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Indices of Orlicz spaces and some applications

Alberto Fiorenza∗, Miroslav Krbec∗∗

Abstract. We study connections between the Boyd indices in Orlicz spaces and the
growth conditions frequently met in various applications, for instance, in the regular-
ity theory of variational integrals with non-standard growth. We develop a truncation
method for computation of the indices and we also give characterizations of them in
terms of the growth exponents and of the Jensen means. Applications concern varia-
tional integrals and extrapolation of integral operators.

Keywords: Boyd indices, Orlicz spaces, Simonenko indices, non-standard growth condi-
tions, variational integrals, interpolation, extrapolation

Classification: Primary 46E30; Secondary 26A12, 35A15, 35B10, 42B20, 46E35

1. Introduction

The aim of this paper is to establish connections between the Boyd indices
of Orlicz spaces and the growth conditions on Young functions appearing in the
theory of non-linear b.v.p. with non-standard growth and in the interpolation and
extrapolation theory in Lebesgue and Orlicz spaces.
From large number of relevant references dealing with various sorts of indices in

Orlicz and also more general r.i. spaces we recall the Matuszewska-Orlicz indices
in [17], the Boyd indices [4], [5], [6], the Zippin indices [28], Maligranda [16]
with many further references. The detailed exposition in the general setting of
r.i. spaces and also in Orlicz spaces can be found in Bennett and Sharpley [3]. The
Boyd indices in Lorentz-Orlicz spaces have been studied in Montgomery-Smith
[19]. It is well known that all the indices mentioned above coincide in Orlicz
spaces so that henceforth we shall speak only about the Boyd indices.
The definition of the Boyd indices is very simple, nevertheless, a particular

computation might be extremely difficult. This paper is intended also as a con-
tribution to development of effective methods of establishing their values.
In Sections 2 and 3 we present estimates for the Boyd indices of a Young

function Φ in terms of the growth conditions

(1.1) pΦ(t) ≤ tΦ′(t) ≤ qΦ(t), t ∈ R
1,
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giving birth to the Simonenko indices. Of crucial importance is the following theo-
rem, linking the reciprocals i(Φ) and I(Φ) of the Boyd indices of a Young function
Φ with the Simonenko indices p(Λ) and q(Λ) of equivalent Young functions. We
shall agree that from now on all Young functions and their complementary func-
tions satisfy the ∆2-condition.

Theorem 1.1. Let Φ be a Young function. Then

i(Φ) = sup
Λ∼Φ

p(Λ) and I(Φ) = inf
Λ∼Φ

q(Λ).

As observed above, the definition of the Boyd indices does not often represent
an efficient tool for computation and one has to find another way. The following
theorems give an answer in this direction. We develop a truncation technique,
which itself represents another means for dealing with the Boyd indices of Young
functions, particularly in the cases when the limits r0 and r∞ in Theorem 1.3 do
not exist (cf. Example 5.8); in Section 4 we prove the following theorem:

Theorem 1.2. Let Φ be a Young function. Put

FΦ(t) =
tΦ′(t)

Φ(t)
, t > 0,

and let us define

[FΦ]µ(t) = max(FΦ(t), µ) and [FΦ]
µ(t) = min(FΦ(t), µ), t > 0.

Then

i(Φ) ≥ sup{µ > 0 ;

∫ ∞

0
([FΦ]µ(s)− FΦ(s))

ds

s
< ∞}

and

I(Φ) ≤ inf{µ > 0 ;

∫ ∞

0
([FΦ]

µ(s)− FΦ(s))
ds

s
< ∞}.

If there exist

r0 = lim
t→0

tΦ′(t)

Φ(t)
and r∞ = lim

t→∞

tΦ′(t)

Φ(t)
,

then

(1.2) i(Φ) = sup{µ > 0 ;

∫ ∞

0
([FΦ]µ(s)− FΦ(s))

ds

s
< ∞}

and

(1.3) I(Φ) = inf{µ > 0 ;

∫ ∞

0
([FΦ]

µ(s)− FΦ(s))
ds

s
< ∞}.

When proving Theorem 1.2 we also obtain the following estimates, which have
been established in Fiorenza and Krbec [8], by a different method.
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Theorem 1.3. Let Φ be a Young function. Then

i(Φ) ≤ min
(
lim sup

t→0

tΦ′(t)

Φ(t)
, lim sup

t→∞

tΦ′(t)

Φ(t)

)
,

i(Φ) ≥ min
(
lim inf

t→0

tΦ′(t)

Φ(t)
, lim inf

t→∞

tΦ′(t)

Φ(t)

)
,

and

I(Φ) ≤ max
(
lim sup

t→0

tΦ′(t)

Φ(t)
, lim sup

t→∞

tΦ′(t)

Φ(t)

)
,

I(Φ) ≥ max
(
lim inf

t→0

tΦ′(t)

Φ(t)
, lim inf

t→∞

tΦ′(t)

Φ(t)

)
.

