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Forcing countable networks for spaces

satisfying R(Xω) = ω

I. Juhász, L. Soukup, Z. Szentmiklóssy

Abstract. We show that all finite powers of a Hausdorff space X do not contain un-
countable weakly separated subspaces iff there is a c.c.c poset P such that in V P X is a
countable union of 0-dimensional subspaces of countable weight. We also show that this
theorem is sharp in two different senses: (i) we cannot get rid of using generic extensions,
(ii) we have to consider all finite powers of X.

Keywords: net weight, weakly separated, Martin’s Axiom, forcing

Classification: 54A25, 03E35

1. Introduction

We use standard topological notation and terminology throughout, cf. [4]. The
following definitions are less well-known.

Definition 1.1. Given a topological space 〈X, τ〉 and a subspace Y ⊂ X a func-
tion f is called a neighbourhood assignment on Y iff f : Y → τ and y ∈ f(y) for
each y ∈ Y .

Definition 1.2. A space Y is weakly separated if there is a neighbourhood as-
signment f on Y such that

∀ y 6= z ∈ Y (y /∈ f(z) ∨ z /∈ f(y)),

moreover
R(X) = sup{|Y | : Y ⊂ X is weakly separated}.

The notion of weakly separated spaces and the cardinal function R were in-
troduced by Tkačenko in [7], where the following question was also raised: does
R(Xω) = ω (or even R(X) = ω) imply that X has a countable network (i.e.
nw(X) = ω)? (Note that R(Xω) = ω is equivalent to R(Xn) = ω for all n ∈ ω,
moreover nw(X) = ω implies R(Xω) = nw(Xω) = ω.) Several consistent coun-
terexamples to this were given, e.g. in [1], [2], [5] and [8, p. 43], but no ZFC
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counterexample is known. (In [8] it is stated that under PFA the implication is
valid, but no proof is given.) The counterexamples given in [5] and [8] from CH
are also first countable.
Our main result here says that, at least for T2 spaces, a weaker version of

Tkačenko’s conjecture is valid, namely R(Xω) = ω implies that nw(X) = ω holds
in a suitable c.c.c and hence cardinal preserving generic extension! In fact, in this
extension X becomes σ-second countable, i.e. X is the union of countably many
subspaces of countable weight.
In Section 3 we show that the main result is sharp in different senses. Firstly,

we force, for every natural number n, a 0-dimensional, first countable space X
such that R(Xn) = ω, but nw(X) > ω in any cardinal preserving extension of the
ground model. Secondly, we construct in ZFC a 0-dimensional T2 space X such
that χ(X) = nw(X) = ω but X is not σ-second countable.
It easily follows from the proof of our main result that if MAκ holds and X

is a Hausdorff space with |X | + w(X) ≤ κ, then R(Xω) = ω if and only if X is
σ-second countable. We also prove that MA(Cohen) is not enough to yield this
equivalence. To do this we use a result of Shelah (the proof of which presented
here with his kind permission) saying that in any generic extension by Cohen
reals the ideal of the first category subspaces of a space from the ground model
is generated by the subspaces of first category from the ground model.

2. The main result

Theorem 2.1. Given a Hausdorff topological space X the following are equiva-
lent:

(1) R(Xω) = ω,

(2) there is a c.c.c poset P such that V P |= “nw(X) = ω”,
(3) there is a c.c.c poset P such that

V P |= “X is a countable union of 0-dimensional subspaces of countable
weight.”

Proof: Since the implications (3) ⇒ (2) ⇒ (1) are clear, it remains to prove
only that (1) implies (3). So assume that X is Hausdorff with R(Xω) = ω, and
fix a base B of X and a well-ordering ≺ on X ∪ B.
The space X contains at most countably many isolated points by R(X) = ω, so

it is enough to force an appropriate partition of X ′, the set of non-isolated points
of X . We say that a 4-tuple 〈A,U , f , g〉 is in P provided (i)–(v) below hold:

(i) A ∈
[

X ′
]<ω

and U ∈
[

B
]<ω
,

(ii) f and g are functions,
(iii) f : A → ω, g : U → ω × ω,
(iv) if g(U) = 〈n, i〉 and f(x) = n then x /∈ (U \ U) whenever x ∈ A and

