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Implicit integral equations with

discontinuous right-hand side

Filippo Cammaroto∗, Paolo Cubiotti†

Abstract. We consider the integral equation h(u(t)) = f
� R

I
g(t, x)u(x) dx

�
, with t ∈

[0, 1], and prove an existence theorem for bounded solutions where f is not assumed to
be continuous.
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1. Introduction

Let I = [0, 1]. In this paper we deal with the integral equation

(1) h(u(t)) = f
(

∫

I
g(t, x)u(x) dx

)

for a.a. t ∈ I,

where g : I × I → [0,+∞[ , h : [α, β] → R and f : [0, σ]→ R (0 < α < β, σ > 0)
are given functions. Such problem has been investigated very recently in the paper
[6], while for the special case where h is the identity mapping it has been studied
in [3], [4], [5], where some sufficient conditions for the existence of integrable
solutions have been established. We note that in all the mentioned papers, to
which we also refer for some motivations of the equation (1), the continuity of the
function f is assumed.
Our aim in this paper, conversely, is to prove an existence result for the equation

(1) where we do not assume the continuity of f (Theorem 1 below). In particular,
a function f which satisfies the assumptions of our result can be discontinuous
at each point of its domain. The key tools in the proof are an existence theorem
for inclusions of the type Ψ(u)(t) ∈ F (t,Φ(u)(t)), due to O. Naselli Ricceri and
B. Ricceri [11], and a very recent existence result for Riemann-measurable selec-
tions of almost-everywhere lower semicontinuous multifunctions, due to J. Saint
Raymond [13].

∗ Born on August 4, 1968. This clarification is needed because of a complete coincidence of
names within the same Department.

† Corresponding author.
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2. Preliminaries

We recall that if X and Y are topological spaces, a multifunction F : X → 2Y

is said to be lower semicontinuous at x0 ∈ X if for any open Ω ⊆ Y such that
F (x0) ∩ Ω 6= ∅, the set {x ∈ X : F (x) ∩ Ω 6= ∅} is a neighborhood of x0 in X .
We say that F is lower semicontinuous in X if it is lower semicontinuous at each
point x ∈ X . The graph of F is the set {(x, y) ∈ X × Y : y ∈ F (x)}. For the
basic facts about multifunctions, we refer to [2], [9].
In the sequel, for p ∈ [1,+∞], p′ will be the conjugate exponent of p, and

we shall write simply Lp to denote the space Lp(I) with the usual norm ‖ · ‖p.

Moreover, we shall denote by C0(I) the space of all continuous real functions over
I, while m will be the Lebesgue measure on the real line R.
If x ∈ Rn, r > 0, we denote by B(x, r) the open ball centered in x with radius

r, with respect to the Euclidean norm of Rn. Also, if A ⊆ Rn, we shall write
intA, A and coA to denote the interior, the closure, and the closed convex hull
of the set A, respectively. Finally, we put I0 = ]0, 1[ .

3. Results

The following is our result.

Theorem 1. Let α, β, σ be positive real numbers, with α < β. Let h : [α, β]→
R, f : [0, σ]→ R and g : I × I → [0,+∞[ be three functions, with h continuous,
such that

min
x∈[α,β]

h(x) < ess infx∈[0,σ] f(x), ess supx∈[0,σ] f(x) < max
x∈[α,β]

h(x).

Moreover, let φ0 ∈ Lj , with j > 1 and 0 < ‖φ0‖1 ≤ σ
β , and φ1 ∈ L1. Assume

that:

(i) there exists f0 : [0, σ]→ R such that f0 = f a.e. in [0, σ] and the set

{x ∈ [0, σ] : f0 is discontinuous at x}

has null Lebesgue measure;
(ii) inth−1(t) = ∅ for all t ∈ inth([α, β]);
(iii) for each t ∈ I, the function g(t, · ) is measurable;
(iv) for a.a. x ∈ I, the function g( · , x) is continuous in I, differentiable in I0

and

g(t, x) ≤ φ0(x), 0 <
∂g

∂t
(t, x) ≤ φ1(x) for all t ∈ I0.

Then there exists û ∈ L∞ which is a solution of (1).

In the proof of Theorem 1 we shall need the following lemma.
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Lemma 2. Let f : [0, σ]→ R (σ > 0) and let γ, δ ∈ R be such that

δ < ess infx∈[0,σ] f(x) ≤ ess supx∈[0,σ] f(x) < γ.