Hence if there exist

r0 = lim
t→0

tΦ′(t)

Φ(t)
and r∞ = lim

t→∞

tΦ′(t)

Φ(t)
,

then i(Φ) = min(r0, r∞) and I(Φ) = max(r0, r∞).

Besides that we also pursue the problem of relations between the indices of
Φ and the (Jensen) integral mean MΦ(f) = Φ−1

(
1
|Ω|

∫
Ω Φ(f) dx

)
, studied in

Fiorenza [7] in connection with (1.1) and we get still another characterization
of the indices in Theorem 3.7. A straightforward application of this theorem
yields an alternative proof and actually an improvement of Migliaccio’s theorem
(see [18]) on extrapolation of reverse Hölder’s inequality.
In the concluding Section 5 we present several further applications. Since in

general p(Φ) ≤ i(Φ) ≤ I(Φ) ≤ q(Φ) and any of these inequalities can be sharp it
often occurs that conditions in terms of the Simonenko indices are more restrictive.
On the other hand, many particular problems have been dealt with, from one
reason or another, with use of the growth exponents. A general common feature
of the approach offered by Theorem 1.1 is use of the Boyd indices in claims while
sticking to the Simonenko indices in proofs. This can be done, for instance, when
studying regularity properties of (Q-quasi)minima of

(1.4) I(Ω, v) =

∫

Ω
Φ(Dv)w dx,

where Ω is a bounded open subset of R
n, v = (v1, . . . , vN ) ∈ W

1,1
loc (Ω, RN ), w is

an Ap weight and Φ satisfies (1.1). Let m0 = inf{m ≥ 1; w ∈ Am}.
Sbordone [24] proved that the condition

(1.5)
nm0q

nm0 + q
< p ≤ q < nm0

implies that Φr(|Du|) is locally integrable in Ω with some r > 1. We shall show
that p and q in (1.5) can be replaced by the lower and the upper index of Φ,
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respectively. An analogous approach yields a variant of Harnack’s inequality
for non-negative (Q-quasi)minima of a non-weighted version of (1.4) for scalar
functions v, studied under the condition (1.1) by Moscariello [20].
We are also concerned with extrapolation of inequalities for integral opera-

tors, we formulate and prove a generalization of Simonenko’s extrapolation theo-
rem [26].
At the end of the paper we present examples of particular Young functions,

showing how our results can be used for computations of the Boyd indices when
the definition seems to be of no practical use.

2. Preliminaries

Let us fix notation and recall basic concepts. For our purposes, a Young func-
tion will be any non-negative, even, convex function Φ : R

1 → R
1 such that Φ

is (strictly) increasing on [0,∞), and lim
t→0

Φ(t)/t = 0, lim
t→∞

Φ(t)/t = ∞. To avoid
non-important technicalities we shall suppose that Φ′ exists everywhere in R

1.
A Young function Φ satisfies the ∆2-condition (Φ ∈ ∆2) if there is c > 0 such

that Φ(2t) ≤ cΦ(t) for all t ∈ R
1.

Let Φ be a Young function. Then Φ̃(s) = sup {|st| − Φ(t); t ∈ R
1}, s ∈ R

1, is
the so called complementary function with respect to Φ. The function Φ is said
to be equivalent to another Young function Ψ (we shall write Φ ∼ Ψ) if there is
c > 0 such that Ψ(c−1t) ≤ Φ(t) ≤ Ψ(ct), t ∈ R

1, with some c > 0.
Let Φ ∈ ∆2 be a Young function and let us define

hΦ(λ) = sup
t>0

Φ(λt)

Φ(t)
, λ > 0.

The numbers

(2.1) i(Φ) = lim
λ→0+

log hΦ(λ)

logλ
= sup
0<λ<1

log hΦ(λ)

logλ

and

(2.2) I(Φ) = lim
λ→∞

log hΦ(λ)

logλ
= inf
1<λ<∞

log hΦ(λ)

logλ

are called the lower index of Φ and the upper index of Φ, respectively. Sometimes
these indices are called the fundamental indices of Φ.
The numbers i(Φ) and I(Φ) are reciprocals of the Boyd indices (see Boyd [4],