U ∈ U ,
(v) if g(U) = g(V ) = 〈n, i〉 and f(x) = n then x ∈ U iff x ∈ V whenever

x ∈ A and U, V ∈ U .
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Our idea is that f will guess the partition of X ′ into countably many pieces,
{Fn : n < ω}; if g(U) = 〈n, i〉 then U ∩Fn will be clopen in the subspace Fn, and
g(U) = g(V ) = 〈n, i〉 implies U ∩ Fn = V ∩ Fn. Consequently, each Fn will have
a countable clopen base.
For p ∈ P we write p = 〈Ap,Up, fp, gp〉. If p, q ∈ P we set p ≤ q iff fp ⊃ fq

and gp ⊃ gq.
Two conditions p and q from P are called twins provided |Ap| = |Aq|, |Up| =

|Uq | and denoting by η and by ̺ the unique ≺-preserving bijections between Ap

and Aq, and between Up and Uq, respectively, we have

(1) η⌈Ap ∩ Aq = id, ̺⌈Up ∩ Uq = id,
(2) ∀x ∈ Ap fp(x) = fq(η(x)),
(3) ∀U ∈ Up gp(U) = gq(̺(U)),

(4) ∀x ∈ Ap ∀U ∈ Up (x ∈ U iff η(x) ∈ ̺(U), and x ∈ U iff η(x) ∈ ̺(U)).

Lemma 2.2. P = 〈P,≤〉 satisfies c.c.c.

Proof of Lemma 2.2: Let {pα : α < ω1} ⊂ P . Write pα = 〈Aα,Uα, fα, gα〉.
Using standard ∆-system and counting arguments we can assume that these con-
ditions are pairwise twins. Let k = |Aα| and {aα,i : i < k} be the ≺-increasing
enumeration of Aα. For each α < ω1 and i < k put

U0α,i = {U ∈ Uα : ∃ j gα(U) =
〈

fα(aα,i), j
〉

∧ aα,i ∈ U},

U1α,i = {U ∈ Uα : ∃ j gα(U) =
〈

fα(aα,i), j
〉

∧ aα,i /∈ U},

and finally

Vα,i =
⋂

{U : U ∈ U0α,i} ∩
⋂

{X \ U : U ∈ U1α,i}.

By (iv) we have aα,i /∈ U for U ∈ U1α,i, so aα,i ∈ Vα,i. Since R(X
k) = ω there are

α < β < ω1 such that

(†) aα,i ∈ Vβ,i and aβ,i ∈ Vα,i for each i < k.

We claim that pα and pβ are compatible in P . Let η and ̺ be the functions

witnessing that pα and pβ are twins. PutA = Aα∪Aβ , U = Uα∪Uβ , f = fα∪fβ ,

g = gα ∪ gβ and p = 〈A,U , f , g〉. Since pα and pβ are twins, p satisfies (i)–(iii)
and p ≤ pα, pβ . So all we have to do is to show that p satisfies (iv) and (v).

Claim. If U ∈ U0α,i ∪ U1α,i, then aα,i ∈ U iff aα,i ∈ ̺(U).

Proof of the claim: We know aα,i ∈ U iff aβ,i ∈ ̺(U). Thus aα,i ∈ U implies

that ̺(U) ∈ U0β,i and so aα,i ∈ Vβ,i ⊂ ̺(U). On the other hand, if aα,i /∈ U , then

aβ,i /∈ ̺(U), hence ̺(U) ∈ U1β,i, and so aα,i ∈ Vβ,i ⊂ X \ ̺(U), i.e. aα,i /∈ ̺(U).

�
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Now we check (iv). Assume aα,i ∈ Aα, V ∈ Uβ with gβ(V ) =
〈

fα(aα,i), l
〉

and aα,i ∈ V . We have to show that aα,i ∈ V . Since aα,i ∈ Vβ,i by (†), we have

V /∈ U1β,i. But fα(aα,i) = fβ(aβ,i) since pα and pβ are twins, hence gβ(V ) =
〈

fβ(aβ,i), l
〉

implies V ∈ U0β,i ∪ U1β,i, so V ∈ U0β,i. Hence aα,i ∈ Vβ,i ⊂ V by (†),

which was to be proved.

Finally we check (v). Assume that aα,i ∈ Aα and U, V ∈ Uα ∪ Uβ are such

that g(U) = g(V ) =
〈

f(aα,i), l
〉

. Define the function ̺∗ : U → Uα by the formula

̺∗ = id⌈Uα ∪ (̺)−1. Then aα,i ∈ U iff aα,i ∈ ̺∗(U) and aα,i ∈ V iff aα,i ∈ ̺∗(V )
by the previous claim.
But g(̺∗(U)) = g(U) = g(V ) = g(̺∗(V )) =

〈

f(aα,i), l
〉

, so aα,i ∈ ̺∗(U) iff
aα,i ∈ ̺∗(V ) for pα satisfies (v). Thus aα,i ∈ U iff aα,i ∈ ̺∗(U) iff aα,i ∈ ̺∗(V )
iff aα,i ∈ V , which proves (v).

