Ladislav Bican Butler groups and Shelah's Singular Compactness

Commentationes Mathematicae Universitatis Carolinae, Vol. 37 (1996), No. 1, 171--178

Persistent URL: http://dml.cz/dmlcz/118821

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://project.dml.cz

LADISLAV BICAN

Abstract. A torsion-free group is a B_2 -group if and only if it has an axiom-3 family \mathfrak{C} of decent subgroups such that each member of \mathfrak{C} has such a family, too. Such a family is called SL_{\aleph_0} -family. Further, a version of Shelah's Singular Compactness having a rather simple proof is presented. As a consequence, a short proof of a result [R1] stating that a torsion-free group B in a prebalanced and TEP exact sequence $0 \to K \to C \to B \to 0$ is a B_2 -group provided K and C are so.

Keywords: B_1 -group, B_2 -group, prebalanced subgroup, torsion extension property, decent subgroup, axiom-3 family Classification: 20K20

All groups in this paper are additively written abelian. If x is an element of a torsion-free group G then $\mathbf{t}_G(x) = \mathbf{t}(x)$ will denote the type of x in G. By a smooth (ascending) union of a group G we mean a collection of pure subgroups G_{α} indexed by an initial segment of ordinals with the property that $G_{\beta} \leq G_{\alpha}$ when $\beta < \alpha$ and $G_{\alpha} = \bigcup_{\beta < \alpha} G_{\beta}$ whenever α is a limit ordinal. For unexplained terminology and notations see [F1].

An exact sequence $E: 0 \to H \to G \xrightarrow{\beta} K \to 0$ with K torsion-free is balanced if the induced map $\beta_*: \operatorname{Hom}(J,G) \to \operatorname{Hom}(J,K)$ is surjective for each rank one torsion-free group J. Equivalently, E is balanced if all rank one (completely decomposable) torsion-free groups are projective with respect to E. A torsionfree group B is said to be a B_1 -group (Butler group) if $\operatorname{Bext}(B,T) = 0$ for all torsion groups T, where Bext is the subfunctor of Ext consisting of all balancedexact extensions. A subgroup H of a torsion-free group G is said to be prebalanced if, for each $g \in G \setminus H$, there are elements $h_0, \ldots, h_n \in H$ and a non-zero integer m such that $\mathbf{t}(g+H) = \bigcup_{i=0}^n \mathbf{t}(mg+h_i)$.

Another relevant concept in the study of infinite rank Butler groups is the torsion extension property (TEP). A pure subgroup H of a torsion-free group G is said to have TEP in G, or briefly, H is TEP(-subgroup) in G, if every homomorphism $H \to T$ with T torsion extends to a homomorphism $G \to T$.

Let G be a torsion-free group and H a pure subgroup of corank 1 in G. The types $\mathbf{t}(J)$ of those pure rank 1 subgroups J of G which are not contained in H generate a lattice ideal $\mathcal{P}_{G|H}$ in the lattice \mathcal{T} of all types. We say that H is

This research has been partially supported by the Grant Agency of the Czech Republic, grant $\#GA\check{C}R$ 201/95/1453

L. Bican

preseparative (\aleph_0 -prebalanced in the terminology of [BF]) in G, if the ideal $\mathcal{P}_{G|H}$ is countably generated. Equivalently, H is preseparative in G, if for each $g \in G \setminus H$ there is a countable subset $\{h_0, h_1, \ldots\} \subseteq H$ such that for each $h \in H$ there are $m, n < \omega, m \neq 0$, with $t(g+h) \leq t(mg+h_0) \cup t(mg+h_1) \cup \cdots \cup t(mg+h_n)$. In this case we shall also say that $\{h_0, h_1, \ldots\}$ is a preseparative set for g over H, or H-preseparative set for g. If the corank of H in G is > 1, then H is defined to be preseparative in G if the ideal $\mathcal{P}_{K|H}$ is countably generated for every pure subgroup K of G that contains H as a corank 1 subgroup.

