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A note on finite sets of terms closed

under subterms and unification

Jaroslav Ježek

Abstract. The paper contains two remarks on finite sets of groupoid terms closed under
subterms and the application of unifying pairs.
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By a term we shall mean a groupoid term. Let us write u+ v ∼ t if t = f(u) =
g(v) for a unifying pair f, g of the terms u and v, i.e., if t is a substitution instance
of both u and v and any term that is a substitution instance of both u and v,
is a substitution instance of t. (A survey of unification theory is contained, for
example, in Dershowitz and Jouannaud [1].)
Let us call a set S of terms SU-closed if it is closed with respect to subterms

and whenever u+ v ∼ t for two terms u, v ∈ S, then t ∼ t′ ∈ S for some t′.

Theorem 1. There is no finite, SU-closed set of terms containing the following

three terms:
(xy · z)x, x(yz · u), x · yx.

Proof: Let us define an infinite sequence a0, a1, . . . of terms as follows:
a0 is a variable; ai+1 = aix for a variable x not occurring in ai. So, ai =
(((x0x1)x2) . . . )xi, where x0, . . . , xi is a sequence of pairwise distinct variables.
Also, put bi = yai, where y is a variable not occurring in ai. Hence b2 ∼ x(yz ·u).
It is easy to see that

(xy · z)x+ bi ∼ ((aix)y)ai ⊇ ai+2

for i ≥ 2 (where x, y are two distinct variables not occurring in ai, and

x · yx+ ai+1 ∼ ai · xai ⊇ bi

for i ≥ 3. �

The depth of a term is defined inductively as follows: the depth of a variable
is 0; the depth of t1t2 is 1+max(d1, d2), where d1 is the depth of t1 and d2 is the
depth of t2. So, xy · zu is of depth 2.
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Theorem 2. There exists a finite, SU-closed set of terms containing (up to sim-
ilarity) all terms of depth at most 2.

Proof: The set consists of the terms of depth 2, plus the twelve terms

xx · (xx · xx) ∼ x · xx + xx · y

xy · (xy · xy) ∼ x · xx + xy · z

xx · (xx · y) ∼ x · xy + xx · y

xy · (xy · z) ∼ x · xy + xy · z

xx · (xx · x) ∼ x · xy + xx · yx

xy · (xy · x) ∼ x · xy + xy · zx

xy · (xy · y) ∼ x · xy + xy · zy

xx · (y · xx) ∼ x · yx + xx · y

xy · (z · xy) ∼ x · yx + xy · z

xx · (x · xx) ∼ x · yx + xx · xy

xy · (x · xy) ∼ x · yx + xy · xz

xy · (y · xy) ∼ x · yx + xy · yz

and their duals. �
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