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On automorphisms of digraphs without symmetric cycles

Piotr Wójcik

Abstract. A digraph is a symmetric cycle if it is symmetric and its underlying graph is a
cycle. It is proved that if D is an asymmetric digraph not containing a symmetric cycle,
then D remains asymmetric after removing some vertex. It is also showed that each
digraph D without a symmetric cycle, whose underlying graph is connected, contains a
vertex which is a common fixed point of all automorphisms of D.

Keywords: asymmetric diagraphs

Classification: 05C20

A graph (digraph) G is called asymmetric if the only automorphism of G
is an identity, and symmetric otherwise. An asymmetric graph G is minimally
asymmetric if every subgraph of G on at least two vertices is symmetric, and it is
critically asymmetric if for every vertex v of G, the graph G−v, obtained from G
by removing the vertex v together with all incident edges, is symmetric. During
the Oberwolfach Seminar in 1988 Professor Nešetřil conjectured that there are
only finite number of minimally asymmetric undirected graphs and that every
critically asymmetric directed graph contains a directed cycle of length two. The
first, undirected part of this problem, was almost completely settled in papers
of Sabidussi [3] and Nešetřil and Sabidussi [2]. In this note we deal with the
second part of Nešetřil’s conjecture. Although, we are not able to show that each
critically asymmetric directed graph contains a directed cycle of length two, we
prove that in the underlying graph of such a digraph there exists a cycle which is
symmetrically oriented.

In order to state our results we need to introduce some definitions (note that
our notation, based mainly on properties of the underlying undirected graph of D,
is rather non-standard). A digraph D is connected if the underlying graph of D
(obtained from D by replacing each arc by an undirected edge) is connected. By
a component of D we mean a maximum connected subdigraph of D. A neighbor
of a vertex v of D is a vertex adjacent to v in the underlying graph of D. We
call D a path (cycle) if the underlying graph of D is a path (cycle). Furthermore,
we say that D is a symmetric cycle if it is a cycle and it is symmetric, and D is
an alternating path if it is a path and it contains no directed path with two arcs.
For a digraph D, by Ds we denote the digraph obtained from D by removing all
loops of D and reducing each multiple arc to a single one. Finally, a vertex v is
a fixed point of an automorphism σ, if σ(v) = v.

We shall prove that every critically asymmetric digraph contains a symmetric
cycle. In fact, our result is even slightly stronger.
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Theorem 1. Let D be a digraph with at least two vertices. If

(i) the underlying graph of D is connected,
(ii) Ds contains no symmetric cycle having an automorphism without fixed

points,

(iii) Ds contains no induced symmetric subdigraph being a cycle with at most

one diagonal arc, having an automorphism with two fixed points,

(iv) Ds is not an alternating path of odd length,

then there exists a vertex v of D such that the underlying graph of D − v is
connected and each neighbor of v is a fixed point of every automorphism of D−v.

Clearly, if D or Ds does not contains a symmetric cycle, then assumptions (ii)
and (iii) hold.

Corollary 1. Each asymmetric digraph D on at least two vertices satisfying

assumptions (ii) and (iii) of Theorem 1 contains a vertex v such that D − v is
asymmetric.

In particular, Theorem 1 and Corollary 1 hold when D is an oriented tree.
(Note that analogous results are not valid for undirected trees: a detailed anal-
ysis of this case was given by Nešetřil in [1].) Nonetheless, there are also some
dense digraphs satisfying assumptions of Theorem 1, as, for example, a transitive
tournament, i.e. the digraph with the vertex set {1, . . . , n} in which (i, j) is an
arc if and only if i < j.

Let us introduce some further definitions. For any digraph D and for any vertex
set V1 ⊆ V (D), D[V1] is the subdigraph of D induced by V1. A neighborhood of V1
in D, denoted by ND(V1), is the set of all neighbors of vertices from V1 which do
not belong to V1, and ND(v) = ND({v}). For an automorphism σ of D we define
the set of all movable points Mov(σ) of σ setting

Mov(σ) = {v ∈ V (D) | σ(v) 6= v}.

Finally, for a subdigraph H of D, let σ(H) denote the digraph which is the image
of H in σ.

