcritical growth, admits for each integer k ≥ 0, a pair of radial
solutions u+

k
and u−

k
with u−

k
(0) < 0 < u+

k
(0). This result gives the existence of

infinitely many nodal and radial solutions. We show that this result continues to
hold for problem (1). The paper is organized as follows. In Section 2 we consider
a constrained minimization and min-max procedure of the mountain-pass type
for potential operator equations in a reflexive Banach space. We show that both
minimization levels are the same. This information will be used in Section 3 to
construct a solution of (1) by solving the Dirichlet problem in a ball and in an
annulus. We then represent Rn as a union of a ball and a finite number of annuli,
the last one of which is the exterior of a ball. We associate with this representation
of Rn a sum of variational problems, which give a rise to the existence of nodal
solutions.

It is worth noting that the underlying Sobolev space for problem (1) isD1,2(Rn)
obtained as a completion of C∞

0 (Rn) with respect to the norm

‖u‖2 =
∫

Rn

|Du(x)|2 dx.
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By the Sobolev embedding theorem, we have the continuous embeddings H1(Rn)

⊂ D1,2(Rn) ⊂ L2
∗

(Rn). This slightly contrasts, with a situation in paper [3].
It is assumed there that b is continuous and bounded from below by a positive
constant. Consequently, the underlying Sobolev space for problem (2) is E = the
completion of C∞

0 (Rn) with respect to the norm

‖u‖2E =
∫

Rn

(|Du|2 + b(|x|)u2) dx

and we have the continuous embeddings E ⊂ H1(Rn) ⊂ L2
∗

(Rn).

2. Some results on potential operator equations in reflexive

Banach spaces

We commence with some basic definitions and notations. Let X be a reflexive
Banach space. The dual spaceX is denoted by X∗. We denote the duality pairing
between X and X∗ by 〈·, ·〉. The weak convergence in X and X∗ is denoted
by “⇀” and the strong convergence by“→”. For functionals a : X → R and
b : X → R we use letters A and B to denote their Fréchet or Gâteaux derivatives.

The following terminology is standard and can be found in the monograph by
Vainberg [10].

A mapping A : X → X∗ is said to be a potential operator with a potential
a : X → R, if a is Gâteaux differentiable and

lim
t→0

t−1(a(u + tv)− a(u)) = 〈A(u), v〉

for all u, v in X . For a potential a we always assume that a(0) = 0.

A mapping A : X → X∗ is called hemicontinuous if it is continuous on line
segments in X and with X∗ equipped with the weak topology.

A potential a of a hemicontinuous potential operator A can be represented in
the form

a(u) =

∫ 1

0
〈A(tu), u〉 dt

for all u ∈ X .

We say that mapping A : X → X∗ is homogeneous of degree β > 0, if for every
u ∈ X and t > 0

A(tu) = tβA(u).

Consequently, for the hemicontinuous and homogeneous potential operator A of
degree β with the potential a, we have

a(u) =
1

β + 1
〈A(u), u〉.
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A mapping A : X → X∗ is strongly monotone if there exists a continuous function
H : [0, ∞) → [0, ∞) which is positive on (0, ∞) and lim

t→∞
H(t) = ∞ and such

that
〈A(u)−A(v), u− v〉 ≥ H(‖u− v‖) ‖u− v‖ .

A mapping A : X → X∗ is said to satisfy the condition S1, if for every sequence
{uj} ⊂ X with uj ⇀ u and A(uj) → v in X∗ we have uj → u in X . Evidently,
every strongly monotone operator satisfies the condition S1.

We consider the potential operator equation

(3) Au = Bu in X,

where A : X → X∗ and B : X → X∗ are potential operators with potentials
a : X → R and b : X → R, respectively.

Throughout this section we make the following assumptions.