[5], [6]). The right wing equalities in (2.1) and (2.2) follow from known properties
of subadditive functions (since loghΦ enjoys this property), see, e.g. [12], and
I(Φ) < ∞ by virtue of the assumption Φ ∈ ∆2.
Always 1 ≤ i(Φ) ≤ I(Φ) and it is i(Φ) > 1 if and only if the complementary

function Φ̃ satisfies the ∆2-condition. The couples i(Φ̃) and I(Φ), and I(Φ̃) and
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i(Φ) behave similarly as conjugate exponents of power functions (see, e.g. [5], [6],

[12]), namely, i(Φ̃) = I(Φ)/(I(Φ)− 1) and I(Φ̃) = i(Φ)/(i(Φ)− 1).
Throughout the paper we shall assume that all Young functions under consid-

eration satisfy the ∆2-condition together with their complementary functions.
We observe that the Boyd indices turned out to be particularly useful in the

theory of classical operators in Orlicz spaces. The well-known Muckenhoupt theo-
rem [21] gives a characterization of weights w in R

n for which the Hardy maximal
operator takes Lp(w) boundedly into Lp(w), namely, w ∈ Ap, the Muckenhoupt
class. This has been extended to the context of reflexive Orlicz spaces (that is,

Φ, Φ̃ ∈ ∆2) by Kerman and Torchinsky [13]. They showed that the maximal op-
erator is modularly continuous if and only if w belongs to the Muckenhoupt class
Ai(Φ).
Some more connections between the indices and the theory of classical opera-

tors in Orlicz spaces can be found in Kokilashvili and Krbec [14, Chapters 2, 3].
In many applications (calculus of variations, interpolation etc.) it is useful

to assume that the Young function in question is in a certain sense between two
powers tp and tq and an appropriate quantitative analysis is needed. At one hand,
Φ ∈ ∆2 is equivalent to existence of p0, p1 ∈ [1,∞), p0 ≤ p1, such that

(2.3) Φ(λt) ≤ Cmax (λp0 , λp1)Φ(t), λ, t ≥ 0,

(see Gustavsson and Peetre [12]) and this in turn gives

(2.4) Φ(λt) ≥ C−1min (λp0 , λp1)Φ(t), λ, t ≥ 0,

and one can see that sup of those p0 and inf of those p1 such that (2.3) and (2.4)
hold equals to i(Φ) and I(Φ), respectively. We observe that the growth estimates
(2.3) and/or (2.4) immediately give the formulas (cf. [16])

i(Φ) = sup{p ; inf
u>0
λ≥1

λ−p Φ(λu)

Φ(u)
> 0}, I(Φ) = inf{p ; sup

u>0
λ≥1

λ−p Φ(λu)

Φ(u)
< ∞}.

On the other hand, a control of a Young function Φ ∈ C1 by power functions
frequently used, for instance, in connections with applications to PDEs (see, e.g.
[9], [24], [25], [20]) has the form (1.1), which can be equivalently written as

(2.5)
Φ(t)

tp
ր and

Φ(t)

tq
ց on (0,∞).

To distinguish the couples of exponents p, q in (1.1) belonging to different Young
functions we shall sometimes write p = pΦ and q = qΦ. The numbers p and q will
be called growth exponents of Φ.
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Let us consider the Simonenko indices , see [26], that is, the best p and q such
that (1.1) holds:

p(Φ) = inf
t>0

tΦ′(t)

Φ(t)
and q(Φ) = sup

t>0

tΦ′(t)

Φ(t)
.

It is known ([15, Theorem 5.1]) that Φ, Φ̃ ∈ ∆2 if and only if 1 < p(Φ) ≤
q(Φ) < ∞.
We conclude this section with a survey of useful properties of the lower, upper

and Simonenko indices. Not all of them are used in the sequel, but they are listed
for completeness. Their straightforward proofs are omitted.

Proposition 2.1. For r > 0 let er(t) = |t|r. Then

p(Φ̃) =
q(Φ)

q(Φ) − 1 , q(Φ̃) =
p(Φ)

p(Φ)− 1 ,

i(Φ̃) =
I(Φ)

I(Φ) − 1 , I(Φ̃) =
i(Φ)

i(Φ)− 1 ,

p(Φ−1) = 1
q(Φ)

, q(Φ−1) = 1
p(Φ)

,

i(Φ−1) = 1
I(Φ)

, I(Φ−1) = 1
i(Φ)

