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Factorizations of set-valued mappings with separable range

Valentin G. Gutev

Abstract. Right factorizations for a class of l.s.c. mappings with separable metrizable
range are constructed. Besides in the selection and dimension theories, these l.s.c. fac-
torizations are also successful in solving the problem of factorizing a class of u.s.c. map-
pings.
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1. Introduction

Throughout this paper, X is a topological space and Y is a metrizable space.
Set

2Y = {S ⊂ Y : S 6= ∅} and F(Y ) = {S ∈ 2Y : S is closed}.

Let P be a property of set-valued mappings, and let Φ : X → F(Y ) have the
property P (briefly, Φ ∈ P). It is called that the triple (Z, h, ϕ) is a P factorization
for Φ (see [7]), if

(a) Z is a metrizable space with w(Z) ≤ w(Y ),
(b) h : X → Z is a continuous map, and
(c) ϕ : Z → F(Y ) is a mapping such that ϕ ∈ P and Φ = ϕ ◦ h.

Finally, let us recall that a mapping Φ : X → 2Y is lower semi-continuous , or
l.s.c., if the set Φ−1(U) = {x ∈ X : Φ(x) ∩ U 6= ∅} is open in X for every open
U ⊂ Y .

In the present paper, we are concerned with conditions under which an l.s.c.
Φ admits an l.s.c. factorization (Z, h, ϕ). An obvious necessary condition for Φ
is that Φ−1(U) = h−1(ϕ−1(U)) is a cozero-set in X for every open U ⊂ Y . A
purpose of the paper is to show that, for a separable Y , this condition is also
sufficient.

In what follows, let us agree to say that Φ : X → F(Y ) is strongly l.s.c. if
Φ−1(U) is a cozero-set in X for every open U ⊂ Y . Note that, for a perfectly
normal X , Φ : X → F(Y ) is strongly l.s.c. if and only if it is l.s.c.
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Theorem 1.1. Let X be a topological space, and let Y be a separable metrizable

space. For a mapping Φ : X → F(Y ) the following two conditions are equivalent:

(a) Φ is strongly l.s.c.,
(b) Φ admits an l.s.c. factorization (Z, h, ϕ).

The proof of Theorem 1.1 is based on a standard technique (see Section 2).
Despite of that, this theorem has some interesting applications. So, it reduces
the proofs of several selection and extension theorems for strongly l.s.c. mappings
to those for l.s.c. mappings with metrizable domain. By way of example, this is
illustrated in Section 4. In the same section, we also obtain a characterization (via
selections) for the covering dimension of arbitrary topological spaces (see Theo-
rem 4.2). Finally, and perhaps most interesting, Theorem 1.1 applies successfully
in solving a problem of constructing P factorizations in case P is the property
of upper semi-continuity. Let us recall that a set-valued mapping Θ : X → 2Y

is upper semi-continuous, or u.s.c., if the set Θ#(U) = {x ∈ X : Θ(x) ⊂ U}
is open in X for every open U ⊂ Y . As before, we shall say that Θ is strongly
u.s.c. if Θ#(U) is a cozero-set in X for every open U ⊂ Y . In Section 3, we use
Theorem 1.1 to obtain the following factorization theorem for u.s.c. mappings.

Theorem 3.1. Let X be a topological space, and let Y be a separable metrizable

space. For a compact-valued mapping Θ : X → F(Y ) the following two conditions
are equivalent:

(a) Θ is strongly u.s.c.,
(b) Θ admits a u.s.c. factorization (Z, h, θ).

2. Proof of Theorem 1.1

Let X , Y and Φ be as in Theorem 1.1. Since (b)⇒ (a) is obvious, we have only
to prove (a) ⇒ (b). Towards this end, let B be a countable base for the topology
of Y . By (a), for every U ∈ B there exists a continuous function hU : X → IU =

[0, 1] such that Φ−1(U) = h−1U ((0, 1]). Then let h : X →
∏
{IU : U ∈ B} be the

diagonal map h = △{hU : U ∈ B}, and let us show that, for every x1, x2 ∈ X ,

(∗) h(x1) = h(x2) implies Φ(x1) = Φ(x2).

Indeed, h(x1) = h(x2) implies hU (x1) = hU (x2), U ∈ B, and therefore, for
every U ∈ B, Φ(x1) ∩ U 6= ∅ if and only if Φ(x2) ∩ U 6= ∅. So, (∗) holds.

Now, setting Z = h(X) we get a separable metrizable space Z because B is
countable. Define ϕ : Z → F(Y ) by

ϕ(z) = Φ(x), z ∈ Z and x ∈ h−1(z).

It follows from (∗) that ϕ is an well defined set-valued mapping such that Φ = ϕ◦h.
So, to finish the proof it only remains to show that ϕ is l.s.c. That this is so, it
follows immediately from the fact that, for every V ∈ B,

ϕ−1(V ) = {(zU ) ∈ Z : zV > 0}.
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Thus, the proof of Theorem 1.1 completes. �

We conclude this section showing that, for a Polish Y (i.e. a completely metriz-
able separable space Y ), the following refinement of Theorem 1.1 holds true.