(A1) The mapping A : X → X∗ is a homogeneous continuous potential oper-
ator of degree p− 1, p > 1, with a potential a. Moreover, we assume that

(4) k1 ≤ a(u) ≤ k2

for all u with ‖u‖ = 1 and some positive constants k1 and k2.
Since the potential a is homogeneous of degree p, we see that (4) implies that

(5) k1 ‖u‖p ≤ a(u) ≤ k2 ‖u‖p

for all u ∈ X . Also, the continuity of the potential operator A implies the Fréchet
differentiability of its potential a.

(A2) b ∈ C1(X, R) and we assume that there exists an α > p such that

〈B(u), u〉 ≥ αb(u) > 0 on X − {0}.

(A3) A potential b̃ : X → R defined by

b̃(u) = 〈B(u), u〉 − pb(u)

satisfies the following growth condition

b̃(u) ≤ K(‖u‖α + ‖u‖r)

for all u ∈ X and some constants K > 0 and r > α.

We list the immediate consequences of the hypotheses (A2) and (A3).

We put for a fixed u ∈ X − {0}

h(t) = t−αb(tu) for t > 0.
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Since

h′(t) =
〈B(tu), tu〉 − αb(tu)

tα+1
≥ 0

for t > 0, we have

(6) b(tu) ≤ tαb(u) for 0 < t ≤ 1,

and

(7) b(tu) ≥ b(u)tα for t > 1.

In particular, b(0) = 0 and B(0) = 0.

If u 6= 0, then t−pb(tu) is strictly increasing for t > 0. Indeed, we have

d

dt
(t−pb(tu)) =

〈B(tu), tu〉 − pb(tu)

tp+1
> 0.

It follows from (A2) and (A3) that

(8) b(u) ≤ K

α− p
(‖u‖α + ‖u‖r)

and

(9) 〈B(u), u〉 ≤ αK

α− p
(‖u‖α + ‖u‖r)

for all u ∈ X − {0}.
We now define a variational functional F : X → R by

F (u) = a(u)− b(u).

Any critical point of F is a solution of (3). Our main existence result is based on
the Ambrosetti-Rabinowitz mountain pass theorem [2]. Towards this end, we put

(10) c = inf
g∈Γ

max
0≤t≤1

F (g(t)),

where Γ = {g ∈ C([0, 1], X) ; g(0) = 0 and F (g(1)) < 0}.
In Theorem 1 below we shall show that under additional assumptions on B, c

is a critical value of F .



On nodal radial solutions of an elliptic problem involving critical Sobolev exponent 5

Theorem 1. Suppose that A is strongly monotone potential operator and that

B is strongly continuous, that is, um ⇀ u in X implies B(um) → B(u) in X∗.

Then the equation (3) has a nontrivial solution.

Proof: It is easy to check the assumptions of the mountain pass theorem from
[2]. It follows from (5) and (8) that

F (u) ≥ k1 ‖u‖p − K

α− p
(‖u‖α + ‖u‖r) .

Since p < α < r, there exist δ > 0 and ρ > 0 such that F (u) ≥ ρ for ‖u‖ = δ

and also F (u) > 0 on 0 < ‖u‖ ≤ δ. Let ‖u‖ > δ, by (5) and (7) we have for t ≥ 1
that

F (tu) ≤ k2t
p ‖u‖p − tαb(u) < 0

for t > 1 sufficiently large. We now show that F satisfies the Palais-Smale con-
dition, that is, if {um} ⊂ X is such that {F (um)} is bounded and F ′(um) → 0
in X∗, then {um} possesses a convergent subsequence. It is easy to check that
{um} must be bounded and we may assume that um ⇀ u. Since F ′(um) =
A(um) − B(um) → 0 and B(um) → B(u) in X∗, we see that A(um) is conver-
gent in X∗. According to condition S1, um → u in X . Applying the mountain
pass theorem we see that c is a critical value of F . Since c ≥ ρ, a critical point
corresponding to c must be non-zero. �

Any non-zero critical point of F belongs to Nehari’s manifold (the set of arti-
ficial constraints) which is defined as follows

N = {u ∈ X − {0} ; 〈A(u), u〉 = 〈B(u), u〉}.
It follows from (5) and (9) that

pk1 ‖u‖p ≤ αK

α− p
(‖u‖α + ‖u‖r)

for all u ∈ N . Since p < α < r, we see that there exists a constant d > 0 such
that

(11) N ⊂ X −B(0, d),

where B(0, d) is a ball of radius d centered at 0. In general, the set N is un-
bounded. If u ∈ N , then

pF (u) = pa(u)− pb(u) = 〈B(u), u〉 − pb(u) = b̃(u).