,

p(Φ ◦ Ψ) ≥ p(Φ)p(Ψ), q(Φ ◦ Ψ) ≤ q(Φ)q(Ψ),
p(er ◦ Φ) = p(Φ)r, q(er ◦ Φ) = q(Φ)r,
p(Φ ◦ er) = p(Φ)r, q(Φ ◦ er) = q(Φ)r,
i(Φ ◦ Ψ) ≥ i(Φ)i(Ψ), I(Φ ◦ Ψ) ≤ I(Φ)I(Ψ),
i(er ◦ Φ) = i(Φ)r, I(er ◦ Φ) = I(Φ)r,
i(Φ ◦ er) = i(Φ)r, I(Φ ◦ er) = I(Φ)r,
p(Φ · Ψ) ≥ p(Φ) + p(Ψ), q(Φ · Ψ) ≤ q(Φ) + q(Ψ),
p(Φ · er) = p(Φ) + r, q(Φ · er) = q(Φ) + r,
i(Φ · Ψ) ≥ i(Φ) + i(Ψ), I(Φ · Ψ) ≤ I(Φ) + I(Ψ),
i(Φ · er) = i(Φ) + r, I(Φ · er) = I(Φ) + r.

3. Characterizations of indices by growth exponents and integral

means

The following results are stated for both the lower and the upper indices.
Nevertheless, the proofs are analogous or could be deduced thanks to a certain
“duality” between i(Φ) and I(Φ), therefore we shall restrict ourselves only to the
proofs of the part concerning the lower indices.
We start with a quantitative relation between (2.3) and (2.5) (see Gustavsson

and Peetre [12] and Persson [22]) that will be useful in the sequel:

Proposition 3.1. Let Φ be a Young function. Then the following statements
are equivalent

(i) There are 1 ≤ p0, p1 < ∞ such that Φ(λt) ≤ Cmax (λp0 , λp1)Φ(t) for all
λ, t ≥ 0, with C independent of λ and t;
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(ii) Φ is equivalent to a function Θ such that Θ(t)/tp0ր and Θ(t)/tp1ց on
(0,∞).

Lemma 3.2. Let a Young function Φ satisfy (1.1). Then p ≤ p(Φ) ≤ i(Φ) ≤
I(Φ) ≤ q(Φ) ≤ q.

Proof: Given λ ∈ (0, 1) we have by Proposition 3.1 and (2.3) that Φ(λt) ≤
cλpΦ(t) for every p ≤ p(Φ). Hence hΦ(λ) ≤ cλp and

log hΦ(λ)

logλ
≥ p+

log c

logλ
,

implying that i(Φ) ≥ p. �

Example 3.3. In general p(Φ) 6= i(Φ). Put

Φ(t) =





t2 if t ∈ [0, 1),
2t − 1 if t ∈ [1, 2),
t2/2 + 1 if t ∈ [2,∞),

and Φ(t) = Φ(−t) for t < 0. Then Φ is a Young function with a continuous
derivative. An elementary calculation yields that p(Φ) = 4/3 and q(Φ) = 2. On
the other hand, by virtue of Theorem 1.3 we get i(Φ) = 2. Let us observe that
t2/2 ≤ Φ(t) ≤ t2, t ∈ R

1, and 4/3 = p(Φ) 6= p(t2) = 2.

Remark 3.4. When dealing only with the Boyd indices, then the assumption
Φ ∈ C1 often is not a restriction. Indeed, if Φ ∈ ∆2, then

Θ(t) =

∫ |t|

0

Φ(s)

s
ds, t ∈ R

1,

is a continuously differentiable Young function equivalent to Φ and such that

Θ ∈ ∆2, and Θ̃ ∈ C1. Moreover, if (1.1) holds, then the same is true for Θ. Also,

i(Φ) = i(Θ), and, if Φ̃ ∈ ∆2, then Θ̃ ∈ ∆2. This is a consequence of invariance
of these properties with respect to the equivalence of Young functions, namely, if
Φ ∈ ∆2 and Φ ∼ Ψ , then Ψ ∈ ∆2, and if Φ ∼ Ψ , then i(Φ) = i(Ψ) and I(Φ) = I(Ψ).

Remark 3.5. Let us observe, however, that Φ ∼ Ψ does not generally imply that
p(Φ) = p(Ψ). For instance, a simple computation shows that the Simonenko
indices of Φ from Example 3.3 and the corresponding Θ from Remark 3.4 do not
coincide. This indicates that relations of p(Φ) and q(Φ) at one hand and the Boyd
indices at the other hand are of a rather delicate nature.

Given a Young function Φ, let us consider the class of equivalent Young func-
tions. By Lemma 3.2 we know that

(3.1) p(Λ) ≤ i(Λ) = i(Φ) and I(Φ) = I(Λ) ≤ q(Λ) for all Λ ∼ Φ.
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We are now in a position to prove Theorem 1.1

Proof of Theorem 1.1: By (3.1) we need only to prove that sup
Λ∼Φ

p(Λ) ≥ i(Φ).

Let ε > 0. Then (see, e.g. [14, Chapter I]) there is Cε such that

Φ(λt) ≤ Cεmax
(
λi(Φ)−ε , λI(Φ)+ε

)
Φ(t), λ, t ≥ 0.