Let H be a pure subgroup of a torsion-free group G. We say that a smooth ascending union $G = \bigcup_{\alpha < \mu} H_{\alpha}$ is a *B*-filtration from $H = H_0$ to G if $H_{\alpha+1} = H_{\alpha} + B_{\alpha}$ for each $\alpha + 1 < \mu$, where B_{α} is a Butler group of finite rank, i.e. a pure subgroup of a completely decomposable group, or, equivalently [B], a torsion-free homomorphic image of a completely decomposable group of finite rank. If $H_0 = 0$, then we speak simply about the *B*-filtration of G. A torsion-free group G is called a B_2 -group if it has a *B*-filtration.

Recall, that an axiom-3 family of a torsion-free group G over its subgroup His a collection \mathfrak{C} of pure subgroups of G containing H such that $H, G \in \mathfrak{C}$ and (i) $\sum_{\alpha \in I} H_{\alpha} \in \mathfrak{C}$ whenever H_{α} belongs to \mathfrak{C} for each $\alpha \in I$; (ii) for every $U \in \mathfrak{C}$ and every countable subset X of G there is $V \in \mathfrak{C}$ such that $U \cup X \subseteq V$ and $|V/U| \leq \aleph_0$. Moreover, (see [DHR]) such a collection \mathfrak{C} is said to be a $G(\lambda)$ -family if, instead of (i), \mathfrak{C} is closed under arbitrary smooth ascending unions of members of \mathfrak{C} and in (ii) the countability is replaced by the infinite cardinal λ .

In this note we start with some known results on decent subgroups to obtain a slight generalization of a characterization of B_2 -groups by showing that each such a group has an axiom-3 family of decent subgroups "hereditarily", as observed by [R1]. Several results on infinite rank Butler groups are based on Shelah's Singular Compactness. Our second purpose is to present a rather simple version of this principle having a short proof. This result is then applied to obtain a new proof of a result of Rangaswamy [R1; Theorem 3] stating that for a prebalanced and TEP B_2 -subgroup K of a B_2 -group C the factor-group C/Kis a B_2 -group, again. This theorem seems to be the most important result using the Shelah's Singular Compactness in the sense that all other results requiring this principle can be derived easily from this one.

Note [AH], that a pure subgroup H of a torsion-free group G is said to be *decent*, if for each finite rank pure subgroup $L/H \leq G/H$ there is a finite rank Butler group B such that L = H + B.

1. Lemma. Let $K \leq H$ be pure subgroups of a torsion-free group G.

- (i) If K is decent in G, then K is decent in H;
- (ii) if H is decent in G, then H/K is decent in G/K;
- (iii) if K is prebalanced and H/K is decent in G/K then H is decent in G.

PROOF: (i) Let $L/K \leq H/K$ be a finite rank pure subgroup. There is a finite rank Butler group $B \leq G$ with L = K + B. Now $L = K + (B \cap H)$ and $B \cap H$ is finite rank Butler as a pure subgroup of B.

(ii) Let $L/H \leq G/H$ be a finite rank pure subgroup. There is a finite rank Butler group $B \leq G$ with L = H + B. Hence L/K = H/K + (B + K)/K, where the last subgroup is finite rank Butler, being isomorphic to $B/B \cap K$.

(iii) If L/H is a finite rank pure subgroup of G/H then $L/K = H/K + \tilde{B}/K$ with \tilde{B}/K finite rank Butler. The prebalancedness of K yields $\tilde{B} = K + B$, hence L = H + B, where B is a finite rank Butler group.

2. Lemma. If H is a decent subgroup of at most countable corank in a torsion-free g roup G, then there is a B-filtration from H to G and H is TEP in G.

PROOF: Expressing $G/H = \bigcup_{n < \omega} L_n/H$ as an ascending union of finite rank pure subgroups with $L_0 = H$, the decency yields $L_n = H + B_n$ for a finite rank Butler group B_n . Consequently, $L_{n+1} = L_n + B_{n+1}$ for each $n < \omega$ and $G = \bigcup_{n < \omega} L_n$ is the desired *B*-filtration.