On the other hand we have by (A2)

b̃(u) = 〈B(u), u〉 − pb(u) ≥ (1 − p

α
)〈B(u), u〉

= (1− p

α
)〈A(u), u〉 ≥ k1(1−

p

α
) ‖u‖p .
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This combined with (11) implies that

M = inf{F (u) ; u ∈ N} > 0.
Since F is only C1, N is not a differentiable manifold and we cannot apply a
standard Lagrange multiplier method as in [9]. However, we will be able to show
that M = c and every u0 ∈ N such that F (u0) =M is a critical point of F .

Lemma 1. Suppose that t−p〈B(tu), tu〉 is strictly increasing function on (0, ∞)
for each u 6= 0. Then, there exists a unique continuous function t : X − {0} →
(0, ∞) such that:
if u ∈ X − {0} and s > 0, then su ∈ N if and only if s = t(u).
In particular, t(u) = 1 if and only if u ∈ N .

Proof: Let u ∈ X − {0} and we put for t > 0
ψ(t) = 〈A(u), u〉 − t−p〈B(tu), tu〉.

The function ψ is continuous on (0, ∞). By (9) lim
t→0

ψ(t) = 〈A(u), u〉 and by
virtue of (A2) and (7) lim

t→∞
ψ(t) = −∞. Since t−p〈B(tu), tu〉 is strictly increasing

on (0, ∞) there exists a unique t(u) > 0 such that t(u) · u ∈ N . To show the
continuity of t(u), let um → u in X − {0}. By virtue of (A2) and (7) we have for
tm = tm(um) ≥ 1

k2t
p
m ‖um‖p ≥ 〈A(tmum), tmum〉 = 〈B(tmum), tmum〉

≥ αb(tmum) ≥ αtαmb(um).

Since u 6= 0, we may assume that b(um) ≥ δ > 0 for some δ > 0 and all m.
This, combined with the previous estimate, implies that {tm(um)} is a bounded
sequence. If a subsequence of {tm} converges to t0, then, since tm · um ∈ N for
each m, we must have that t0 · u ∈ N and hence t0 = t(u). This obviously means
that t(um)→ t(u). �

Lemma 2. If t−p〈B(tu), tu〉 is strictly increasing function on (0, ∞), then
M = c = inf

u∈X−{0}
max
t≥0

F (t · u).

Proof: Let D = inf
u∈X−{0}

max
t≥0

F (tu). It is obvious that

M ≤ F (t(u)u) = max
t≥0

F (t · u)

and this implies that M ≤ D. If u ∈ N , then F (u) = max
t≥0

F (tu). Hence,

M = inf
u∈N

max
t≥0

F (t · u) ≥ inf
u∈X−{0}

max
t≥0

F (tu) = D
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and we have M = D. Since F (t · u) < 0 for t large, we must have that c ≤ D.
Finally, we observe that each g ∈ Γ must intersect N , so c ≥M . �

We now show that if u0 ∈ N and F (u0) = M , then u0 is a critical point
of F . A similar result for equation (2) has been established in [3] by means of
the quantitative deformation lemma. Here, we give an elementary proof of this
result without the use of a deformation lemma and in which we use an idea from
the paper [1]. �

Proposition 1. Suppose that t−p〈B(tu), u〉, u 6= 0, is strictly increasing func-
tion on (0, ∞). Then for every u0 ∈ N such that F ′(u0) 6= 0 we have

F (u0) > M = inf{F (u) ; u ∈ N}.

In particular, if M = F (u0), u0 ∈ N , then F ′(u0) = 0.