Theorem 2. Let D be a symmetric digraph, let σ be a non-identity automor-
phism ofD and letH be a component ofD[Mov(σ)]. If σ(V (H))∩V (H) 6= ∅, then
σ(H) = H and H contains a symmetric cycle having an automorphism without
fixed points.

The above theorem implies that if a connected digraph D has an automorphism
σ such that Mov(σ) = V (D), then D contains a symmetric cycle having an
automorphism without fixed points. In other words, if D satisfies assumptions (i)
and (ii) of Theorem 1, then each automorphism of D has a fixed point. Using a
lemma based on Theorem 2 we shall prove the following.
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Corollary 2. Each digraph D satisfying assumptions (i)–(iii) of Theorem 1 con-
tains a vertex which is a common fixed point of all automorphisms of D.

Proof of Theorem 2: In order to show that σ(H) = H let σ′ = σ|Mov(σ).

Since σ(Mov(σ)) = Mov(σ), σ′ is an automorphism of D[Mov(σ)], hence σ′(H)
is a component of D[Mov(σ)]. But σ′(H) = σ(H). Thus, by assumption, we
obtain the equality of components σ(H) = H . This implies that σ|V (H) is an
automorphism of H .

Let

P = {(P, v, t) |t ∈ {1, 2, . . .} and P is a (v, σt(v))-path in H

such that for every u ∈ V (P ), σt(u) 6= u}.

The set P is non-empty since for any (v, σ(v))-path P1 in H we have V (P1) ⊆
Mov(σ) and (P1, v, 1) ∈ P . Let l be the minimum length of a path P such that
for some v and t, (P, v, t) ∈ P . Define

ν(v, t) = min{i ≥ 1 | σit(v) = v}.

Let n be the smallest value of ν(v, t) such that (P, v, t) ∈ P for some path P
of length l. Finally, fix (P0, v

0
0 , k) ∈ P , where P0 = (v00 , v

0
1, . . . , v

0
l ) is a path of

length l in H , k ≥ 1 and ν(v00 , k) = n. Then vl
0 = σk(v00) and σnk(v00) = v00.

Denote by C the following union of paths:

C = P0 ∪ σk(P0) ∪ · · · ∪ σ(n−1)k(P0).

We shall show that C is a cycle. Set vi
r = σik(v0r ). Since for i ≥ 0, vi

l =

σik(σk(v00)) = vi+1
0 and vn−1

l = vn
0 = σnk(v00) = v00 , it is enough to show that

paths generating C are not intersecting, i.e. that

(∗) for every 0 ≤ r ≤ l − 1 and 0 ≤ i < j ≤ n − 1, we have vi
r 6= v

j
r ,

(∗∗) for every r, s ∈ {0, . . . , l − 1}, r 6= s, and 0 ≤ i < j ≤ n − 1, we have

vi
r 6= vj

s .

Suppose first that (∗) does not hold. Consider a (vi
r, v

i+1
r )-path P ′ with

V (P ′) ⊆ {vi
r, . . . , v

i
l−1, v

i+1
0 , . . . , vi+1

r }. If m and i′ are such that vi′
m ∈ V (P ′),

then, since (P0, v
0
0, k) ∈ P , σk(v0m) 6= v0m. Consequently, by the injectivity of σi′k,

we have σi′k(σk(v0m)) 6= σi′k(v0m) and σk(vi′
m) 6= vi′

m. Thus, since vi+1
r = σk(vi

r),
(P ′, vi

r, k) ∈ P . It follows that P ′ is of length l (by definition, P ′ is of length
at most l), so due to the minimality of n, ν(vi

r , k) ≥ n. But, from the negation

of (∗), vi
r = v

j
r = σ(j−i)k(vi

r), which gives ν(vi
r , k) ≤ j − i < n, a contradiction.

Hence (∗) holds.