Every pure subgroup of a finite rank Butler group is TEP by [B1; Theorem 4]. So, if L = H + B where B is finite rank Butler and if $\varphi : H \to T, T$ torsion, is any homomorphism, then the restriction of φ to $H \cap B$ extends to $\varrho : B \to T$ and $\psi : L \to T$ given by $\psi(h + b) = \varphi(h) + \varrho(b)$ is an extension of φ and the assertion follows by the induction.

Let $G = \bigcup_{\alpha < \mu} H_{\alpha}$ be a *B*-filtration of a torsion-free group G, $H_{\alpha+1} = H_{\alpha} + B_{\alpha}$ with B_{α} finite rank Butler for each $\alpha + 1 < \mu$. Recall, that a subset $S \subseteq \mu$ is said to be *closed* provided $H_{\beta} \cap B_{\beta} \leq \langle B_{\gamma} \mid \gamma \in S, \gamma < \beta \rangle$ for each $\beta \in S$. Moreover, for any subset $S \subseteq \mu$ we put $G(S) = \sum_{\gamma \in S} B_{\gamma}$. Finally, for each $0 \neq g \in G$ we define $\nu(g) = \nu$ if $g \in H_{\nu+1} \setminus H_{\nu}$.

3. Lemma. If $\bar{S} \subseteq \mu$ is a closed subset, then every element $\lambda \in \bar{S}$ lies in a finite closed subset contained in \bar{S} .

PROOF: Proving indirectly, let us assume that $\lambda \in \overline{S}$ is the smallest ordinal which is not in a finite closed subset of \overline{S} . The intersection $H_{\lambda} \cap B_{\lambda}$ is of finite rank and we can select any its maximal linearly independent subset $x_1, \ldots, x_l \in B_{\lambda}$. Obviously, $\nu(x_i) = \lambda_i < \lambda$ and we claim $\lambda_i \in \overline{S}$. If not, then we can write $x_i = y + z$, where $y \in \langle B_{\varrho} \mid \varrho \in \overline{S}, \varrho < \lambda_i \rangle$ and $z \in \langle B_{\varrho} \mid \varrho \in \overline{S}, \varrho > \lambda_i \rangle$. Hence $z = z_1 + \cdots + z_k, z_i \in B_{\varrho_i}, \varrho_1 < \cdots < \varrho_k, \varrho_i \in \overline{S}$ and ϱ_k can be chosen as small as possible. Now $z_k = x_i - y - z_1 - \cdots - z_{k-1} \in B_{\varrho_k} \cap H_{\varrho_k} \leq \langle B_{\varrho} \mid \varrho \in \overline{S}, \varrho < \varrho_k \rangle$ gives z = 0 and so $x_i = y \in \langle B_{\varrho} \mid \varrho \in \overline{S}, \varrho < \lambda_i \rangle$, which yields a contradiction $\nu(x_i) < \lambda_i$. The choice of λ gives the existence of a finite closed subset S_i of \overline{S} with $x_i \in G(S_i)$ for each $i = 1, \ldots, l$. The set $S = \bigcup_{i=1}^l S_i$ is closed and so is $S \cup \{\lambda\}$ owing to the fact that G(S) is *G*-pure and contains a maximal linearly independent subset of $H_{\lambda} \cap B_{\lambda}$.

4. Lemma. If $S \subseteq \mu$ is closed, then G(S) is a decent subgroup of G.

PROOF: The purity of G(S) follows by the standard argument (see e.g. [AH], [DHR]). If $L/G(S) \leq G/G(S)$ is finite rank pure subgroup, then Lemma 3 yields the existence of a finite closed subset $T \subseteq \mu$ containing a set of representatives of

a maximal linearly independent subset of L/G(S). It is a routine to check that $L \subseteq G(S \cup T)$ which yields $L = G(S) + (L \cap G(T))$, the last intersection being finite rank Butler as a pure subgroup of G(T).