Proof: Let u0 ∈ N be such that F ′(u0) 6= 0. We choose h0 ∈ X such that
〈F ′(u0), h0〉 = 1 and we put σt(α) = αu0 − th0. Then

lim
t→0
α→1

d

dt
F (σt(α)) = 〈F ′(u0), h0〉 = −1.

We can find ε > 0 and δ > 0 such that for all α ∈ [1 − ε, 1 + ε] and t ∈ [0, δ] we
have

(12) F (σt(α)) < F (σ0(α)) = F (αu0).

We put
Ht(α) = pa(σt(α)) − 〈B(σt(α)), σt(α)〉.

Since u0 ∈ N , we have

H0(1) = pa(u0)− 〈B(u0), u0〉 = 0.

On the other hand, using the fact that t−p〈B(tu0), tu0〉 is an increasing function
on (0, ∞) and taking ε > 0 and δ > 0 smaller if necessary, we may assume that
for 0 < t ≤ δ

Ht(1− ε) < 0 and Ht(1 + ε) > 0.

Hence, for each t ∈ (0, δ] there exists αt ∈ [1 − ǫ, 1 + ǫ] such that Ht(αt) = 0.
This means that σt(αt) ∈ N . Consequently, it follows from (12) that

M = inf{F (u) ; u ∈ N} ≤ F (σt(αt)) < F (αtu0)

≤ sup
t≥0

F (tu0) = F (u0),

and this completes the proof. �
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3. Radial solutions

We now shift our attention to problem (1). We write it in a more general form

(13) −∆u = K(|x|)f(u) in Rn,

where K and f are continuous functions on [0, ∞) and R, respectively, and sat-
isfying the following conditions

(a) f(u)u ≥ µ
∫ u
0 f(s) ds, |f(u)| ≤ a1 |u|2

∗−1 for some constants 2 < µ < 2∗

and a1 > 0 and all u ∈ R,

(b) K(0) = 0, 0 = K(∞) = lim
|x|→∞

K(|x|) and K(|x|) > 0 on Rn − {0},

(c)
f(u)
|u| is a strictly increasing function of u ∈ R − {0}.

Following Bartsch-Willem [3] we put for 0 ≤ ρ < σ ≤ ∞

Ω(ρ, σ) = Int{x ∈ Rn ; ρ ≤ |x| < σ}.

Thus Ω(0, σ) is a ball, Ω(0, ∞) = Rn, Ω(ρ, σ) is an annulus if 0 < ρ < σ < ∞
and Ω(ρ, ∞) is the exterior of a ball.
We now consider the Dirichlet problem

(14)

{ −∆u = K(|x|)f(u) in Q,
u(x) = 0 on ∂Q,

where Q is either Ω(0, σ), 0 < σ < ∞, or Ω(ρ, σ), 0 < ρ < σ < ∞ or Ω(ρ, ∞),
0 < ρ < ∞. If σ = ∞, that is, either the case of Rn or the exterior of a ball,

we denote by D
1,2
r (Ω(ρ, ∞)) the subspace of all radially symmetric functions in

D1,2(Ω(ρ, ∞)), where the definition of the space D1,2(Rn) has been given in
Section 1 and the space D1,2(Ω(ρ, ∞)), 0 < ρ < ∞, is defined in the same
manner. Finally, by W 1,20,r (Ω(ρ, σ)), 0 ≤ ρ < σ <∞, we denote the set of all radi-
ally symmetric functions in W 1,20 (Ω(ρ, σ)). Obviously, the spaces D

1,2
r (Ω(ρ, ∞))

and W 1,20,r (Ω(ρ, σ)) are equipped with norms from the spaces D
1,2(Ω(ρ, ∞)) and

W
1,2
0 (Ω(ρ, σ)), respectively. For the ease of notation we set

E(Q) =

{

W
1,2
0,r (Q), if Q = Ω(ρ, σ), 0 ≤ ρ < σ <∞,

D
1,2
r (Q), if Q = Ω(ρ, ∞), 0 < ρ <∞.