Now let G be a P -generic filter and let F =
⋃

{fp : p ∈ G} and G =
⋃

{gp : p ∈
G}. For n < ω let Fn = F−1{n}.

Lemma 2.3. dom(F ) = X ′ and dom(G) = B.

Proof: Let p = 〈A,U , f , g〉 ∈ P , x ∈ X ′ \ A and U ∈ B \ U . Let A∗ = A ∪ {x},
U∗ = U ∪ {U} and n = max ran(f) + 1. Let dom(f∗) = A∗, f∗ ⊃ f and
f∗(x) = n, dom(g∗) = U∗, g∗ ⊃ g and g∗(U) = 〈n+ 1, 0〉. Then it is easy
to check p∗ = 〈A∗,U∗, f∗, g∗〉 ∈ P and obviously p∗ ≤ p. So the lemma holds
because a generic filter intersects every dense set. �

For m ∈ ω let

Bm = {U ∩ Fm : U ∈ B and G(U) = 〈m, i〉 for some i ∈ ω}.

Lemma 2.4. Bm is a countable, clopen base of the subspace Fm of X
′.

Proof: If U ∈ B, G(U) = 〈m, i〉 then U ∩ Fm is clopen in Fm by (iv). If
U, V ∈ B, G(U) = G(V ) = 〈m, i〉 then U ∩ Fm = V ∩ Fm by (v). So Bm is
countable.
Finally we show that it is a base of Fm. So fix x ∈ Fm and V ∈ B with

x ∈ V . Let p = 〈A,U , f , g〉 ∈ P such that f(x) = m. Since X is Hausdorff
and x is non-isolated in X , we can choose U ∈ B \ U such that x ∈ U ⊂ V and
U ∩ A = {x}.
Let U∗ = U ∪ {U}. Define the function g∗ : U∗ → ω × ω such that g∗ ⊃ g and

g∗(U) = 〈m, k〉 where k = min{l : ran g ⊂ l × l}. Then p∗ = 〈A,U∗, f, g∗〉 is an
extension of p in P and p∗ 
 x ∈ U ∩Fm ⊂ V ∩Fm∧U ∩Fm ∈ Bm. Consequently,
if p 
 “x ∈ Fm ∩ V ” then we also have p 
 “∃U ∈ Bm(x ∈ U ⊂ Fm ∩ V )”, which
completes the proof. �

Thus Theorem 2.1 is proved.

It is easy to check that the above proof needs the genericity of G over |X |+ |B|
many dense sets only, and this immediately yields the following result.
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Corollary 2.5. If MAκ holds then for a Hausdorff space X with |X |+w(X) ≤ κ
the following are equivalent:

(1) R(Xω) = ω,
(2) nw(X) = ω,
(3) X is the union of countably many 0-dimensional subspaces of countable
weight,

(4) X is the union of countably many separable metrizable subspaces.

3. Sharpness of the main result

Our aim in this section is to examine how sharp the above main result is. The
co-finite topology on any uncountable set X clearly satisfies R(Xω) = ω, while,
in any extension, nw(X) = |X |. This show that in the proof of (1) → (2) of 2.1
the Hausdorffness of X cannot be replaced by T1.
The next result in this section implies that, at least in ZFC, the exponent ω in

proving (1)→ (2) in Theorem 2.1 cannot be lowered.

Theorem 3.1. For each uncountable cardinal κ and natural number m there is
a c.c.c poset P of cardinality κ such that in V P there is a 0-dimensional first
countable topological space X = 〈κ, τ〉 such that R(Xm) = ω but R(Xm+1) = κ,
hence nw(X) = κ in any cardinal preserving extension.

In [5, Theorem 3.5] we constructed a c.c.c poset 〈Pκ,≤〉 which adds to the
ground model a 0-dimensional, first countable topology τ on κ such that R(Xω) =
ω and w(X) = κ for X = 〈κ, τ〉. The conditions in Pκ are finite approximations
of the space X and the property R(Xω) = ω is guaranteed by some ∆-system and
amalgamation arguments. Here we will use a subset P of Pκ with the inherited
order. To ensure R(Xm+1) = κ we thin out Pκ in the following way. We fix a
family D = {dα : α < κ} of pairwise disjoint elements of κm+1 with the intention
to make D discrete in Xm+1. A condition p ∈ Pκ is put into P if and only if
every neighbourhood given by p witnesses that D is discrete. The main step of the
proof is to show that P is large enough to allow the ∆-system and amalgamation
arguments to work in showing R(Xm) = ω.