The following families of subgroups have been introduced in [B4].

5. Definition. Let λ be an infinite cardinal and H be a subgroup of a torsionfree group G. A collection $\mathfrak{C} = \mathfrak{C}_{\lambda}(H, G)$ of pure subgroups of G containing H is said to be an SL_{λ} -family of H in G if $H, G \in \mathfrak{C}$ and (i) $\sum_{\alpha \in I} H_{\alpha} \in \mathfrak{C}$ whenever H_{α} belongs to \mathfrak{C} for each $\alpha \in I$; (ii) if $V \subseteq \tilde{V}$ are elements of \mathfrak{C} and $X \subseteq \tilde{V}$ is any subset with $|X| \leq \lambda$ then there is $U \in \mathfrak{C}$ such that $V \cup X \subseteq U \leq \tilde{V}$ and $|U/V| \leq \lambda$.

If, instead of (i), a weaker condition stating that \mathfrak{C} is closed under arbitrary smooth ascending unions is satisfied, then we say that \mathfrak{C} is a WL_{λ} -family of H in G. In both cases we shall also speak about families of G over H. Especially, for H = 0 we shall speak simply about families of G.

Furthermore, we say that a smooth ascending union $G = \bigcup_{\alpha < \mu} H_{\alpha}$ of *G*-pure subgroups is a λ -chain from H_0 to *G* if $|H_{\alpha+1}/H_{\alpha}| \leq \lambda$ for each $\alpha + 1 < \mu$. If all H_{α} 's are *G*-preseparative, then we speak about a λ -preseparative chain from H_0 to *G*. Especially, for $H_0 = 0$, we shall speak simply about a λ -chain or a λ -preseparative chain of *G*.

6. Theorem. The following conditions are equivalent for a torsion-free group G:

- (i) G is a B_2 -group;
- (ii) G has an SL_{\aleph_0} -family of decent subgroups;
- (iii) G has a WL_{\aleph_0} -family of decent subgroups;
- (iv) G has an axiom-3 family of decent subgroups;
- (v) G has a $G(\aleph_0)$ -family of decent subgroups;
- (vi) G has an \aleph_0 -chain of decent subgroups.

Moreover, every member of any of these families is a B_2 -group and is TEP in G.

PROOF: If $G = \bigcup_{\alpha < \mu} H_{\alpha}$ is a *B*-filtration, then it follows from Lemmas 3 and 4 that the set $\mathfrak{C} = \{G(S) \mid S \subseteq \mu, S \text{ closed}\}$ is an SL_{\aleph_0} -family of decent subgroups. Moreover, if $G = \bigcup_{\alpha < \mu} H_{\alpha}$ is an \aleph_0 -chain of decent subgroups of *G*, then Lemma 2 yields the existence of a *B*-filtration of *G* and the rest is obvious. For the additional assertions apply Lemma 2 and [B4; Theorem 4.3].

7. Lemma. Let a torsion-free group G be a smooth ascending union $G = \bigcup_{\alpha < \tau} G_{\alpha}$ of its subgroups such that G_{α} is preseparative in $G_{\alpha+1}$ for each $\alpha < \tau$. Then G_{α} is preseparative in G for each $\alpha < \tau$.

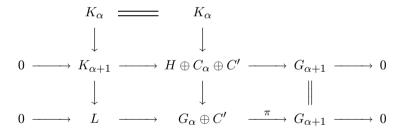
PROOF: The purity of G_{α} in G is obvious. Proving indirectly, let us assume that $\alpha < \tau$ is the first ordinal such that G_{α} is not G-preseparative and let $g \in G \setminus G_{\alpha}$ be an element without a G_{α} -preseparative set with $\nu(g) = \beta$ as small as possible. If $\{g_n \mid n < \omega\}$ is a G_{β} -preseparative set for g and $\{g_{nk} \mid k < \omega\}$ is a G_{α} -preseparative set for g and $\{g_{nk} \mid k < \omega\}$ is a G_{α} -preseparative set for g and $\{g_{nk} \mid k < \omega\}$ is a G_{α} -preseparative set for g and $\{g_{nk} \mid k < \omega\}$ is a G_{α} -preseparative set for g and $\{g_{nk} \mid k < \omega\}$ is a G_{α} -preseparative set for g.