Assume now that (∗∗) does not hold. Then vi
r = v

j
s = σ(j−i)k(vi

s). Let P ′′ be

the (vi
s, v

i
r)-path contained in σik(P0). By (∗), σ(j−i)k(vi

m) 6= vi
m for m = s, . . . , r,
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and so (P ′′, vi
s, (j − i)k) ∈ P . But the length of P ′′ is equal |r − s| < l, which

contradicts the minimality of l. Therefore, (∗∗) holds and C is a cycle. Now
one can define a non-identity automorphism of C setting for 0 ≤ r ≤ l − 1 and
0 ≤ i ≤ n − 1

ρ(vi
r) =

{

vi+1
r if 0 ≤ i ≤ n − 2,

v0r if i = n − 1.

�

In the proof of Theorem 1 we shall need the following lemma.

Lemma. Let D be a symmetric digraph satisfying assumptions (i)–(iii) of The-
orem 1 and let σ be a non-identity automorphism of D. Furthermore, let M1 be
the vertex set of a component of D[Mov(σ)] andM2 = σ(M1). ThenM1∩M2 = ∅
and there exists a fixed point rD(M1) of σ such that

ND(M1) = ND(M2) = {rD(M1)}.

Proof of the Lemma: By (ii), Theorem 2 implies that M1 ∩ M2 = ∅. This
gives V (D)\M1 6= ∅, and since D is connected, ND(M1) 6= ∅. We shall show that
|ND(M1)| = 1. Indeed, suppose to the contrary that r, r′ ∈ ND(M1), r 6= r′. Note
that since M1 is a component of D[Mov(σ)], we have σ(r) = r and σ(r′) = r′.
Let P be the shortest (r, r′)-path with

∅ 6= V (P ) \ {r, r′} ⊆ M1.

Then each of digraphs Ds[V (P )] and Ds[σ(V (P ))] consists of a (r, r′)-path and
at most one arc connecting r and r′ (by (ii) there are no pairs of arcs running in
opposite directions). Let H = Ds[V (P )∪σ(V (P ))]. Since σ(V (P )\{r, r′}) ⊆ M2
and

ND(M1) ∩ M2 ⊆ ND(M1) ∩Mov(σ) = ∅,

no arcs connect sets V (P ) \ {r, r′} and σ(V (P )) \ {r, r′}. Thus, H is a symmetric
cycle with at most one diagonal arc, which contradicts assumption (iii).

Hence, |ND(M1)| = 1, and, due to the fact that ND(M2) = ND(M1), the
result follows. �

Proof of Theorem 1: For any vertex set V1 ⊆ V = V (D) we define

V ∗

1 = {v ∈ V1 | D − v is connected}.

Furthermore, for a subdigraph H of D and for v ∈ V (H) let d+H (v) and d−H (v)
denote the in-degree and the out-degree of v in H , respectively.

Observe first that if Theorem 1 holds for Ds, then it holds for D. Thus, we
may and shall assume that Ds = D. Now, suppose, contrary to Theorem 1, that
for every v ∈ V ∗, there exists an automorphism σv of D − v such that some
neighbor of v is a movable point of σv . For every v ∈ V ∗ consider the digraph
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(D − v)[Mov(σv)] induced in D − v by all movable points of σv, and denote by
M1(v) the vertex set of some component of (D−v)[Mov(σv)] containing a neighbor
of v, i.e. v ∈ ND(M1(v)). Let us apply the Lemma for D−v, σv and M1(v). Then,
if we set M2(v) = σv(M1(v)), M(v) = M1(v) ∪ M2(v) and r(v) = rD−v(M1(v)),
the Lemma implies that for every v ∈ V ∗,

M1(v) ∩ M2(v) = ∅,

ND(M1(v)) = {v, r(v)},(1)

{r(v)} ⊆ ND(M2(v)) ⊆ {v, r(v)}.(2)

Clearly, |M1(v)| = |M2(v)|.
Note that both D[M1(v)] and D[M2(v)] are components of D−{v, r(v)}. Thus,

for every v ∈ V ∗, i = 1, 2, and U ⊆ V , the following property holds.

p(v, i, U): If v, r(v) /∈ U , D[U ] is connected and U ∩ Mi(v) 6= ∅, then
U ⊆ Mi(v).

This elementary observation shall be used in the proof of Theorem 1 many times.
Let B be the smallest subset of V such that B∗ 6= ∅ and

⋃

v∈B∗ M(v) ⊆ B.
We split the proof into two cases, with respect to the two possible choices for the
set ND(M2(v)), specified by (2).