To solve the Dirichlet problem (14) we consider a variational functional F :
E(Q)→ R defined by

F(u) = 1
2

∫

Q
|Du|2 dx−

∫

Q
K(|x|)F (u) dx,
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where F (u) =
∫ u
0 f(s) ds. Any critical point of F is a solution to problem (14).

As in Section 1 we define a potential b : E(Q)→ R, by

b(u) =

∫

Q
K(|x|)F (u) dx.

Its potential operator is given by

〈B(u), v〉 =
∫

Q
K(|x|)f(u)v dx

for all u, v ∈ E(Q). We show that B is strongly continuous from E(Q) into its
dual space E(Q)∗, that is, um ⇀ u in E(Q) implies B(um) → B(u) in E(Q)∗.

Since W
1,2
0,r (Ω(ρ, σ)), 0 < ρ < σ < ∞ is compactly embedded into L2∗(Ω(ρ, σ))

(see for example [4, Proposition 8]) it suffices to consider cases: (i) Q = Ω(0, σ),
0 < σ < ∞, and (ii) Q = Ω(ρ, ∞), 0 < ρ < ∞. Extending every function in
E(Q) by 0 outside Q we can consider E(Q) as a subspace of D

1,2
r (Rn). According

to Lemma 1 in [8] every function u in E(Q) is almost everywhere equal to a
continuous function U for x 6= 0 such that

(15) |U(x)| ≤ (ωn(n− 2))− 12 |x| 2−n
2 ‖Du‖2 ,

where ωn is a volume of a unit ball in Rn (see also [6]). Let um ⇀ u in

W
1,2
0,r (Ω(0, σ)), 0 < σ < ∞. By the Sobolev embedding theorem we may as-
sume that um −→ u a.e. on Ω(ρ, σ). Let v ∈ W

1,2
0,r (Ω(0, σ)) with ‖v‖ ≤ 1, then

for 0 < δ < σ, we write

〈B(um), v〉 − 〈B(u), v〉 =
∫

Ω(0,δ)
K(|x|)(f(um)− f(u))v dx

+

∫

Ω(δ,σ)
K(|x|)(f(um)− f(u)) · v dx = J1 + J2.

By the Hölder and Sobolev inequalities we have

|J1| ≤ a1S
−1 sup
Ω(0,δ)

K(|x|)






sup
m≥1

(

∫

Ω(0,σ)
|um|2∗ dx

)
2
∗
−1

2∗

+

+

(

∫

Ω(0,σ)
|u|2∗ dx

)
2
∗
−1

2∗






.

Since K(0) = 0, given ε > 0 we can find δ < σ such that |J1| < ε for all m ≥ 1.
Due to the uniform bound of um on Ω(δ, σ) given by (15) and the Lebesgue
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dominated convergence theorem we see that lim
m→∞

J2 = 0 uniformly in ‖v‖ ≤ 1.
The proof of the case (ii) is similar and is omitted.

It is clear that b and B satisfy hypotheses (A1), (A2) and (A3) of Section 1,
t−2〈B(tu), tu〉, u 6= 0, is strictly increasing in t > 0 and consequently we can
formulate the existence result for problem (14). However, to get a nodal solution
of problem (13) we need to show that problem (14) has a positive and negative
solution in E(Q). This will be achieved by modifying the nonlinearity f .

Let

g(u) =

{

f(u) for u ≥ 0,
−f(−u) for u < 0

and G(u) =
∫ u
0 g(s) ds. Since g satisfies assumptions (a), (b) and (c) we can

apply Theorem 1 and Lemma 2 to the functional F+(u) = 1
2

∫

Q |Du|2 dx −
∫

QK(|x|)G(u) dx. As a result we obtain the existence of a nontrivial solution
u+ of problem (14) given by

F+(u+) = c+ = inf
γ∈Γ

max
0≤t≤1

F+(γ(t)),

where Γ = {γ ∈ C([0, 1], E(Q)); γ(0) = 0 and F+(γ(1)) < 0}. Obviously, u+ ∈
N+ = {u ∈ E(Q)− {0}; 〈F ′

+(u), u〉 = 0} and by Lemma 2 we have

c+ =M+ = inf
u∈N+

F+(u).