Proof of Theorem 3.1: First we recall some definitions and lemmas from the
proof of [5, Theorem 3.5]. A quadruple 〈A, n, f, g〉 is said to be in Pκ

0 provided
(a)–(b) below hold:

(a) A ∈
[

κ
]<ω
, n ∈ ω, f and g are functions,

(b) f : A × A × n → 2, g : A × n × A × n → 3,

For p ∈ Pκ
0 we write p = 〈Ap, np, fp, gp〉. If p, q ∈ Pκ

0 we set p ≤ q iff fp ⊇ fq

and gp ⊇ gq. If p ∈ Pκ
0 , α ∈ Ap, i < np we defined U(α, i) = Up(α, i) = {β ∈

Ap : fp(β, α, i) = 1}.
A quadruple 〈A, n, f, g〉 ∈ Pκ

0 is put in Pκ iff (i)–(ii) below are also satisfied:

(i) ∀α ∈ A ∀ i < j < n α ∈ U(α, j) ⊂ U(α, i),
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(ii) ∀α 6= β ∈ A ∀ i, j < n
g(α, i, β, j) = 0 if and only if U(α, i) ⊂ U(β, j),
g(α, i, β, j) = 1 if and only if U(α, i) ∩ U(β, j) = ∅,
g(α, i, β, j) = 2 if α ∈ U(β, j) and β ∈ U(α, i).

Definition 3.2 ([5, Definition 3.6]). Assume that pi =
〈

Ai, ni, f i, gi
〉

∈ Pκ
0 for

i ∈ 2. We say that p0 and p1 are twins iff n0 = n1, |A0| = |A1| and taking n = n0
and denoting by σ the unique <On-preserving bijection between A0 and A1 we
have

(1) σ⌈A0 ∩ A1 = idA0∩A1 .
(2) σ is an isomorphism between p0 and p1, i.e. ∀α, β ∈ A0, ∀ i, j < n

f0(α, β, i) = f1(σ(α), σ(β), i),
g0(α, i, β, j) = g1(σ(α), i, σ(β), j),

We say that σ is the twin function of p0 and p1. Define the smashing function σ
of p0 and p1 as follows: σ = σ ∪ idA1 . The function σ∗ defined by the formula

σ∗ = σ ∪ σ−1⌈A1 is called the exchange function of p0 and p1.

Definition 3.3 ([5, Definition 3.7]). Assume that p0 and p1 are twins and ε :
Ap1 \ Ap0 → 2. A common extension q ∈ Pκ of p0 and p1 is called an ε-
amalgamation of the twins p0 and p1 provided

∀α ∈ Ap0△Ap1 fq(α, σ∗(α), i) = ε(σ(α)).

Lemma 3.4 ([5, Lemma 3.8]). If p0, p1 ∈ Pκ are twins and ε : Ap1 \ Ap0 → 2,
then p0 and p1 have an ε-amalgamation in Pκ.

In [5] we used the poset Pκ = 〈Pκ,≤〉. Here we will apply a subset P of Pκ.

To define it let {dα : α < κ} be a family of pairwise disjoint elements of
[

κ
]m+1

such that κ \
⋃

{dα : α < κ} is still infinite. Write dα = {dα,i : i ≤ m}.

Definition 3.5. A condition p = 〈A, n, f, g〉 ∈ Pκ is in P iff it satisfies (1) and
(2) below:

(1) dα ⊂ A or dα ∩ A = ∅ for each α < κ;
(2) if α < β < κ, dα ∪ dβ ⊂ A, then there is an i = iα,β ≤ m such that

dα,i /∈ Up(dβ,i, 0) and dβ,i /∈ Up(dα,i, 0).

Let P = 〈P,≤〉.

We define X as expected. Let G be a P-generic filter and let F =
⋃

{fp : p ∈
G}. For each α < κ and n ∈ ω let V (α, i) = {β < κ : F (β, α, i) = 1}. Put
Bα = {V (α, i) : i < κ} and B =

⋃

{Bα : α < κ}. We choose B as the base of
X = 〈κ, τ〉. By standard density arguments we can see that X is first countable
and 0-dimensional.
It is easy to see that R(Xm+1) = κ, in fact s(Xm+1) = κ. Indeed, by 3.5 (2),

{dα : α < κ} is discrete in Xm+1, as witnessed by the open neighborhoods
V (dα,0, 0)× V (dα,1, 0) · · · × V (dα,m, 0).