Case 1. There exists v1 ∈ B∗ such that ND(M2(v1)) = {r1}, where r1 = r(v1).

We can choose v1 in such a way that, among all vertices satisfying the as-
sumption of Case 1, the set M1(v1) has the maximal size, i.e. if v ∈ B∗ and
ND(M2(v)) = {r(v)}, then |M1(v)| ≤ |M1(v1)|.

Note that D[M2(v1)] is a component of D − r1. Furthermore, since v1 ∈ B∗,
M2(v1) ⊆ B. Denote by S the vertex set of the smallest component of D − r1
with S ⊆ B. Then

(3) |S| ≤ |M2(v1)|.

From (1) applied with v = v1, the set M1(v1) ∪ {v1} induces in D − r1 a
connected subdigraph. Hence M1(v1) ∪ {v1} is contained in some component of
D − r1. Since, by (3), |S| ≤ |M2(v1)| < |M1(v1)∪ {v1}|, this component must be
different from D[S], i.e.

(4) S ∩ (M1(v1) ∪ {v1}) = ∅.

Observe that the set S∗ is non-empty: for example, if u ∈ S is the ending
vertex of the longest (r1, u)-path contained in D[S ∪ {r1}], then clearly u ∈ S∗.
Since S∗ 6= ∅ and, by (3), |S| < |B|, from the minimality of B there exists a
vertex v2 ∈ S∗ such that for some w,

(5) w ∈ M(v2) \ S.
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In next steps of the proof we shall often use the following simple observation:
if r1 /∈ M1(v2), then

(6) M1(v2) ⊆ S.

In order to verify (6) suppose that r1 /∈ M1(v2). (1) taken for v = v2 implies that
there is a vertex u ∈ M1(v2) ∩ND(v2). Since v2 ∈ S and D[S] is a component of
D − r1, we have

ND(v2) ⊆ S ∪ ND(S) = S ∪ {r1}.

Hence, u ∈ M1(v2) ∩ (S ∪ {r1}), and, due to the assumption that r1 /∈ M1(v2),
we get M1(v2) ∩ S 6= ∅. But, since r1 /∈ M1(v2), M1(v2) induces in D − r1 a
connected subdigraph. Thus (6) holds.

Let r2 = r(v2). We shall show that r2 6= r1. Indeed, suppose that r1 =
r2. Then r1 /∈ M1(v2) ∪ M2(v2), so we can use (6). By (5) and (6) we have
M2(v2) \ S 6= ∅. As r1 /∈ M2(v2), the digraph induced in D − r1 by M2(v2) is
connected. Consequently, D[M2(v2)] is a component of D−r1 different from D[S].
Furthermore, since v2 ∈ S∗ ⊆ B∗, by the definition of B we have M2(v2) ⊆ B.
But |M2(v2)| = |M1(v2)| < |S|, due to (6) and the fact that v2 ∈ S \ M1(v2).
This contradicts the minimality of S. Hence,

(7) r2 6= r1.

We shall show now that r1 ∈ M1(v2). Suppose to the contrary that r1 /∈
M1(v2). Note that (5), together with (1) and (2) taken for v = v2, implies that
there is a (v2, w)-path P1 with

V (P1) \ {v2} ⊆ M(v2) ∪ {r2}.

Since v2 ∈ S and w /∈ S, the path P1 − v2 must intersect the neighborhood
ND(S) = {r1}. Hence r1 ∈ V (P1) \ {v2}. Thus, using (7), we get r1 ∈ M(v2),
and, since by our assumption r1 /∈ M1(v2), we arrive at

r1 ∈ U ∩ M2(v2),

where U = M1(v1) ∪ {r1}. From (1) and (6) it follows that

r2 ∈ ND(M1(v2)) ⊆ S ∪ ND(S) = S ∪ {r1},

which together with (7) gives r2 ∈ S. By (4) we have S∩U = ∅. Thus, v2, r2 /∈ U .
Moreover, from (1), D[U ] is connected. Consequently, because of p(v2, 2, U) we
get M1(v1) ∪ {r1} ⊆ M2(v2). This fact, (6) and (3) yield

|M1(v1) ∪ {r1}| ≤ |M2(v2)| = |M1(v2)| ≤ |S| ≤ |M2(v1)| = |M1(v1)|.
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which is impossible, so

(8) r1 ∈ M1(v2).