Since g is odd, G must be even. Hence F+(u+) = F+(|u+|) and we may assume
that u+ ≥ 0 on Q. The maximum principle implies that u+ > 0 on Q.
Similarly, we put

h(u) =

{ −f(−u) for u ≥ 0,
f(u) for u < 0,

H(u) =
∫ u
0 h(s) ds, F−(u) =

1
2

∫

Q |Du|2 dx −
∫

QK(|x|)H(u) dx and N− = {u ∈
E(Q) − {0}; 〈F ′

−(u), u〉 = 0}. If follows from Theorem 1 and Lemma 2 that
problem (14) has a negative solution u− satisfying

F−(u
−) = c− = inf

γ∈Γ
max
0≤t≤1

F−(γ(t))

and

F−(u
−) =M− = inf

u∈N−

F−(u).

Summarizing, we can formulate the existence result:
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Proposition 2. The Dirichlet problem (14) admits a positive and negative so-
lutions u+ and u− such that F(u+) =M+ and F(u−) =M−.

Since Q = Ω(ρ, σ), we write,M± =M±(ρ, σ), N± = N±(ρ, σ) and in Proposi-
tion 3 below we examine the behaviour of M± as a function of ρ and σ. We write
M(ρ, σ) for both M−(ρ, σ) and M+(ρ, σ) and N for N−(ρ, σ) and N+(ρ, σ).
Proposition 3. M(ρ, σ) has the following properties:

(i) if 0 ≤ ρ ≤ ρ′ < σ′ ≤ σ ≤ ∞, then M(ρ, σ) ≤M(ρ′, σ′)

(ii) lim
σ−ρ→0

M(ρ, σ) =∞,

(iii) lim
ρ→∞

M(ρ, ∞) =∞,
(iv) M(ρ, σ) is lower semicontinuous.

Proof: (i) follows from the fact that N (ρ′, σ′) ⊂ N (ρ, σ).
(ii) We need the following estimate: let Q ⊂ Rn be a bounded domain, then

for every u ∈ W
1,2
0 (Q) we have

(16) ‖u‖q ≤ c |Q|
1

q
− 1

2∗ ‖Du‖2

for all 2 ≤ q ≤ 2∗ and some positive constant c. If q = 2∗, then c = S−1 (the best
Sobolev constant) (see [5] p.45). We distinguish two cases:

(α) σ − ρ→ 0, ρ→ δ > 0, (β) σ − ρ→ 0, ρ→ 0.

Let u ∈ N = N (ρ, σ). In the first case it follows from (15) and (16) that
∫

Ω(ρ,σ)
|Du|2 dx =

∫

Ω(ρ,σ)
K(|x|)F (u) dx

≤ C(n)ρ
2−n
2

β ‖Du‖β
2

∫

Ω(ρ,σ)
|u|2∗−β dx

≤ C1(n)ρ
2−n
2

β (σn − ρn)
1

2∗−β
− 1

2∗ ‖Du‖2∗2 ,

where 2 < β < 2∗ and C(n), C1(n) are positive constants independent of u, ρ
and σ. Consequently, if σ − ρ → 0 and ρ → δ > 0, we see that ‖Du‖2 → ∞. In
the second case we have

∫

Ω(ρ,σ)
|Du|2 dx =

∫

Ω(ρ,σ)
K(|x|)F (u) dx

≤ a1

2∗S2
∗
sup
Ω(ρ,σ)

K(|x|)
[

∫

Ω(ρ,σ)
|Du|2 dx

]
2
∗

2

.
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Since sup
Ω(ρ,σ)

K(|x|)→ 0, as σ − ρ→ 0 and ρ→ 0, we get

∫

Ω(ρ,σ)
|Du|2 dx→ ∞.