Finally we need to show that P satisfies c.c.c and V P |= R(Xm) = ω. Clearly,
both of these statements follow from the next lemma.
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Lemma 3.6. If {pγ : γ < ω1} ⊂ P , {cγ : γ < ω1} ⊂ κm and j0, . . . , jm−1 are

natural numbers, then there are ordinals α < β < ω1 and a condition p ∈ P such
that

(+) p ≤ pα, pβ and p 
 cα ∈
∏

i<m V (cβ(i), ji) ∧ cβ ∈
∏

i<m V (cα(i), ji).

Proof: We can assume that cγ ⊂ Apγ holds for each γ < ω1.
Pick α and β such that pα and pβ are twins, and denoting by ̺ their twin

function we have ̺′′cα = cβ and {̺′′dξ : dξ ⊂ Apα} = {dζ : dζ ⊂ Apβ}.
Let x = {ξ < κ : dξ ⊂ Apα} and y = {ξ < κ : dξ ⊂ Apβ}. Define the function

ε : Apα \ Apβ → 2 by the stipulations ε(ν) = 1 iff ν ∈ cα. By Lemma 3.4 pα and
pβ have an ε-amalgamation p in Pκ. Since C = κ \

⋃

{dξ : ξ < κ} is infinite, we
can assume that Ap \ (Apα ∪ Apβ ) ⊂ C.
First we show that p ∈ P . Observe that for any ξ < κ we have dξ ∩ Ap 6= ∅

if and only if dξ ∩ (Apα ∪ Apβ ) 6= ∅ if and only if (dξ ⊂ Apα ∨ dξ ⊂ Apβ )
by Ap \ (Apα ∪ Apβ ) ⊂ C. Thus 3.5 (1) holds. To check 3.5 (2) assume that
ξ 6= ζ < κ and dξ ∪ dζ ⊂ Ap. Then dξ ∪ dζ ⊂ Apα ∪ Apβ and since pα and pβ

are in P we can assume that dξ ⊂ Apα and dζ ⊂ Apβ . If dξ ∩ Apβ 6= ∅ then
dξ ⊂ Apβ as well. Therefore dξ ∪ dζ ⊂ Apβ , and so 3.5 (2) holds for ξ and ζ
because pβ ∈ P . Thus we can assume that dξ ⊂ Apα \ Apβ , and similarly that

dζ ⊂ Apβ \ Apα . If ̺′′dξ 6= dζ , then ̺′′dξ = dµ for some µ ∈ y \ {ζ}. Since
pβ ∈ P , there is i ≤ m such that dµ,i /∈ Upβ (dζ,i, 0) and dζ,i /∈ Upβ (dµ,i, 0).
So, by the definition of ε-amalgamation, dξ,i /∈ Up(dζ,i, 0) and dζ,i /∈ Up(dξ,i, 0).

On the other hand, if ̺′′dξ = dζ , then there is i ≤ m such that ε(dξ,i) = 0,

for |dξ | = m + 1 > m = |ε−1{1}|. So, by the definition of ε-amalgamation,
dξ,i /∈ Up(dζ,i, 0) and dζ,i /∈ Up(dξ,i, 0). Thus p ∈ P .
Finally we show that p 
 “cα ∈

∏

i<m V (cβ(i), ji) ∧ cβ ∈
∏

i<m V (cα(i), ji)”.
Indeed, cβ(i) ∈ Up(cα(i), ji) and cα(i) ∈ Up(cβ(i), ji) for each i < m because
̺(cα,i) = cβ,i and either cα,i = cβ,i or ε(cα,i) = 1. �

Theorem 3.1 is proved.

Next we show that the use of forcing in the implications (1)→ (3) and (2)→ (3)
from Theorem 2.1 is essential because in 3.8 we shall produce a ZFC example
of a 0-dimensional, first countable space X that satisfies nw(X) = ω (hence
R(Xω) = ω) but still X is not σ-second countable. To achieve this we need the
following lemma. If X = 〈X, τ〉 is a topological space, D(X) denotes the discrete
topology on X . If A and B are sets, let Fin(A, B) be the family of functions
mapping a finite subset of A into B.