Theorem 2.1. Let X be a topological space, Y be a Polish space, and let Φ :
X → F(Y ) be strongly l.s.c. Then Φ admits an l.s.c. factorization (Z, h, ϕ) with
Z a Polish space.

Proof: Let (Z0, h, ϕ0) be an l.s.c. factorization for Φ, which exists by virtue

of Theorem 1.1. Also, let Z̃ be a Polish space containing Z0. Then, by [2,

Theorem 4.7], there exists a Gδ-subset Z of Z̃ containing Z0, and an l.s.c. ϕ :
Z → F(Y ) such that ϕ|Z0 = ϕ0. This (Z, h, ϕ) is as required. �

3. U.s.c. factorizations

In this section we use Theorem 1.1 to obtain the following factorization theorem
for u.s.c. mappings.

Theorem 3.1. Let X be a topological space, and let Y be a separable metriz-

able space. For a compact-valued mapping Θ : X → F(Y ), the following two
conditions are equivalent:

(a) Θ is strongly u.s.c.,
(b) Θ admits a u.s.c. factorization (Z, h, θ).

Let (Y, d) be a metric space. For S ∈ 2Y and ε > O, we use Bd
ε (S) to denote

{y ∈ Y : d(y, S) < ε}. A mapping θ : Z → F(Y ) is d-u.s.c. if θ#(Bd
ε (θ(x))) is a

neighborhood of x for every x ∈ X and ε > 0.

The most difficult part of the proof of Theorem 3.1 consists in proving the
following theorem.

Theorem 3.2. Let X be a topological space, Y be a separable metrizable space,

and let Θ : X → F(Y ) be strongly u.s.c. Then there exists a compatible metric d

on Y with respect to which Θ admits a d-u.s.c. factorization (Z, h, θ).

Proof: Let d be a compatible totally bounded metric on Y . In what follows,
we shall consider the set F(Y ) equipped with the topology generated by the
Hausdorff distance

H(d)(S, T ) = inf{ε > 0 : S ⊂ Bd
ε (T ) and T ⊂ Bd

ε (S)}, S, T ∈ F(Y ).

Note that (F(Y ), H(d)) is totally bounded because so is (Y, d).

Now, define a set-valued mapping Φ : X → 2F(Y ) by

(1) Φ(x) = {K ∈ F(Y ) : Θ(x) ⊂ K}, x ∈ X.

Clearly, Φ : X → F(F(Y )). Let us check that Φ is strongly l.s.c. Suppose
x0 ∈ X, K0 ∈ Φ(x0) and ε > 0. Since every countable union of cozero-sets
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in X is a cozero-set in X and since F(Y ) is separable, it suffices to show that

Φ−1(B
H(d)
ε (K0)) is a cozero-set in F(Y ). Towards this end, let us show that

(2) Φ−1(B
H(d)
ε (K0)) =

⋃

0<δ<ε

Θ#(Bd
δ (K0)).

Take a point x ∈
⋃
0<δ<ε Θ

#(Bd
δ (K0)). Then Θ(x) ⊂ Bd

δ (K0) for some 0 < δ < ε,

and therefore K = Θ(x) ∪ K0 ∈ Φ(x) has the property that K ⊂ Bd
δ (K0) and

K0 ⊂ Bd
δ (K). That is,H(d)(K, K0) ≤ δ < ε, which implies x ∈ Φ−1(B

H(d)
ε (K0)).

Let now x ∈ Φ−1(B
H(d)
ε (K0)). Then there is K ∈ Φ(x) such that H(d)(K, K0) <

δ < ε. By (1), Θ(x) ⊂ K ⊂ Bd
δ (K0), which completes the verification of (2).

It now follows from Theorem 1.1 that Φ admits an l.s.c. factorization (Z̃, h, ϕ).
Set Z = h(X), and then define a mapping θ : Z → F(Y ) ∪ {∅} by

(3) θ(z) =
⋂

ϕ(z), z ∈ Z.

Note that, for every x ∈ X , (1) implies

Θ(x) =
⋂
Φ(x) =

⋂
ϕ(h(x)) = θ(h(x)).

So, θ : Z → F(Y ) and Θ = θ ◦ h. Thus, to finish the proof, it only remains to
show that θ is d-u.s.c. Let z ∈ Z and let ε > 0. Also, let x ∈ h−1(z). Then, by
(1), (2) and (3),

θ#(Bd
ε (θ(z))) = h(Θ#(Bd

ε (Θ(x))))

⊃ h(Φ−1(B
H(d)
ε (Θ(x))))

= ϕ−1(B
H(d)
ε (Θ(x))) = ϕ−1(B

H(d)
ε (θ(z))),

which completes the proof because ϕ is l.s.c. �

Proof of Theorem 3.1: (b) ⇒ (a) is obvious. As for (a) ⇒ (b), it follows im-
mediately from Theorem 3.2 because, for compact-valued mappings, the concept
“d-u.s.c.” is actually equivalent to “u.s.c.”. �

4. Selections and extensions

As it was mentioned in the introduction, Theorem 1.1 reduces the proofs of
several selection and extension theorems for strongly l.s.c. mappings to those for
l.s.c. mappings with metrizable domain. In this section, we shall restrict our
attention only to a few of these reductions that may have some general interest.