 $\{-kg_{ij} \mid k, i, j < \omega, k \neq 0\}$ is a G_{α} -preseparative set for g — a contradiction finishing the proof.

8. Lemma. A pure subgroup H of a B_2 -group G is a B_2 -group if and only if there is a preseparative chain from H to G.

PROOF: If there is a preseparative chain from H to G, then there is an SL_{\aleph_0} -family of preseparative subgroups of G over H by [B4; Theorem 4.2] and H is a B_2 -group by [B4; Corollary 3.12].

To prove the converse, we borrow an idea from [F2]. Let $0 \to K \to H \oplus C \to G \to 0$ be any relative balanced-projective resolution. Since G is a B_2 -group, K has a preseparative chain in $H \oplus C$ and it is consequently a B_2 -group by [B4; Corollary 3.12] and so it has an SL_{\aleph_0} -family \mathfrak{C} of decent subgroups by Theorem 6. Using the usual back-and-forth argument we can construct the filtrations $K = \bigcup_{\alpha < \mu} K_{\alpha}, C = \bigcup_{\alpha < \mu} C_{\alpha}, G = \bigcup_{\alpha < \mu} G_{\alpha}$ such that $G_0 = H, G_{\alpha}$ are pure in G, C_{α} are summands of C, K_{α} belong to \mathfrak{C} , the factor-groups $C_{\alpha+1}/C_{\alpha}$ are countable and the sequences $0 \to K_{\alpha} \to H \oplus C_{\alpha} \to G_{\alpha} \to 0$ are prebalanced-exact. We can write $C_{\alpha+1} = C_{\alpha} \oplus C'$ with C' completely decomposable countable and we have the following commutative diagram



with natural maps, where $L = \text{Ker } \pi$, the first column is exact by the 3×3 -lemma and consequently L is a B_2 -group by Lemmas 2 and 1. If U/G_{α} is a rank one pure subgroup of $G_{\alpha+1}/G_{\alpha}$ then we have the exact sequence $0 \to L \to G_{\alpha} \oplus \tilde{C} \to U \to 0$, where \tilde{C} is a B_2 -group as a pure subgroup of countable completely decomposable group C'. So G_{α} is preseparative in $G_{\alpha+1}$ by [BF; Proposition 3.3] and Lemma 7 finishes the proof.

 (κ, \mathfrak{C}) -Shelah game. Let κ be a regular uncountable cardinal, let G be a torsion-free group of cardinality $|G| > \kappa^+$ and let \mathfrak{C} be a family of subgroups of G. We define the (κ, \mathfrak{C}) -Shelah game on G in the following way: Player I picks subgroups G_{2i} , $i < \omega$, of cardinality κ and player II picks G_{2i+1} such that $G_i \subseteq G_{i+1}$ for all $i < \omega$. Player II wins if G_{2i+1} is a member of \mathfrak{C} and it is TEP in G_{2i+3} for each $i < \omega$.

9. Definition. Let λ , κ be infinite cardinals and G be a torsion-free group of cardinality $|G| \geq \kappa$. A collection \mathfrak{C} of pure subgroups of G is said to be a $G(\lambda, \kappa)$ -

family, if $0 \in \mathfrak{C}$ and

- (i) if $H \in \mathfrak{C}$ and $X \subseteq G$ is any subset with $|X| \leq \lambda$, then $H \cup X$ is contained in a member K of \mathfrak{C} with $|K/H| \leq \lambda$;
- (ii) \mathfrak{C} is closed under smooth ascending unions $\bigcup_{\alpha < \mu} H_{\alpha}$ with $|\mu| \leq \kappa$.