Lemma 3.7. If Z ⊂ Xω and Z is somewhere dense in the space D(X)ω, then
w(Z) = w(X).

Proof: Fix a natural number n ∈ ω and a function f : n → X such that Z is
dense in the basic open set Uf = {g ∈ Xω : f ⊂ g} of D(X)ω. This means that

(†) ∀ f ′ ∈ Fin(ω \ n, X)∃ g ∈ Z f ∪ f ′ ⊂ g.
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From now on we forget about the D(X)ω topology, we will use only (†). With-
out loss of generality we can assume that Z ⊂ Uf . Let Z be a base of Z in the
subspace topology of Xω.
Let πm : X

ω → X be the projection to the mth factor, i.e. πm(g) = g(m). Set
X = {πn(U) : U ∈ Z}. Since w(Z) ≤ w(X), it is enough to show that X is a base
of X .

Claim. If U is open in Z then πn(U) is open in X .

Proof of the claim: Let x ∈ πn(U). We need to show that πn(U) contains a
neighbourhood of x. Pick g ∈ U with x = g(n). Then, by the definition of the
product topology on Xω, there is a function σ which maps a finite subset of ω \n
into the family of non-empty open subsets of X such that

(⋆) g ∈ Z ∩
⋂

m∈dom(σ)

πm
−1 σ(m) ⊂ U.

We can assume that n ∈ dom(σ). Let g′ = g⌈(domσ \ {n}). By (†), for each
x′ ∈ σ(n) there is hx′ ∈ Z such that

(⋆⋆) f ∪ {
〈

n, x′
〉

} ∪ f ′ ⊂ hx′ .

Now (⋆) implies hx′ ∈ U and so x′ ∈ πn(U). Thus x ∈ σ(n) ⊂ πn(U), which was
to be proved. �

To show that X is a base let x ∈ V ⊂ X , V open. By (†) we can find a
point g ∈ Z with f ⊂ g and g(n) = x. The family Z is a base of Z in the
subspace topology of Xω, so there is U ∈ Z such that g ∈ U ⊂ Z ∩πn

−1 V . Thus
x ∈ πn(U) ⊂ V and πn(U) is open by the previous claim.
Thus X is a base of X , and so w(X) ≤ |X | ≤ |Z|. Since w(Z) ≤ ωw(X) =

w(X), we are done.

After this preparation we can give the ZFC example promised above.

Theorem 3.8. There is 0-dimensional Hausdorff space Y such that χ(Y ) nw(Y ) =
ω, but Y is not σ-second countable.

Proof: By [5, Theorem 3.1] there is a 0-dimensional Hausdorff space X of size
2ω such that χ(X) nw(X) = ω, but w(X) = 2ω. We show that Y = Xω is as
required. Clearly χ(Y ) = χ(X) = ω and nw(Y ) = nw(X) = ω.
Assume that Y =

⋃

k<ω Zk. The Baire category theorem implies that some Zk

is somewhere dense in D(X)ω. Then w(Zk) = w(X) = 2
ω by Lemma 3.7. �

By Corollary 2.5, if Martin’s Axiom holds, then every Hausdorff space X of
size and weight < 2ω is σ-second countable if and only if nw(X) = ω. The next
theorem shows that MA(Cohen) is not enough to get this equivalence. Note that
for a first countable space X we have w(X) ≤ |X |.
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Theorem 3.9. If ZFC is consistent, then so is ZFC + MA(Cohen) + “there
is a first countable 0-dimensional Hausdorff space Y such that nw(Y ) = ω and
|Y | < 2ω but Y is not σ-second countable”.

The proof is based on Theorem 3.9 above and Theorem 3.11 below.

Definition 3.10. Given a topological space Z, let I(Z) be the σ-ideal generated
by the nowhere dense subsets of Z. The elements of I(Z) are called first category
in Z.

The next result is due to Saharon Shelah [6] and it is included here with his
kind permission.

Theorem 3.11. If Z is a topological space and the forcing notion P = Fn(κ, 2, ω)

adds κ Cohen reals to the ground model, then the ideal IV P
(Z) is generated by

IV (Z), that is, for each T ∈ IV P
(Z) there is T ′ ∈ IV (Z) with T ⊂ T ′.

Proof: Since IV P
(Z) is σ-generated by the nowhere dense subsets of Z in V P ,

we can assume that T is nowhere dense. Let Ṫ be a P -name of T such that
1P 
“Ṫ is nowhere dense”.
For each m ∈ ω define, in V , the subset Bm of Z as follows:

(∗) Bm = {x ∈ Z : ∃ p ∈ P |p| = m ∧ p 
 x ∈ Ṫ}.