Assume that there exists f0 : [0, σ] → R such that f0 = f a.e. in [0, σ] and the
set

D = {x ∈ [0, σ] : f0 is discontinuous at x}

has null Lebesgue measure.

Then there exists f̂ : [0, σ]→ R such that f̂ = f a.e. in [0, σ], the set {x ∈ [0, σ] : f̂
is discontinuous at x} has null Lebesgue measure and also

δ ≤ f̂(x) ≤ γ for all x ∈ [0, σ].

Proof: Let A = {x ∈ [0, σ] : f0(x) ≤ δ}, B = {x ∈ [0, σ] : f0(x) ≥ γ}. Of course,
if A∪B = ∅, our claim follows. Assume A∪B 6= ∅, and let x∗ ∈ (A∪B)\{0, σ}. We
claim that f0 is not continuous at x

∗. To this aim, assume x∗ ∈ A (if x∗ ∈ B, the
argument is analogous). Arguing by contradiction, assume that f0 is continuous
at x∗. Then there exists ǫ > 0 such that

f0(z) < ess infx∈[0,σ] f(x) for all z ∈ B(x∗, ǫ) ⊆ ]0, σ[ .

Therefore, there exists H ⊆ [0, σ], with m(H) = 0, such that f0(z) 6= f(z) for all
z ∈ B(x∗, ǫ) \H , and this contradicts the assumption since m(B(x∗, ǫ) \H) > 0.
Consequently, we get A ∪ B ⊆ D ∪ {0, σ} and m(A ∪ B) = 0. Now, define

f̂ : [0, σ]→ R by setting

f̂(x) =

{

δ if x ∈ A ∪B,

f0(x) otherwise.

Of course, we have δ ≤ f̂(x) ≤ γ for all x ∈ [0, σ], and also f̂ = f a.e. in [0, σ].

Now, choose x0 ∈ ]0, σ[ \D, and let us prove that f̂ is continuous at x0. Since
x0 ∈ ]0, σ[ \D ⊆ ]0, σ[ \(A ∪ B), we have that f0 is continuous at x0 and also
δ < f0(x0) < γ. By continuity, there exists η > 0 such that δ < f0(x) < γ for

all x ∈ B(x0, η) ⊆ ]0, σ[ . Therefore, B(x0, η) ∩ (A ∪B) = ∅ and f̂(x) = f0(x) for

all x ∈ B(x0, η), hence f̂ is continuous at x0. Therefore, we have {x ∈ ]0, σ[ : f̂ is
discontinuous at x} ⊆ D and our claim follows. �

Proof of Theorem 1. By Lemma 1, there exists f1 : [0, σ] → R such that
f1 = f a.e. in [0, σ], the set E0 = {x ∈ [0, σ] : f1 is discontinuous at x} has null
Lebesgue measure and also

min
x∈[α,β]

h(x) ≤ f1(x) ≤ max
x∈[α,β]

h(x) for all x ∈ [0, σ].
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Now, observe that by (ii) and Theorem 2.4 of [12] the function h is inductively
open. That is, there exists a Borel measurable Y ⊆ [α, β] such that h|Y is open and
h(Y ) = h([α, β]). Consequently, it is not difficult to check that the multifunction

T : h([α, β]) → 2Y defined by T (z) = h−1(z) ∩ Y is lower semicontinuous with
nonempty values. Let Q : [0, σ] → 2Y be defined by Q(x) = T (f1(x)) (such
definition makes sense since f1([0, σ]) ⊆ h([α, β])). By the continuity of f1, it can
be easily checked that Q is lower semicontinuous at each point x ∈ [0, σ] \E0 and

consequently the multifunction x ∈ [0, σ]→ Q(x) ⊆ [α, β] is lower semicontinuous
at each point x ∈ [0, σ] \ E0. Moreover, it has nonempty closed values. By

Theorem 3 of [13], there exists k : [0, σ] → [α, β] such that k(x) ∈ Q(x) for all
x ∈ [0, σ] and the set {x ∈ [0, σ] : k is discontinuous at x} has null Lebesgue
measure. By the continuity of h we easily get

(2) k(x) ∈ h−1(f1(x)) for all x ∈ [0, σ].

Now, let ψ : R→ R be defined by

ψ(x) =

{

k(|x|) if |x| ≤ σ,

β otherwise.