Now we split our argument into three subcases.

Subcase 1a. r2 /∈ M1(v1).

Set U = M1(v1) ∪ {r1}. Then, by (7), r2 /∈ U . Furthermore, by (4) we
have v2 /∈ U , and (8) implies that r1 ∈ U ∩ M1(v2). Thus, p(v2, 1, U) gives
M1(v1) ∪ {r1} ⊆ M1(v2), contradicting the maximality of |M1(v1)|.

Subcase 1b. r2 ∈ M1(v1) and S 6= M2(v1).

Set U = M2(v1) ∪ {r1}. Then r2 /∈ U . Since due to the assumption of Case 1
both S and M2(v1) induce components of D − r1, the fact that S 6= M2(v1)
implies that S ∩M2(v1) = ∅. Hence v2 /∈ U . By (8), r1 ∈ U ∩M1(v2). Therefore,
p(v2, 1, U) yields M2(v1)∪{r1} ⊆ M1(v2), which leads to a contradiction like the
one above.

Subcase 1c. r2 ∈ M1(v1) and S = M2(v1).

Set U = (M2(v1) ∪ {r1}) \ {v2}. Note that the graph induced in D by U is
connected. Indeed, let P be a path in D− v2 connecting two vertices from U (the
existence of such a path follows from the fact that v2 ∈ S∗). Using the assumption
of Case 1, we have V (P ) ⊆ M2(v1) ∪ {r1}, and so V (P ) ⊆ U . Hence D[U ] is
connected. By (8), r1 ∈ U ∩M1(v2), and by (7) we have r2 /∈ U . Thus p(v2, 1, U)
holds and

(9) (M2(v1) ∪ {r1}) \ {v2} ⊆ M1(v2).

Set now U = (M2(v2)∪{r2})\ {v1}. To show that D[U ] is connected let P ′ be
a path in D − v1 connecting two vertices from U (note that since v1 ∈ B∗, such
a path always exists). As v2 ∈ S, from (9) and the assumption that v2 ∈ S =
M2(v1) we get

(10) ND(v2) ⊆ (M2(v1) ∪ {r1}) \ {v2} ⊆ M1(v2).

Thus, ND(v2) ∩ M2(v2) = ∅, and using (2) we arrive at

(11) ND(M2(v2)) = {r2}.

It follows that V (P ′) ⊆ M2(v2)∪{r2}, so D[U ] is connected. Due to the assump-
tion of Subcase 1c, r2 ∈ U ∩M1(v1), and from (8) we have r1 /∈ U . Consequently,
p(v1, 1, U) gives

(M2(v2) ∪ {r2}) \ {v1} ⊆ M1(v1).
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We obtain

|M2(v1)| ≤ |(M2(v1) ∪ {r1}) \ {v2}| ≤ |M1(v2)| = |M2(v2)|

≤ |(M2(v2) ∪ {r2}) \ {v1}| ≤ |M1(v1)| = |M2(v1)|.

Thus,

(M2(v1) ∪ {r1}) \ {v2} = M1(v2),(12)

(M2(v2) ∪ {r2}) \ {v1} = M1(v1),(13)

|M2(v2)| = |M1(v1)|.(14)

For u ∈ V define the following assertion.

q(u): d+D(u) = 2 and d−D(u) = 0 or d+D(u) = 0 and d−D(u) = 2.

By (8) and (1) we have ND(r1) ⊆ (M1(v2) ∪ {v2, r2}) \ {r1}, so, from (12),

ND(r1) ⊆ M2(v1) ∪ {r2}.

Since M1(v1)∩M2(v1) = ∅, the above fact and the assumption that r2 ∈ M1(v1)
imply that ND(r1) ∩ M1(v1) = {r2} and ND(r1) ⊆ M1(v1) ∪ M2(v1). Hence,
ND(r1) = {r2, σv1(r2)} and q(r1) holds. Similarly, using (13), one can check that
ND(r2) = {r1, σv2(r1)} and q(r2) holds.