Let Y be a Banach space. We write

K(Y ) = {S ∈ 2Y : S is convex} and Fc(Y ) = {S ∈ F(Y ) : S ∈ K(Y )}.
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Also, we recall the following terminology: If K ∈ Fc(Y ), then a supporting set of
K is a closed convex subset S of K, S 6= K, such that if an interior point of a
segment in K is in S, then the whole segment is in S. The set of all elements of
K which are not in any supporting set of K will be denoted by I(K). Finally, as
in [5], we define

D(Y ) = {B ∈ K(Y ) : B ⊃ I(B )}.

The following are well-known (see [5]):

(1) Fc(Y ) ⊂ D(Y );
(2) every B ∈ K(Y ) with Int(B) 6= ∅ belongs to D(Y );
(3) every finite-dimensional B ∈ K(Y ) belongs to D(Y ).

Theorem 4.1. Let X be a topological space, Y a separable Banach space, and

let Φ : X → D(Y ) be strongly l.s.c. Then Φ admits a single-valued continuous
selection.

Proof: Define Φ̃ : X → Fc(Y ) by Φ̃(x) = Φ(x), x ∈ X . Since Φ̃−1(U) =

Φ−1(U) for every open U ⊂ Y , it follows that Φ̃ is strongly l.s.c. too. Then, by

Theorem 1.1, Φ̃ admits an l.s.c. factorization (Z̃, h, ϕ). Set Z = h(X). Being a
metrizable, Z is perfectly normal. Hence, by [5, Theorem 3.1′′′], there exists a
continuous g : Z → Y such that g(z) ∈ I(ϕ(z)) for all z ∈ Z. Finally, f = g ◦ h is
as required because

f(x) ∈ I(ϕ(h(x))) = I(Φ̃(x)) = I(Φ(x) ) ⊂ Φ(x) for every x ∈ X. �

In our next result, dim(X) ≤ n means that every finite cozero-set cover of X
admits a finite cozero-set refinement of order ≤ n+1, i.e. the covering dimension
of a space X in the sense of Morita [6].

Theorem 4.2. For a topological space X and n ≥ 0 the following two conditions
are equivalent:

(a) dim(X) ≤ n;

(b) if Y is a Polish space, then every strongly l.s.c. Φ : X → F(Y ) admits a
strongly u.s.c. selection θ : X → 2Y such that |θ(x)| ≤ n+1 for all x ∈ X .

Proof: (a) ⇒ (b). Suppose Y is a Polish space and Φ : X → F(Y ) is strongly
l.s.c. By Theorem 1.1, Φ admits an l.s.c. factorization (Z, h, ϕ). Then, by [6,
Lemma 2.2], there is a metrizable space M with dim(M) ≤ n, and continuous
maps f : X → M and l :M → Z such that h = l◦f . Finally, by [1, Theorem 11.1],

there exists a u.s.c. selection θ0 : M → 2Y for ϕ ◦ l such that |θ0(t)| ≤ n + 1 for
every t ∈ M . The mapping θ = θ0 ◦ f is as required in (b).

(b) ⇒ (a). Let U = {Uy : y ∈ Y } be a cozero-set cover of X , where Y

is a finite set. It suffices to show that U admits a finite zero-set refinement of
order ≤ n + 1. To this end, we consider Y as a Polish space endowed with
the discrete topology. Next, we define a strongly l.s.c. Φ : X → F(Y ) by
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Φ(x) = {y ∈ Y : x ∈ Uy}, x ∈ X . By (b), Φ admits a strongly u.s.c. selection

θ : X → 2Y such that |θ(x)| ≤ n + 1 for all x ∈ X . Then {θ−1({y}) : y ∈ Y }
satisfies all our requirements. �

We conclude this paper with two extension results.

Theorem 4.3. Let X be a topological space, A ⊂ X , Y a Polish space, and let

Φ : A → F(Y ) be strongly l.s.c. Then there exists a Gδ subset X̃ of X containing

A, and a strongly l.s.c. Φ̃ : X̃ → F(Y ) such that Φ̃|A = Φ.

Proof: By Theorem 2.1, Φ admits an l.s.c. factorization (Z, h, ϕ) with Z a Polish
space. Then, by a result of Lavrentieff [4], h can be extended to a continuous

h̃ : X̃ → Z for some Gδ subset X̃ of X containing A. The mapping Φ̃ = h̃ ◦ ϕ is
as required. �

Theorem 4.4. Let X be a completely regular space, Y be a compact metric

space, and let Φ : X → F(Y ) be strongly l.s.c. Then there exists an l.s.c. mapping
βΦ : βX → F(Y ), where βX is the Čech-Stone compactification of X , such that

βΦ|X = Φ.

Proof: Let (Z, h, ϕ) be an l.s.c. factorization of Φ. By [3, Theorem 5.1], there
exists an l.s.c. mapping βϕ : βZ → F(Y ) such that βϕ|Z = ϕ. Then βΦ = βϕ◦βh

is as required, where βh : βX → βZ is the extension of h. �
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