(iii) Let ρ > 0 and u ∈ N (ρ, ∞). By virtue of the Sobolev inequality we have

∫

Ω(ρ,∞)
|Du|2 dx ≤ a1

2∗S2
∗
sup
Ω(ρ,∞)

K(|x|)
(

∫

Ω(ρ,∞)
|Du|2 dx

)
2
∗

2

.

Since sup
Ω(ρ,∞)

K(|x|) → 0 as ρ → ∞, we must have that
∫

Ω(ρ,∞)

|Du|2 dx → ∞ as

ρ→ ∞ and our claim follows.
(iv) The proof is similar to that of Proposition 4.1 (d) in [3]. �

We now use Proposition 2 and 3 to construct a radial solution u+j of (13) with

u+j (0) > 0 having exactly j nodes 0 < ρ+1 < . . . < ρ+j <∞.
We set

εi =

{

+ for i even

− for i odd

and define

M+(ρ1, . . . , ρj) =

j
∑

i=0

Mεi(ρi, ρi+1).

According to Proposition 3, M+(ρ1, . . . , ρj) attains its minimum at some point

ρ+1 < ... < ρ+j . For each 0 ≤ i ≤ j and i even, there exists a positive radial solution

ui of problem (14) on Ω(ρ
+
i , ρ

+
i+1) such that F+(ui) = M+(ρ

+
i , ρ

+
i+1). For each

odd i there exists a negative radial solution ui with F−(ui) =M−(ρ
+
i , ρ

+
i+1). We

now define uj ∈ D
1,2
r (Rn) by

(17) uj(x) = ui(x) if x ∈ Ω(ρ+i , ρ
+
i+1).

To proceed further we need the following global regularity result which corre-
sponds to Lemma 5.1 in [3].

Proposition 4. The function uj defined by (17) is a solution of (13) which has

precisely j nodes, that is, u−1j (0) = {ρ+1 , . . . , ρ+j }.

Proof: The proof is identical to that of Lemma 5.1 in [3]. Therefore we give only
an outline of the proof. For simplicity we denote uj by u and since u is radially
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symmetric we also use the notation u(x) = u(r), r = |x|. By standard results
from the regularity theory for elliptic equations u ∈ C2 on

U = {r > 0; r 6= ρi, i = 1, . . . , j}
and satisfies the equation

(18) −
(

rn−1u′
)′
= rn−1K(r)f(u).

We must show that u(r) satisfies (18) at r = ρi, i = 1, . . . , j. Towards this end it
is enough to show that

u′+ = lim
r→ρj+0

u′(r) = lim
r→ρj−0

u′(r) = u′−.

Arguing indirectly we assume that u′+ 6= u′− and set ρ = ρj−1, σ = ρj and
τ = ρj+1. Also, we may assume that u ≥ 0 on [ρ, σ] and u ≤ 0 and [σ, τ ]. For a
fixed δ > 0 we define a continuous function v : [ρ, τ ]→ R by

v(r) =

{

u(r) for |r − σ| ≥ δ,

u(σ − δ) + (r − σ + δ)
u(σ+δ)−u(σ−δ)

2δ for |r − σ| < δ.

Let σ0 = σ0(δ) ∈ (σ − δ, σ + δ) be such that v(σ0) = 0. By virtue of Lemma 1
there exists α = α(δ) > 0 such that

αv ∈ N+(ρ, σ0) and βv ∈ N−(σ0, τ).

We now define a function w : [ρ, τ ]→ R by

w(r) =

{

αv(r) for ρ ≤ r ≤ σ0,

βv(r) for σ0 ≤ r ≤ τ

and set

ψ(h) =

∫ τ

ρ

(1

2
h′
2 −K(r)F (h))rn−1 dr.

The idea is to show that

(19) ψ(w) ≤ ψ(u)− σn−1

4

(

u+
′ − u−

′)2δ + o(δ).