In such a way we have proved that for k = 1 the following assertion holds.

a(k): There exist vertices u1, . . . , uk ∈ M1(v1) and w1, . . . , wk ∈ M1(v2) such
that u1 = r2, w1 = r1, Pk = (uk, . . . , u1, w1, . . . , wk) is an alternating
path and assertions q(ui), q(wi) hold for i = 1, . . . , k.

We shall show that a(|M1(v1)|) is true using an induction with respect to k.
Suppose that 1 ≤ k < |M1(v1)| and that a(k) holds. Let uk+1 and wk+1 be
neighbors of uk and wk respectively, which do not belong to Pk. q(u1), . . . , q(uk),
together with the facts that |M1(v1)| > k and M1(v1) induces in D − v1 a con-
nected subdigraph, give uk+1 ∈ M1(v1). Hence v1 is not a neighbor of uk and
|ND−v1(uk)| = 2. By a(k), wk+1 = σv1(uk). Thus, q(uk) implies q(wk+1). Sim-
ilarly, |ND−v2(wk)| = 2, uk+1 = σv2(wk) and q(uk+1) holds. Hence a(k + 1) is
true. We conclude that a(|M1(v1)|) holds.

Assume now that k = |M1(v1)|. From a(k) we have M1(v1) = {u1, . . . , uk}
and ND(v1) ∩ M1(v1) = {uk}. Since by (13) and (14) we have v1 ∈ M2(v2),
(11) and (13) yield ND(v1) ⊆ (M2(v2) ∪ {r2}) \ {v1} = M1(v1). It follows that
ND(v1) = {uk}. Similarly, M1(v2) = {w1, . . . , wk} and ND(v2)∩M1(v2) = {wk},
and, by (10), we get ND(v2) = {wk}. Therefore, D is an alternating path with
odd length equal 2k + 1, which contradicts assumption (iv) of Theorem 1.

Case 2. For every v ∈ B∗, ND(Mi(v)) = {v, r(v)}, i = 1, 2.

Let v3 ∈ B∗ be a vertex with the largest size of set M1(v3) and let r3 = r(v3).
Denote by P the shortest (v3, r3)-path with V (P ) \ {v3, r3} ⊆ M1(v3). Let

U1 = M1(v3) \ V (P ).
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We shall show first that V (P ) \ {v3, r3} = M1(v3). Suppose that it is not the
case. Then U1 6= ∅ and U∗

1 6= ∅. Since v3 ∈ B∗, we have M(v3) ⊆ B. Hence
U1 ⊂ B, U1 6= B, and, from the minimality of B, there exists v4 ∈ U∗

1 such
that some vertex w ∈ M(v4) \ U1. Let r4 = r(v4). Due to the assumption of
Case 2 for v = v4 (which can be used since v4 ∈ U∗

1 ⊆ B∗), the digraph induced
in D by the set M(v4) ∪ {v4} is connected, so there is a (v4, w)-path P ′ with
V (P ′) \ {v4} ⊆ M(v4). Since w /∈ U1 and v4 ∈ U1, the path P ′− v4 intersects the
neighborhood of U1, and since

(15) ND(U1) ⊆ V (P ),

there exists w′ ∈ V (P ) ∩ (V (P ′) \ {v4}) ⊆ V (P ) ∩ M(v4). Let

U = (M2(v3) ∪ V (P )) \ {r4}.

As r4 /∈ M(v4), w′ 6= r4. It follows that w′ ∈ U ∩ M(v4), and thus, for some
i ∈ {1, 2},

(16) U ∩ Mi(v4) 6= ∅.

Note that D[U ] is connected. Indeed, suppose to the contrary that r4 discon-
nects the digraph D[M2(v3) ∪ V (P )]. Then, since both ends of P belong to the
neighborhood of the connected set M2(v3), we have r4 /∈ V (P ) and r4 ∈ M2(v3).
Hence, by (15),

r4 /∈ U1 ∪ ND(U1).