By Proposition 3.1 there is an even function Θε with growth exponents i(Φ) − ε
and I(Φ) + ε, and equivalent to Φ. Moreover, Θε can be chosen in such a way
that it is also a Young function. Indeed, multiplying (1.1), with Θε instead of Φ
by t−1 and integrating over (0, s), s > 0, we arrive at

(i(Φ)− ε)Λε(s) ≤ sΛ′ε(s) ≤ (I(Φ) + ε)Λε(s), s > 0,

where

Λε(t) =

∫ |t|

0

Θε(s)

s
ds, t ∈ R

1,

(cf. Remark 3.4). Therefore the functions Φ and Λε are such that

(3.2)
Λε(t)

ti(Φ)−ε
ր and

Λε(t)

tI(Φ)+ε
ց on (0,∞),

and, on the other hand, are equivalent because both are equivalent to Θε. But
(3.2) implies immediately that i(Φ) − ε ≤ p(Λε) ≤ sup

Λ∼Φ
p(Λ) and therefore the

proof is complete. �

We shall finish this section with another characterization using the Jensen
means

MΦ(f) = Φ−1
(
1

|Ω|

∫

Ω
Φ(f) dx

)
,

where Ω is a bounded open subset of R
n. Let

Mr(f) =

(
1

|Ω|

∫

Ω
|f |r dx

)1/r

.

In [7] there is proved that the growth conditions (1.1) imply the existence of
positive constants c1, c2 such that

(3.3) c1Mp(f) ≤ MΦ(f) ≤ c2Mq(f).

This can be slightly improved as follows:
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Proposition 3.6. The inequality (3.3) holds with every 0 < p < i(Φ) and every
I(Φ) < q < ∞.

Proof: Let p < i(Φ). By virtue of Theorem 1.1 there exists Λ ∼ Φ such that
p(Λ) > p. Hölder’s inequality and the fact that Λ−1 ∼ Φ−1 yield

Mp(f) ≤ Mp(Λ)(f) ≤ c′MΛ(f) ≤ c′′MΦ(f).

�

A natural question arises, namely, whether the inequality (3.3) can be used
for another characterization of the indices. We shall show that this is indeed the
case.

Theorem 3.7. Let Ω ⊂ R
n be a bounded open subset of R

n. Then

i(Φ) = sup{r ≥ 1 ; MΦ(f) ≥ cMr(f) for some c > 0},(3.4)

I(Φ) = inf{s ≥ 1 ; MΦ(f) ≤ cMs(f) for some c > 0}.(3.5)

Proof: By Proposition 3.6 we already know that

i(Φ) ≤ sup{r ≥ 1 ; MΦ(f) ≥ cMr(f) for some c > 0}.

Let us assume that there are ε > 0, c > 0 such that

(3.6) MΦ(f) ≥ cMi(Φ)+ε(f).

Put g(t) = (f(t))i(Φ)+ε, Ψ(t) = Φ(t1/(i(Φ)+ε)), then Ψ−1(s) = (Φ−1(s))i(Φ)+ε.
From (3.6) we get that there is c1 > 0 such that

Ψ

(
1

|Ω|

∫

Ω
|f | dx

)
≤ c1

(
1

Ω

∫

Ω
Ψ(c1f) dx

)
,

that is, according to [14, Lemma 1.1.1] the function Ψ is pseudoconvex in the sense
that there is a convex function ω and a constant c2 > 0 such that ω(t) ≤ Ψ(t) ≤
c2ω(c2t) for all t ≥ 0. It is easy to see that the respective indices of ω and Ψ must
coincide, in particular, i(Ψ) ≥ 1. Our assumptions give i(Ψ) = i(Φ)/(i(Φ)+ε) < 1
which is a contradiction. Hence (3.4) holds. �

The preceding theorem yields an alternative proof and actually a mild im-
provement of a theorem due to Migliaccio [18] on the extrapolation of the reverse
Hölder inequality.
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Corollary 3.8. Let p < i(Φ), Ω ⊂ R
n a bounded open set, and

(3.7)
1

|Ω|

∫

Ω
Φ(w) dx ≤ bΦ

(
1

|Ω|

∫

Ω
w dx

)
,

then
1

|Ω|

∫

Ω
wp dx ≤ c(b, p)

(
1

|Ω|

∫

Ω
w dx

)p

.

