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The link between the kernel method and the method of

adjoints for the generalized index 2F1−transform

Benito J. González, Emilio R. Negrin

Abstract. In this note we show that the two definitions of generalized index 2F1-transform
given in the previous works [1] and [2] agree for distributions of compact support.

Keywords: index transform, hypergeometric function, distributions of compact support

Classification: 44A15, 46F12

The generalized index 2F1-transform of f ∈ E ′(I), I = (0,∞), was defined by
the kernel method in [1] as:

(1) F (τ) = 〈f(x),F(µ, α, τ, x)〉, τ ∈ I,

where

F(µ, α, τ, x) = 2F1(µ+
1

2
+ iτ, µ+

1

2
− iτ ;µ+ 1;−x)xα

and 2F1(µ+
1
2 + iτ, µ+

1
2 − iτ ;µ+ 1;−x) is the Gauss hypergeometric function

defined for |x| < 1 as the sum of the Gauss series, while for |x| ≥ 1, is defined as
its analytic continuation [4, p. 431]. Here µ and α are complex parameters.
In [2] the generalized index 2F1-transform was analyzed by the method of

adjoints. It was required to introduce two Fréchet spaces V and W satisfying
that the operator L :W −→ V given by

(2) (Lψ) (x) =

∫ ∞

0
ψ(τ)F(µ, α, τ, x) dτ, x > 0,

was continuous whenever Re µ > −12 . To be more precise, the spaces V and W
were defined by

V = {φ ∈ C∞(I) : γk(φ) <∞, k ∈ N ∪ {0}}

where

γk(φ) = sup
x∈I

∣
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Ax being the differential operator defined by

xα−µ(x+ 1)−µDxx
µ+1(x+ 1)µ+1Dxx

−α,

and
W = {ψ ∈ C∞(R), even : ̺r(ψ) <∞, r ∈ N ∪ {0}} ,

where

̺r(ψ) = sup
x∈I
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and F denotes Fourier transform with respect to the τ -variable.

The generalized index 2F1-transform was defined as the adjoint operator of L,
namely,

(3) 〈L′f, ψ〉 = 〈f,Lψ〉, f ∈ V ′, ψ ∈ W.

In this note we establish the link between these two definitions. Here, it will
be proved that both definitions agree for distributions of compact support. The
corresponding result for the Kontorovich-Lebedev transform was established in
[3, Proposition 2.4].

Theorem. Let f ∈ E ′(I) and α, µ being complex parameters with Re α > 0,

Re µ > 0, 18 < Re (µ−α) < 1
4 and Re (µ− 2α) < −1. Then, for any ψ ∈ W , one

has

(4) 〈L′f, ψ〉 = 〈T〈f(x),F(µ,α,τ,x)〉, ψ(τ)〉,

where T〈f(x),F(µ,α,τ,x)〉 is the member of W
′ given by

(5) 〈T〈f(x),F(µ,α,τ,x)〉, ψ(τ)〉 =

∫ ∞

0
〈f(x),F(µ, α, τ, x)〉ψ(τ) dτ.

Proof: First, observe that D(I) ⊂ V ⊂ E(I) and the topology of V is stronger
than the one induced on it by E(I). Thus, E ′(I) is a subspace of V ′.
Also, from [1, Theorem 3.2, p. 662] the function F (τ) given by (1) is an entire

function such that

(i) F (τ) = O(1) as τ → 0+;

(ii) there exists a r ∈ N ∪ {0} such that F (τ) = O
(

τ2r−Re µ− 1
2

)

as τ → ∞.

From this and having into account that, for any ψ ∈ W one has

(i) ψ(τ) = O(τ2) as τ → 0+;
(ii) for all p ∈ N, ψ(τ) = O (τ−p), as τ → ∞;
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(cf. [2, Proposition 2.2 and Proposition 2.4]) it follows that the integral of the
right hand side of (5) has sense.
Clearly, if f ∈ D(I), the result of this Theorem holds. In fact, assume that

f has its support contained in the closed interval [a, b] ⊂ I, then, using Fubini
theorem, one has

〈L′f, ψ〉 = 〈f,Lψ〉

=

∫ b

a
f(x)(Lψ)(x)dx =

∫ b

a
f(x)

∫ ∞

0
F(µ, α, τ, x)ψ(τ) dτ dx

=

∫ ∞

0
ψ(τ)

∫ b

a
f(x)F(µ, α, τ, x) dx dτ =

∫ ∞

0
F (τ)ψ(τ) dτ.

So, the result holds for f ∈ D(I).
Now, for f ∈ E ′(I) and using [5, Theorem 28.2(i), p. 301], there exists a se-

quence of functions {fn}n∈N
belonging to D(I) which converges to f in E ′(I) and

so, in V ′. Furthermore, from [2, Proposition 2.3] it follows that L′ is a continuous
mapping from V ′ into W ′. Thus

{

L′fn
}

n∈N
converges to L′f in W ′ as n→ ∞.

Since, for all ψ ∈ W ,

〈L′fn, ψ〉 =

∫ ∞

0
Fn(τ)ψ(τ) dτ

where
Fn(τ) = 〈fn(x),F(µ, α, τ, x)〉,

it follows that

(6) 〈L′f, ψ〉 = lim
n→∞

∫ ∞

0
Fn(τ)ψ(τ) dτ.

Clearly, from the asymptotic growth of Fn and ψ, the limit in (6) goes into the
integral. Also, noting that

lim
n→∞

Fn(τ) = lim
n→∞

〈fn(x),F(µ, α, τ, x)〉

= 〈f(x),F(µ, α, τ, x)〉 = F (τ),

the result holds. �
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