Commentationes Mathematicae Universitatis Carolinae

Jaroslav Ježek
 A note on finite sets of terms closed under subterms and unification

Commentationes Mathematicae Universitatis Carolinae, Vol. 37 (1996), No. 3, 655--656

Persistent URL: http://dml.cz/dmlcz/118873

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

A note on finite sets of terms closed under subterms and unification

Jaroslav Ježek

Abstract

The paper contains two remarks on finite sets of groupoid terms closed under subterms and the application of unifying pairs.

Keywords: terms, unification
Classification: 08B05

By a term we shall mean a groupoid term. Let us write $u+v \sim t$ if $t=f(u)=$ $g(v)$ for a unifying pair f, g of the terms u and v, i.e., if t is a substitution instance of both u and v and any term that is a substitution instance of both u and v, is a substitution instance of t. (A survey of unification theory is contained, for example, in Dershowitz and Jouannaud [1].)

Let us call a set S of terms SU-closed if it is closed with respect to subterms and whenever $u+v \sim t$ for two terms $u, v \in S$, then $t \sim t^{\prime} \in S$ for some t^{\prime}.

Theorem 1. There is no finite, $S U$-closed set of terms containing the following three terms:

$$
(x y \cdot z) x, \quad x(y z \cdot u), \quad x \cdot y x .
$$

Proof: Let us define an infinite sequence a_{0}, a_{1}, \ldots of terms as follows:
a_{0} is a variable; $a_{i+1}=a_{i} x$ for a variable x not occurring in a_{i}. So, $a_{i}=$ $\left(\left(\left(x_{0} x_{1}\right) x_{2}\right) \ldots\right) x_{i}$, where x_{0}, \ldots, x_{i} is a sequence of pairwise distinct variables. Also, put $b_{i}=y a_{i}$, where y is a variable not occurring in a_{i}. Hence $b_{2} \sim x(y z \cdot u)$. It is easy to see that

$$
(x y \cdot z) x+b_{i} \sim\left(\left(a_{i} x\right) y\right) a_{i} \supseteq a_{i+2}
$$

for $i \geq 2$ (where x, y are two distinct variables not occurring in a_{i}, and

$$
x \cdot y x+a_{i+1} \sim a_{i} \cdot x a_{i} \supseteq b_{i}
$$

for $i \geq 3$.
The depth of a term is defined inductively as follows: the depth of a variable is 0 ; the depth of $t_{1} t_{2}$ is $1+\max \left(d_{1}, d_{2}\right)$, where d_{1} is the depth of t_{1} and d_{2} is the depth of t_{2}. So, $x y \cdot z u$ is of depth 2 .

Theorem 2. There exists a finite, $S U$-closed set of terms containing (up to similarity) all terms of depth at most 2.
Proof: The set consists of the terms of depth 2, plus the twelve terms

$$
\begin{aligned}
x x \cdot(x x \cdot x x) & \sim x \cdot x x+x x \cdot y \\
x y \cdot(x y \cdot x y) & \sim x \cdot x x+x y \cdot z \\
x x \cdot(x x \cdot y) & \sim x \cdot x y+x x \cdot y \\
x y \cdot(x y \cdot z) & \sim x \cdot x y+x y \cdot z \\
x x \cdot(x x \cdot x) & \sim x \cdot x y+x x \cdot y x \\
x y \cdot(x y \cdot x) & \sim x \cdot x y+x y \cdot z x \\
x y \cdot(x y \cdot y) & \sim x \cdot x y+x y \cdot z y \\
x x \cdot(y \cdot x x) & \sim x \cdot y x+x x \cdot y \\
x y \cdot(z \cdot x y) & \sim x \cdot y x+x y \cdot z \\
x x \cdot(x \cdot x x) & \sim x \cdot y x+x x \cdot x y \\
x y \cdot(x \cdot x y) & \sim x \cdot y x+x y \cdot x z \\
x y \cdot(y \cdot x y) & \sim x \cdot y x+x y \cdot y z
\end{aligned}
$$

and their duals.

References

[1] Dershowitz N., Jouannaud J.-P., Rewrite systems, Chapter 6, 243-320 in J. van Leeuwen, ed., Handbook of Theoretical Computer Science, B: Formal Methods and Semantics, North Holland, Amsterdam, 1990.

Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18600 Praha 8, Czech Republic