Proof: According to (3.4) we have

(
1

|Ω|

∫

Ω
wp dx

)1/p

≤ c(p)Φ−1
(
1

|Ω|

∫

Ω
Φ(w) dx

)
≤ c(b, p)

|Ω|

∫

Ω
w dx

and we are done. We observe that the assumption (3.7) is weaker than the original
one, when (3.7) is required for εw with every ε > 0. �

4. Proofs of formulas for the Boyd indices

Proofs of Theorems 1.2, 1.3: Let us assume first that r0 and r∞ exist. We will
divide the proof into the following steps:

Step 1. i(Φ) ≤ min(r0, r∞).
Step 2. min(r0, r∞) ≤ sup{µ > 0 ;

∫ ∞
0 ([FΦ]µ(s)− FΦ(s)) ds/s < ∞}.

Step 3. sup{µ > 0 ;
∫ ∞
0 ([FΦ]µ(s)− FΦ(s)) ds/s < ∞} ≤ i(Φ).

Step 1. We shall make use of Theorem 1.1. Let Λ ∼ Φ be a Young function. Then
Λ(t) = a(t)Φ(t), where 0 < m ≤ a(t) ≤ M < ∞ for all t > 0 with m and M
independent of t. We have

FΛ(t) =
ta′(t)

a(t)
+ FΦ(t), t > 0,

and let us point out that

(4.1) lim inf
t→0

Fa(t) ≤ 0.

Indeed, assuming that lim inf
t→0

Fa(t) > ε > 0, there is δ > 0 such that Fa(t) > ε

for all t ∈ (0, δ) and therefore

M ≥ a(δ)− a(0) =

∫ δ

0
a′(t) dt > ε

∫ δ

0
a(t)

dt

t
> εm

∫ δ

0

dt

t
=∞.

By virtue of (4.1) we have

pΛ ≤ lim inf
t→0

FΛ(t) ≤ lim inf
t→0

Fa(t) + lim
t→0

FΦ(t) ≤ r0,

i(Φ) = sup
Λ∼Φ

pΛ ≤ r0.
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The proof of lim inf
t→∞

Fa(t) ≤ 0 is analogous. We arrive at i(Φ) ≤ min(r0, r∞).
Step 2. We claim that

µ < min(r0, r∞)⇒ µ ≤ sup{µ > 0 ;

∫ ∞

0
([FΦ]µ(s)− FΦ(s))

ds

s
< ∞}

and therefore that supremum is greater than or equal to min(r0, r∞) = i(Φ).
Indeed, given ε > 0, put µ = min(r0, r∞) − ε. Then there is 0 < δ1 < δ2 such
that FΦ(t) ≥ µ for all t ∈ (0, δ1) ∪ (δ2,∞) and we have [FΦ]µ(s) − FΦ(s) = 0 for
all s ∈ (0, δ1) ∪ (δ2,∞), hence

∫ ∞

0
([FΦ]µ(s)− FΦ(s))

ds

s
< ∞.

Step 3. Let µ > 0 be such that the integral in (1.3) is finite and put

a(t) = exp

(∫ t

1
([FΦ]µ(s)− FΦ(s))

ds

s

)
, t ≥ 0.

By the definition of [FΦ]µ we have a ∈ L∞ and therefore the function

Ψ(t) =

∫ |t|

0

a(s)Φ(s)

s
ds, t ∈ R

1,

is a Young function equivalent to Φ. Further,

p(Ψ) ≥ inf
t>0

[
t(a(t)Φ(t))′

a(t)Φ(t)

]
= inf

t>0

[
FΦ(t) + t(log a)′(t)

]
= inf

t>0

[
[FΦ]µ(t)

]
≥ µ

which yields µ ≤ p(Ψ) ≤ i(Ψ) = i(Φ).
If one of the above limits does not exist, Theorem 1.2 follows from Step 3, and

Theorem 1.3 follows by replacing r0, r∞ by lim sup
t→0

and lim sup
t→∞

FΦ(t), respectively,

in the proof of Step 1, and by lim inf
t→0

FΦ(t) and lim inf
t→∞

FΦ(t), respectively, in the

proof of Step 2.
In accordance with our previous agreement we omit the analogous proof of the

part of the theorems concerning I(Φ). �

5. Applications

As we have observed in Introduction we are going to present some applications
of the developed theory, following the general pattern, namely replacement of the
growth exponents by the Boyd indices in the respective claims.
Let Φ be a Young function such that

(5.1) pΦ(t) ≤ tΦ′(t) ≤ qΦ(t), t ∈ R
1,
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with some 1 < p ≤ q < ∞. Further, let

(5.2) I(Ω, v) = IΦ(Ω, v) =

∫

Ω
Φ(|Dv|) dx,

where Ω is a bounded open set of R
n and v = (v1, . . . , vN ).