10. Lemma. Let κ be a regular uncountable cardinal and G a torsion-free group of cardinality $|G| > \kappa^+$. If G has a $G(\kappa, \kappa^+)$ -family \mathfrak{C} of B_1 -subgroups, then player II has a winning strategy in the (κ, C) -Shelah game.

PROOF: In view of Lemma 1.2 in [H], (κ, \mathfrak{C}) -Shelah game is determined and so we are going to show that player I has no winning strategy. By way of contradiction let us assume that I has a winning strategy s and he has picked G_0 . Take H_0 to be any member of \mathfrak{C} containing G_0 and assume that H_β , $\beta < \alpha$, have been already defined for some $0 < \alpha < \kappa^+$. For α limit we simply set $H_\alpha = \bigcup_{\beta < \alpha} H_\beta$, while for $\alpha = \beta + 1$ we select H_α to be any member of \mathfrak{C} containing H_β and all $s(H_{\alpha_0}, \ldots, H_{\alpha_n}), \alpha_0 < \cdots < \alpha_n < \alpha, n < \omega$. The union $H = \bigcup_{\alpha < \kappa^+} H_\alpha$ belongs to \mathfrak{C} by the hypothesis and [B3; Lemma 4] yields the existence of a cub U in κ^+ such that H_α is TEP in H for each $\alpha \in U$.

Now when player I has chosen G_{2i} in the (κ, \mathfrak{C}) -Shelah game, then player II picks G_{2i+1} to be H_{α} , where α is the least non-limit element of U containing G_{2i} .

Looking at the proof of Theorem 6 we see that to a given *B*-filtration of a B_2^{\square} group *G* it is associated an SL_{\aleph_0} -family $\mathcal{F}(G)$ of decent, TEP and B_2 -subgroups of *G* in the natural way, given by the closed subsets of the corresponding ordinal number. It is natural to speak about an SL_{\aleph_0} -family of decent subgroups corresponding to a given *B*-filtration of *G*. Obviously, it follows from Lemma 3 that if $G = \bigcup_{\alpha < \mu} H_{\alpha}$ is a *B*-filtration of *G* and $G = \bigcup_{\alpha < \lambda} K_{\alpha}$ is any smooth ascending union consisting of members of the given *B*-filtration of *G*, then $\mathcal{F}(K_{\beta}) \subseteq \mathcal{F}(K_{\alpha})$ whenever $\beta \leq \alpha$ and $\bigcup_{\beta < \alpha} \mathcal{F}(K_{\beta}) \subseteq \mathcal{F}(K_{\alpha})$, α limit. Moreover, if $H \leq K$ are members of $\mathcal{F}(G)$, then using Lemma 2 we can easily prove the existence of a *B*-filtration from *H* to *K*.

11. Theorem. Let G be a torsion-free group of singular cardinality κ . If, for some cardinal $\lambda < \kappa$, G has a $G(\lambda)$ -family \mathfrak{C} of B_1 -subgroups such that each member of \mathfrak{C} of cardinality $< \kappa$ is a B_2 -group and there is a B-filtration from H to K whenever $H \leq K$ are members of \mathfrak{C} of cardinalities $< \kappa$ and H is TEP in K, then G is a B_2 -group.

PROOF: There is a smooth ascending union $\kappa = \bigcup_{\alpha < \mu} \kappa_{\alpha}$ with $\kappa_0 > \mu = \operatorname{cof} \kappa$, $\kappa_0 > \lambda$ and κ_{α} regular whenever α is non-limit. Further, let $G = \bigcup_{\alpha < \mu} G_{\alpha}$ be a smooth union with $|G_{\alpha}| = \kappa_{\alpha}$.