Clearly 1P 
 Ṫ ⊂
⋃

m∈ω
Bm, so it is enough to show that every Bm is nowhere

dense. Assume on the contrary that there are an open set U ⊂ Z and m ∈ ω such
that Bm is dense in U .
Now, by finite induction, we can define open sets U ⊃ U0 ⊃ U1 · · · ⊃ Um and

conditions q0, . . . , qm with pairwise disjoint domains such that for each j ≤ m
and for each f ∈ P if dom(f) =

⋃

i<j

dom(qj) then

(†) f ∪ qj 
 Ṫ ∩ Uj = ∅.

Since Bm is dense in U and Um ⊂ U there is x ∈ Bm ∩ Um. Then, by the
definition of Bm, we have a condition p ∈ P with |p| = m such that p 
 x ∈
Ṫ . But the domains of the qj are pairwise disjoint, so there is j ≤ m with
dom(p) ∩ dom(qj) = ∅. Thus p ∪ qj ∈ P . Let f = p⌈

⋃

i<j

dom(qi). By (†)

f ∪ qj 
 Ṫ ∩Uj = ∅, so p∪ qj 
 Ṫ ∩Um = ∅ as well. But this contradicts x ∈ Um

and p 
 x ∈ Ṫ , and thus the theorem is proved. �

Proof of Theorem 3.9: Using again [5, Theorem 3.1] we have a 0-dimensional
Hausdorff space X such that χ(X) nw(X) = ω, but w(X) = 2ω. Let Y = Xω and
Z = D(X)ω. Then add κ > 2ω Cohen reals to the ground model. In the generic
extension clearly χ(Y ) = nw(Y ) = ω will remain valid.
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Since Z /∈ IV (Z) by the Baire Category theorem, we have Z /∈ IV P
(Z) as well

by Theorem 3.11.

Therefore, if Y =
⋃

{Yk : k < ω} holds in V P , then Yk /∈ IV P
(Z) for some

k ∈ ω, i.e. Yk is somewhere dense in Z. Thus there is a natural number n ∈ ω
and a function f : n → X such that

(†) ∀ f ′ ∈ Fin(ω \ n, X) ∃ g ∈ Yk f ∪ f ′ ⊂ g.

But (†) implies that Yk is also dense in the basic open set (Vf )
V P
= {g ∈

Xω ∩ V P : f ⊂ g} of (D(X)ω)V
P
. Thus, applying Lemma 3.7 in V P we have

w(Yk) = w(X) > ω. Thus, in V P , MA(Cohen) holds, and still the first countable,

0-dimensional T2 space Y is not σ-second countable, though w(Y ) = (2ω)V < κ =

(2ω)V
P
. �

4. Examples for higher cardinals

In this section we generalize the constructions of [5, Theorem 3.1] and 3.8 for
cardinals greater than ω.

Theorem 4.1. Let κ and λ be cardinals, cf(κ) = κ. Then there is a 0-dimensional
Hausdorff space Xκ

λ such that χ(Xκ
λ ) = κ, nw(Xκ

λ ) = λ<κ and w(Xκ
λ ) = λκ.

Proof: For each f ∈ Fn(κ, λ, κ) put Uf = {g ∈ κλ : f ⊂ g}. Write U(g, α) =
Ug⌈α for g ∈ κλ and α < κ. For g 6= h ∈ κλ define ∆(g, h) = min{α : g(α) 6=

h(α)}. Consider the topological space Cκ
λ = 〈κλ, τ〉 that has as a base {Uf : f ∈

<κλ}. Let

Y = {g ∈ κλ : ∃α < κ (g(β) = 0 iff β ≥ α)}

and

Z = {g ∈ κλ : 0 /∈ ran(g)}.

Clearly Y and Z are disjoint, |Y | = λ<κ, |Z| = λκ, Z is closed and nowhere
dense in Cκ

λ . Let X = Y ∪ Z. Our required space will be Xκ
λ = 〈X, ̺〉, where ̺

refines the topology τX . To define ̺ put

Xg =
⋃

{Uf : ∃α < κ f = g⌈α ∪ {〈α, 0〉}}

for g ∈ Z and Xg = ∅ for g ∈ Y . For g ∈ X and α < κ let V (g, α) = (U(g, α) \
Xg) ∩ X . Let the neighbourhood base of g ∈ X in ̺ be

Bg = {V (g, α) : α < κ}.
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First we note that B =
⋃

{Bx : x ∈ X} is a base of a topology because

(†) ∀α < κ ∀h ∈ V (g, α) \ {g} U(h,∆(g, h) + 1) ∩ X ⊂ V (g, α).