A function u ∈ W 1,1
loc (Ω, RN ) is a minimizer of I if

I(suppϕ, u) ≤ I(suppϕ, u+ ϕ)

for every ϕ ∈ W 1,1
loc (Ω, RN ) supported in Ω.

Let Q ≥ 1. A function u ∈ W 1,1
loc (Ω, RN ) is a Q-quasiminimizer of I if

I(suppϕ, u) ≤ QI(suppϕ, u+ ϕ)

for every ϕ ∈ W
1,1
loc (Ω, RN ) supported in Ω.

Regularity of minimizers for the functionals in (5.2) have been studied in Fusco
and Sbordone [9]. They proved that if u is a minimizer of I then the condition
(5.1) together with

(5.3) q < p∗ =
np

n − p
if p < n

guarantee that there is r > 1 such that Φ(|Du|) ∈ Lr
loc(Ω). Note that they use

the Young function from Example 5.8 to illustrate the result.
The minima of functionals of type (5.2) have been studied by Giaquinta and

Giusti [10], Giaquinta and Modica [11], Sbordone [23] under the condition

(5.4) c1t
p − c2 ≤ Φ(t) ≤ c3(1 + tq), t > 0,

with p = q. It is easy to see that (5.1) implies (5.4), nevertheless, as observed
in [9] the growth exponents from (5.1) need not be necessarily the best ones for
which (5.4) holds; if p and q are the best possible exponents from (5.4), then
p ≤ p ≤ q ≤ q and in general any of these inequalities can be sharp.
More generally, let w ∈ Am with some m > 1 and consider

(5.5) J (Ω, v) = JΦ(Ω, v) =

∫

Ω
Φ(|Dv|)w dx.

Let

(5.6) m0 = inf{m ≥ 1 ; w ∈ Am}.

Sbordone [24] has proved that the condition

(5.7)
nm0q

nm0 + q
< p ≤ q < nm0
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implies that Φr(|Du|) is locally integrable in Ω with some r > 1.
The condition (5.3) can be rewritten as

1

p
− 1

q
<
1

n
if p < n

so that (5.3) is actually a condition on the distance of the reciprocals of the growth
exponents p and q; the situation is similar as to the left wing inequality in (5.7).
Recalling Lemma 3.2 we see that the conditions

(5.8) I(Φ) < (i(Φ))∗ =
ni(Φ)

n − i(Φ)

if i(Φ) < n, and

(5.9)
nm0I(Φ)

nm0 + I(Φ)
< i(Φ) ≤ I(Φ) < nm0

are weaker than (5.3) and (5.7), respectively.
As noticed in [9] the regularity statement for (5.2) holds for Q-quasiminimizers,

too. In fact, giving a closer look at the proof in [9] one can see that the original
assumption about u is only used for proving the Caccioppoli type inequality

(5.10)

∫

BR/2

Φ(|Du|) dx ≤ c

∫

BR/2

Φ

(
u − uR

R

)
dx,

where BR ⊂⊂ Ω is any ball of the radius R. Going along the lines of the proof it
becomes clear that the inequality (5.10) with a possibly different constant c can
be proved without any extra effort if u is a Q-quasiminimizer, too.
We can now present several applications.

Theorem 5.1.

(i) Let Φ be a Young function and let u ∈ W
1,1
loc (Ω, RN ) be aQ-quasiminimizer

of (5.2). Suppose that (5.8) holds provided i(Φ) < n. Then there is r > 1
such that Φr(|Du|) ∈ L1loc(Ω).

(ii) Let Φ be a Young function and let u ∈ W 1,1
loc (Ω, RN ) be aQ-quasiminimizer

of (5.5) with w ∈ Am for some m > 1. Let m0 be the critical index from
(5.6). If (5.9) holds, then there is r > 1 such that Φr(|Du|) ∈ L1loc(Ω).

In the paper by Moscariello [20], the condition (5.3) has been also used to prove
a Harnack type inequality for scalar-valued Q-quasiminimizers of (5.2), namely,
if u ≥ 0 is a Q-quasiminimizer of (5.2) and BR ⊂⊂ Ω is a ball, then for every
σ ∈ (0, 1) there exists a constant C = C(p, q, Q, n, σ) such that

sup
x∈BσR

u(x) ≤ C inf
x∈BσR

u(x).

(See Di Benedetto and Trudinger [2] for the original Lp-setting.)
This result can also be formulated in terms of the Boyd indices:
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Theorem 5.2. Let n > 1 and suppose that (5.8) holds provided i(Φ) < n. Let

BR be a ball whose closure is contained in Ω. If u ∈ W 1,1
loc (Ω, R1) is a non-negative

Q-quasiminimizer of (5.2), then for every σ ∈ (0, 1) there is C = C(p, q, Q, n, σ)
such that

sup
x∈BσR

u(x) ≤ C inf
x∈BσR

u(x).