Since v4 ∈ U1, the above fact and (15), together with the assumption of Case 2
for v = v4, imply that both M1(v4) and M2(v4) contain vertices of path P . This
is impossible because M1(v4) and M2(v4) induce disjoint components of digraph
D − {v4, r4} and v4, r4 /∈ V (P ), so D[U ] is connected.

Since v4 ∈ U1, v4 /∈ U . Thus, by (16), p(v4, i, U) yields U ⊆ Mi(v4), contra-
dicting the maximality of |M1(v3)|. Therefore,

(17) V (P ) \ {v3, r3} = M1(v3).

Finally, we shall show that the cycle

C = P ∪ σv3(P )

has an automorphism without fixed points. Let r ∈ V (C − v3) and let v be the
vertex of C lying opposite r. Then v ∈ V ∗. We want to show that r(v) = r. This
clearly holds for r = r3, so let us assume that r 6= r3. Then v ∈ V (C) \ {v3, r3}.
Note that (17) and the assumption of Case 2 for v = v3, imply that for every
u ∈ V (C) \ {v3, r3}, we have ND(u) ⊆ V (C) and, by the minimality of P ,

(18) ND(u) = NC(u).
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Using (18) and the assumption of Case 2 for vertex v, one can find u1, u2 ∈ V (C)
such that ND(v) = {u1, u2}, u1 ∈ M1(v) and u2 ∈ M2(v). Hence, C − v is a
(u1, u2)-path in D − v connecting M1(v) and M2(v). Such a path must contain
r(v). Consequently, the facts that for every u ∈ V (C) \ {v3, r3} (18) holds,
u2 = σv(u1) and D[M2(v)] = σv(D[M1(v)]), imply that r(v) must lie precisely in

the middle of the path C−v, i.e. r(v) = r. It follows that d+C (r) = 2 or d−C (r) = 2.
Since it holds for every r ∈ V (C − v3), C has an automorphism without fixed
points, which contradicts assumption (ii) of Theorem 1.

This completes the proof of Case 2, and, due to the observation that, by (1)
and (2), Case 1 is the negation of Case 2, the proof of Theorem 1. �

Proof of Corollary 1: Let D1 be the smallest component of D. Clearly,
if either V (D1) = {v}, or Ds

1 is an alternating path of odd length and v is a
neighbor of an ending vertex of this path, then D − v is asymmetric. Thus, let v
be the vertex from Theorem 1 applied for D1, and suppose that D− v has a non-
identity automorphism σ. By the minimality of D1, σ(V (D1 − v)) = V (D1 − v),
so σ|V (D1−v) is an automorphism of D1 − v. Thus, by Theorem 1, all neighbors

of v are fixed points of σ|V (D1−v), and so also of σ. Hence, clearly, σ′ defined as

σ′(u) =

{

σ(u) if u ∈ V (D − v)

u if u = v

is a non-identity automorphism of D, which contradicts the assumption that D
is asymmetric. �

Proof of Corollary 2: Assume that D has a non-identity automorphism. Let
σ be a non-identity automorphism of D having the largest size of the maximum
component of the digraph D[Mov(σ)] induced in D by all movable points of σ.
Denote this component by M1(σ). Let us apply the Lemma for σ and M1(σ). Set
v = rD(M1(σ)) and M2(σ) = σ(M1(σ)). We have M1(σ) ∩ M2(σ) = ∅.

We shall show that v is a fixed point of every automorphism of D. Suppose to
the contrary that v is a movable point of some automorphism ρ of D. Let M1(ρ)
be the vertex set of the component of D[Mov(ρ)] containing v. Using the Lemma
for ρ and M1(ρ), set r = rD(M1(ρ)). Let i ∈ {1, 2} be such that r /∈ Mi(σ).
Then the digraph induced in D − r by the set Mi(σ) ∪ {v} is connected. But,
from the Lemma, M1(ρ) induces a component of D − r and, by assumption, v ∈
M1(ρ). Thus, Mi(σ) ∪ {v} ⊆ M1(ρ), which gives |M1(ρ)| > |Mi(σ)| = |M1(σ)|,
contradicting the maximality of |M1(σ)|. �
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