Since V (g, α)∩Y = U(g, α)∩Y and V (h, α)∩Z = U(h, α)∩Z for each g ∈ Y ,
h ∈ Z and α < κ we have that 〈Y, τ〉 = 〈Y, ̺〉 and 〈Z, τ〉 = 〈Z, ̺〉. Thus

nw(〈X, ̺〉) = nw(〈Y, ̺〉) + nw(〈Z, ̺〉) ≤ w(〈Y, τ〉) + w(〈Z, τ〉) ≤ w(〈Cκ
λ 〉) = λ<κ.

Obviously χ(〈X, ̺〉) = κ.
Finally we show that w(〈X, ̺〉) = λκ. This will follow if we show that B is

an irreducible base for X , by [5, Lemma 2.6]. We claim that {Bx : x ∈ X} is
an irreducible decomposition of the base B (see [5, Definition 2.3]). Since Y is
discrete in ̺ it is enough to show that if g 6= h are from Z with g ∈ V (h, α) for
some α < κ then V (h, α) 6⊂ V (g, 0). Let δ = ∆(g, h). Then U(g, δ+ 1) ⊂ V (h, α)
by (†). Consider the element y of Y defined by the formulas y⌈δ+1 = g⌈δ+1 and
y(δ+1) = 0. Then y ∈ Xg and so y /∈ V (g, 0). On the other hand y ∈ U(g, δ+1),
so V (h, α) 6⊂ V (g, 0). �

Lemma 4.2. If X is any topological space and Z ⊂ Xκ, α < κ, f : α → X are
such that

(‡) ∀ f ′ ∈ Fin(κ \ α, X) ∃ g ∈ Z f ∪ f ′ ⊂ g,

then w(Z) ≥ w(X).

The proof is similar to that of Lemma 3.7, so we omit it.

Let us recall that given a cardinal µ the Singular Cardinal Hypothesis (SCH) is

said to hold below µ provided νcf(ν) = 2cf(ν)ν+ for each singular cardinal ν ≤ µ.
By [3, Lemma 1.8.1], if µ is regular and SCH holds below µ, then log(µ+) =
min{ν : 2ν ≥ µ+} is also regular. It is well-known that the failure of SCH
requires the consistency of large cardinals, therefore the assumption of our next
lemma is quite reasonable. Also note that SCH trivially holds below ℵω.

Theorem 4.3. If µ and log(µ+) are both regular cardinals then there is a 0-
dimensional T2 space Y such that χ(Y ) nw(Y ) ≤ µ, but Y is not the union of µ
subspaces of weight µ.

Proof: Let ̺ = log(µ+). Applying Theorem 4.1 for κ = ̺ and λ = 2 we get
a space X with χ(X) nw(X) = 2<̺ ≤ µ < w(X). Let Y = X̺ and consider a
partition Y =

⋃

α<̺ Yα. Since κ = ̺ is regular, applying the technique of the

standard proof of the Baire Category theorem we can see that the space C̺
|X|
is

not the union of ̺ nowhere dense subspaces. Therefore there are ordinals α, ξ < ̺
and a function f : α → X such that

(‡′) ∀ f ′ ∈ Fn(̺ \ α, X, ̺) ∃ g ∈ Yξ f ∪ f ′ ⊂ g.

But (‡′) clearly implies (‡). So, by Lemma 4.2, w(Yξ) ≥ w(X) > µ. Thus Y
satisfies the requirements. The theorem is proved. �
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Problem 1 (ZFC). If µ is a cardinal, is there a spaceX such that χ(X) nw(X) =
µ (or just nw(X) = µ), but X is not the union of < 2µ many subspaces of weight
< 2µ (or just w(X) = 2µ)?

Remark. The simplest case of Problem 1 left open by Theorem 4.1 is that 2ω = ω2,
2ω1 = ω3 and µ = ω1. Indeed, if X

κ
λ is the space constructed in Theorem 4.1 and

nw(Xκ
λ ) = λ<κ ≤ ω1, then λ ≤ ω1 and κ ≤ ω. So w(Xκ

λ ) = λκ ≤ ωω
1 = ω2 < 2ω1 .
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