Set $G^0_{\alpha} = G_{\alpha}$ for each $\alpha < \mu$ and assume that G^n_{α} has been already defined for some $n < \omega$ and all $\alpha < \mu$. For α limit or 0 set $H^n_{\alpha} = G^n_{\alpha}$ and for α successor take H^n_{α} according to the $(\kappa_{\alpha}, \mathfrak{C})$ -Shelah game $G^0_{\alpha}, H^0_{\alpha}, G^1_{\alpha}, H^1_{\alpha}, \ldots$, the hypotheses of Lemma 10 being obviously satisfied. For each $\alpha < \mu$ let $\{h^j_{\alpha} \mid j < \kappa_{\alpha}\}$ be any list of the elements of H^n_{α} . Moreover, H^n_{α} has an SL_{\aleph_0} -family $\mathcal{F}(H^n_{\alpha})$ of decent and TEP subgroups corresponding to a given *B*-filtration of H^n_{α} . The routine set-theoretical arguments lead to the conclusion that we can select G^{n+1}_{α} in such a way that it has cardinality κ_{α} , contains $H^n_{\alpha} \cup \{h^j_{\gamma} \mid \gamma < \mu, j < \kappa_{\alpha}\}$ and $G^{n+1}_{\alpha} \cap H^n_{\alpha+1} \in \mathcal{F}(H^n_{\alpha+1})$.

Now for each α non-limit H_{α}^{n} is TEP in H_{α}^{n+1} by Lemma 10, hence the *B*-filtration of H_{α}^{n} extends to that of H_{α}^{n+1} and consequently $\mathcal{F}(H_{\alpha}^{n}) \subseteq \mathcal{F}(H_{\alpha}^{n+1}) \subseteq \mathcal{F}(H_{\alpha})$, where $H_{\alpha} = \bigcup_{n < \omega} H_{\alpha}^{n}$. Moreover, for $\alpha < \mu$ arbitrary we have $H_{\alpha} = H_{\alpha} \cap H_{\alpha+1} = \bigcup_{n < \omega} (H_{\alpha}^{n} \cap H_{\alpha+1}^{n}) \leq \bigcup_{n < \omega} (G_{\alpha}^{n+1} \cap H_{\alpha+1}^{n}) \leq \bigcup_{n < \omega} (H_{\alpha}^{n+1} \cap H_{\alpha+1}^{n+1}) = H_{\alpha}$, hence $H_{\alpha} \in \bigcup_{n < \omega} \mathcal{F}(H_{\alpha+1}^{n}) \subseteq \mathcal{F}(H_{\alpha+1})$ and H_{α} is TEP in $H_{\alpha+1}$ by Theorem 6. By hypothesis, there is a *B*-filtration from H_{α} to $H_{\alpha+1}$ and consequently it remains to show that the union $G = \bigcup_{\alpha < \mu} H_{\alpha}$ is smooth.

Let $\alpha < \mu$ be a limit ordinal and let $h \in H_{\alpha}$ be arbitrary. Then $h \in H_{\alpha}^{n}$ for some $n < \omega$ and consequently $h = h_{\alpha}^{j}$ for some $j < \kappa_{\alpha}$. Thus $j < \kappa_{\beta}$ for some $\beta < \alpha$, the chain $\{\kappa_{\alpha} \mid \alpha < \mu\}$ being assumed smooth. This yields $h \in G_{\beta}^{n+1} \leq H_{\beta}$ and the proof is complete.

12. Theorem. If $E: 0 \to K \to C \xrightarrow{\pi} B \to 0$ is a prebalanced and TEP exact sequence where K and C are B_2 -groups, then B is a B_2 -group, too.

PROOF: With respect to Theorem 6 let \mathfrak{C}_K and \mathfrak{C}_C be WL_{\aleph_0} -families of decent and TEP B_2 -subgroups of K and C, respectively. By the usual back-andforth argument we can construct a WL_{\aleph_0} -family $\mathfrak{C} = \{H \in \mathfrak{C}_C \mid H \cap K \in \mathfrak{C}_K, \pi(H) \text{ pure in } B\}$. Clearly, $H \cap K$ is TEP in C, hence in H and consequently $\pi(H) \cong H/H \cap K$ is a B_1 -group. So, B has WL_{\aleph_0} -family $\pi(\mathfrak{C})$ of B_1 -subgroups.