This implies that ψ(w) < ψ(u) for sufficiently small δ > 0. However, this is
impossible since ψ(u) ≤ ψ(w) for all w ∈ N . To establish (19) we show, using the
convexity of F (

√
u) and F (−√

u), that

(20)

ψ(w) ≤ ψ(u) +

(

∫ σ−δ

ρ
+

∫ τ

σ+δ

)

[

1

2
w′2 − w2

2u
K(r)f(u)

]

rn−1 dr

+

∫ σ+δ

σ−δ

[

1

2
w′2 −K(r)F (w) +K(r)F (u)

]

rn−1 dr
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and moreover we need the following asymptotic relations

(21)

∫ σ+δ

σ−δ
(−K(r)F (w) +K(r)F (u)) rn−1 dr = o(δ),

(22)

∫ σ−δ

ρ

(

1

2
w′2 − w

2u
K(r)f(u)

)

rn−1 dr = −σ
n−1

2
u′−
2
δ + o(δ),

(23)

∫ ρ

σ+δ

(

1

2
w′2 − w2

K
(r)f(u)

)

rn−1 dr = −σ
n−1

2
u′+
2
δ + o(δ)

and

(24)

∫ σ+δ

δ−σ

1

2
w′2rn−1 dr =

σn−1

4

(

u′+ + u
′
−

)2
δ + o(δ).

Technical details needed to establish (20)–(24) can be found in [3] (pp. 273–275).
Combining (20)–(24) together we get (19) and this completes the proof. �

If we now set

εj =

{ − for i even,

+ for i odd

we obtain, by a similar argument, a radial solution u−j with u
−
j (0) < 0 having

precisely j nodes ρ−1 < ρ−2 < . . . < ρ−j .

The above discussion leads to the following result.

Theorem 2. For every integer j ≥ 0 there exist radial solutions u+j and u−j of
(13) with u−j (0) < 0 < u+j (0) and having exactly j nodes 0 ≤ ρ±1 < ρ±2 < . . . <

ρ±j .

We close this paper with a description of a decay at infinity of solutions of
(13) obtained in Theorem 2. Since these solutions are radially symmetric we have

|u(x)| = O
(

|x| 2−n
2

)

as |x| → ∞ (see [8]). It is known that positive solutions of (13)
(see [7]), under suitable assumptions on a nonlinearity f , behave like O

(

|x|2−n
)

as |x| → ∞. For nodal solutions we can give the following result.
Proposition 5. Let u be a nodal solution of (13) constructed in Theorem 2.

Suppose that K(|x|) = o(|x|−n+2
2 ) as |x| → ∞. Then |u(x)| = O(|x|2−n).

Proof: It is known (see [10]) that the function

U(x) = C(n)
(

1 + |x|2
)−n−2

2 , x ∈ R
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satisfies the equation
−∆u = u2∗−1 in Rn,

where C(n) > 0 is a constant depending on n. To establish the asymptotic
behaviour of u as |x| → ∞ we compare u with U for large |x|. We only consider
the case u > 0 for |x| > ρj . Since u is radially symmetric we have

u(x) ≤ C1|x|−
n−2

2 for |x| > ρj ,

where C1 > 0 is a constant. We set

A(R) =
C1

C(n)
R−n−2

2 (1 +R2)
n−2

2 for R > 0.

Choosing R > ρj large enough we get

K(|x|)C2∗−11 a1|x|−
n+2
2 (1 + |x|2)n+2

2 −AC(n) < 0

for |x| ≥ R. Letting v = u−AU , we see that v(x) ≤ 0 for |x| = R and

−∆v = K(|x|)f(u)−AU2
∗−1

≤ (1 + |x|2)−n+2
2

(

K(|x|)a1C2
∗−1
1 |x|−n+2

2 (1 + |x|2)n+2
2 −AC(n)

)

for |x| ≥ R. We now observe that the right side of this inequality is strictly
negative for |x| ≥ R, with R sufficiently large. Since lim|x|→∞ v(x) = 0, applying

the maximum principle, we deduce that u(x) ≤ AU(x) for |x| ≥ R and the result
follows. �
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