We want to apply Theorem 1 of [11], taking T = I, X = Y = R, p = s = +∞,
q = j′, V = L∞, Ψ(u) = u, Φ(u)(t) =

∫

I g(t, x)u(x) dx, ϕ(λ) = λ ‖φ0‖1,

r = σ
‖φ0‖1

, and F : R→ 2R defined by

F (x) =
⋂

ǫ>0

⋂

m(N)=0

coψ(B(x, ǫ) \N).

To this aim, observe the following facts:

(a) Φ(L∞) ⊆ C0(I) (this fact comes from (iv) and the Lebesgue dominated
convergence theorem);

(b) if {vn} is a sequence in L∞, v ∈ L∞, with {vn} weakly convergent to v in

Lj′ , then {Φ(vn)} → Φ(v) strongly in L1 (see Theorem 2 at p. 359 of [8]);

(c) for each u ∈ L∞, one has

ess supt∈I |Φ(u)(t)| ≤ ‖φ0‖1‖u‖∞ = ϕ(‖u‖∞);

(d) By Proposition 1 at p. 102 of [1], F has nonempty convex values and closed
graph. Moreover, one has F (x) ⊆ [α, β] for all x ∈ R, hence, in particular,

sup
|x|≤σ

d(0, F (x)) ≤ β ≤
σ

‖φ0‖1
.



Implicit integral equations with discontinuous right-hand side 245

Therefore, by Theorem 1 of [11], there exists û ∈ L∞, with ‖û‖∞ ≤ σ
‖φ0‖1

, and

E ⊆ I, with m(E) = 0, such that

(3) û(t) ∈ F (Φ(û)(t)) for all t ∈ I \ E.

Since F (R) ⊆ [α, β], we get α ≤ û ≤ β a.e. in I. Taking into account (iv), the
last fact easily implies that Φ(û) : I → [0, σ] is strictly increasing. Moreover, by
(iii), (iv), and Lemma 2.2 at p. 226 of [10], we have

d

dt
Φ(û)(t) =

∫

I

∂g

∂t
(t, x) û(x) dx > 0

for all t ∈ I0. By Theorem 2 of [14] (taking into account (a)), the function Φ(û)
−1

is absolutely continuous. Now, put

(4) N∗ = {x ∈ [0, σ] : k is discontinuous at x}∪

∪ {0, σ} ∪ {x ∈ [0, σ] : f1(x) 6= f(x)}.

Of course, m(N∗) = 0. By Theorem 18.25 of [7], we get m(Φ(û)−1(N∗)) = 0.
Now, choose t ∈ I \ (E ∪Φ(û)−1(N∗)). By (4), we have that Φ(û)(t) ∈ ]0, σ[ and
k is continuous at Φ(û)(t). Since ψ = k in ]0, σ[ , the function ψ is continuous at
Φ(û)(t), hence, by Proposition 1 at p. 102 of [1] we get

F (Φ(û)(t)) =
{

ψ(Φ(û)(t))
}

=
{

k(Φ(û)(t))
}

.

By (2) and (3), we have that h(û(t)) = f1(Φ(û)(t)). Again by (4), we have
f1(Φ(û)(t)) = f(Φ(û)(t)), hence

h(û(t)) = f
(

∫

I
g(t, x) û(x) dx

)

.

Since m(E ∪Φ(û)−1(N∗)) = 0, our conclusion follows. �

The following simple example shows that Theorem 1 is no longer true if in

assumption (iv) we assume that 0 ≤ ∂g
∂t (t, x) ≤ φ1(x).

Example. Let σ = 1, α = 14 , β =
4
3 , h the identity mapping,

f(x) =

{

1 if x ∈ [0, 12 ]
1
2 if x ∈ ]12 , 1]

g(t, x) =
3

4
.

Choose any j > 1, φ0(x) ≡
3
4 , φ1(x) ≡ 1. Assume that there exists u ∈ L1 which

solves problem (1). Hence we have u > 0 a.e. in I, and thus u(t) = f(34‖u‖1) a.e.

in I. Consequently, we have that either u(t) = 12 a.e. in I, or u(t) = 1 a.e. in I.

In the former case, we get u(t) = f(38 ) = 1 a.e. in I, a contradiction. In the latter

case we get u(t) = f(34 ) =
1
2 a.e. in I, another contradiction. Consequently, there

exists no solution u ∈ L1 to problem (1).

Remark. We note that in the paper [6], besides the continuity of f and h, it is
assumed that the function h is nondecreasing. Anyway, the results proved in [6]
are independent from ours.
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