Assume now, that $|B| = \kappa$ is the smallest cardinality for which B is not a B_2 group. If $H \in \mathfrak{C}$ is such that $|\pi(H)| < \kappa$, then $0 \to H \cap K \to K \to \pi(H) \to 0$ is TEP and prebalanced-exact and consequently $\pi(H)$ is a B_2 -group by the choice of κ . Let $U \leq V$ be elements of $\pi(\mathfrak{C})$ such that $|V| < \kappa$ and $F: 0 \to U \to V \to$ $V/U \to 0$ is TEP. Then U, V are B_2 -groups, hence F is preseparative by [R2; Theorem 2] and consequently it is prebalanced by [B2; Lemma 3.5] in view of the existence of \aleph_0 -chain of B_2 -subgroups from U to V. The choice of κ yields that V/U is a B_2 -group and consequently there is a B-filtration from U to V. Hence κ is regular uncountable cardinal owing to [BS] and Theorem 11. From $\pi(\mathfrak{C})$ we can construct a κ -filtration $B = \bigcup_{\alpha < \kappa} B_{\alpha}$ consisting of B_2 -groups by the choice of κ . However, with respect to [B3; Lemma 4] the B_{α} 's can be assumed TEP in B and we are through. \Box

One part of the following result has been proved in [DHR; Proposition 3.9], while the second one was proved in [R1; Theorem 8] under (CH).

13. Theorem. If $E: 0 \to K \to C \to G \to 0$ is a prebalanced exact sequence, where G is a B_2 -group, then K is a B_2 -group if and only if C is.

PROOF: There is a preseparative chain from K to C, G being a B_2 -group. If C

L. Bican

is a B_2 -group, then K is so by Lemma 8. Conversely, if K is a B_2 -group, then the B-filtration of K extends to that of C by Lemma 1.

References

- [AH] Albrecht U., Hill P., Butler groups of infinite rank and axiom 3, Czech. Math. J. 37 (1987), 293–309.
- [B1] Bican L., Purely finitely generated groups, Comment. Math. Univ. Carolinae 21 (1980), 209–218.
- [B2] Bican L., Butler groups of infinite rank, Czech. Math. J. 44 (119) (1994), 67–79.
- [B3] Bican L., On B₂-groups, Contemporary Math. **171** (1994), 13–19.
- [B4] Bican L., Families of preseparative subgroups, to appear.
- [BF] Bican L., Fuchs L., Subgroups of Butler groups, Communications in Algebra 22 (1994), 1037–1047.
- [BS] Bican L., Salce L., Infinite rank Butler groups, Proc. Abelian Group Theory Conference, Honolulu 1006 (1983), Lecture Notes in Math., Springer-Verlag, 171–189.
- [B] Butler M.C.R., A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. 15 (1965), 680–698.
- [DHR] Dugas M., Hill P., Rangaswamy K.M., Infinite rank Butler groups II, Trans. Amer. Math. Soc. 320 (1990), 643–664.
- [F1] Fuchs L., Infinite Abelian Groups, vol. I and II, Academic Press, New York, 1973 and 1977.
- [F2] Fuchs L., Infinite rank Butler groups, preprint.
- [H] Hodges W., In singular cardinality, locally free algebras are free, Algebra Universalis 12 (1981), 205–220.
- [R1] Rangaswamy K.M., A homological characterization of abelian B₂-groups, Comment. Math. Univ. Carolinae 35 (1994), 627–631.
- [R2] Rangaswamy K.M., A property of B₂-groups, Proc. Amer. Math. Soc. **121** (1994), 409– 415.

DEPARTMENT OF ALGEBRA, FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 186 00 PRAHA 8 – KARLÍN, CZECH REPUBLIC

E-mail: bican@karlin.mff.cuni.cz

(Received March 20, 1995)