Proofs of Theorems 5.1, 5.2: We restrict ourselves to the proof of Theorem 5.1
(i). After that it will be clear how to proceed in the remaining cases.
Let u be a Q-quasiminimizer of (5.2) with Φ satisfying the condition (5.8).

Choose ε > 0 in such a way that

(5.11) I(Φ) + ε ≤ (i(Φ)− ε)∗.

We know (see the proof of Theorem 1.1) that there is a Young function Λε ∼ Φ
such that

(5.12) p(Λε) ≥ i(Φ)− ε, q(Λε) ≤ I(Φ) + ε.

Then the functional

IΛε
(Ω, v) =

∫

Ω
Λε(|Dv|) dx

is of type (5.2) and by virtue of (5.11) and (5.12) the growth exponents of Λε

satisfy inequality (5.3). As Q-quasiminima of Λε are Q-quasiminima of Φ (with
possibly different Q) and vice versa we are done. �

Remark 5.3. The calculus of the indices i(Φ) and I(Φ) can be difficult in particular
cases, for instance, when Theorems 1.2, 1.3 are not sufficient. On the other hand,
the behaviour of Φ near the origin, although relevant for i(Φ), does not in fact
play any role in Theorem 5.1 (cf. the final remarks in [9] and [24]). This suggests
another couple of indices. If we put

p̃ = p̃Φ = lim inf
t→∞

tΦ′(t)

Φ(t)
, q̃ = q̃Φ = lim sup

t→∞

tΦ′(t)

Φ(t)
,

then pΦ ≤ p̃Φ ≤ q̃Φ ≤ qΦ, and therefore the conditions

(5.13) p̃Φ ≤ q̃Φ < (p̃Φ)
∗ =

np̃Φ

n − p̃Φ

and

(5.14)
nm0q̃Φ

nm0 + q̃Φ
< p̃Φ ≤ q̃Φ < nm0

are weaker than (5.3) and (5.7), respectively.

It is possible to prove a result better than Theorem 5.1. To this goal we shall
need the following special construction:
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Lemma 5.4. Let Φ be a Young function such that

1 < ℓ ≤ lim inf
t→∞

tΦ′(t)

Φ(t)
.

Then there is a Young function Ψ such that

(5.15) c1Φ(t)− c2 ≤ Ψ(t) ≤ c3Φ(t) + c4, t ∈ R
1,

for some c1, c2, c3, c4 > 0 independent of t, and

(5.16) i(Ψ) = ℓ, I(Ψ) ≤ lim sup
t→∞

tΦ′(t)

Φ(t)
.

Proof: Step 1. We show that there is a Young function G and constants
c′1, c

′
2 > 0 such that

(5.17) c′1Φ(t)− c′2 ≤ G(t) ≤ Φ(t), t ∈ R
1,

and

(5.18) qG > ℓ.

If qΦ > ℓ it suffices to put G = Φ and we are done. If this is not the case, let
c > 0 be such that

2Φ′(2)

Φ(2)− c
> ℓ,

Φ(2)− c

Φ(1) + Φ′(1)
< 1,

and define

G(t) =





Φ(2)− c

Φ(1) + Φ′(1)
Φ(t) if |t| ≤ 1,

Φ(2)− c

Φ(1) + Φ′(1)
[Φ′(1)(|t| − 1) + Φ(1)] if 1 < |t| < 2,

Φ(t)− c if |t| ≥ 2.

It is easy to check that G satisfies (5.17) and (5.18).

Step 2. We shall construct Ψ . Choose t0 > 0 such that t0G
′(t0)/G(t0) > ℓ and

put

Ψ(t) =





G(t0)

tℓ0
|t|ℓ if |t| ≤ t0,

G(t) if |t| > t0.
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Then Ψ is a Young function; its convexity follows from

lim
t→t0−

Ψ ′(t) =
ℓG(t0)

tℓ0
tℓ−10 =

ℓG(t0)

t0
< G′(t0) ≤ lim

t→t0+
G′(t).

Moreover, G(t)− G(t0) ≤ Ψ(t) ≤ G(t) +G(t0), t ∈ R
1, hence

Φ(2)− c

Φ(1) + Φ′(1)
Φ(t)− G(t0) ≤ Ψ(t) ≤ G(t) +G(t0) ≤ Φ(t) + Φ(t0), t ∈ R

1,

and (5.15) is proved.

Step 3. We shall prove (5.16). By Theorem 1.3 we have

i(Ψ) ≤ min
(
lim sup

t→0

tΨ ′(t)

Ψ(t)
, lim sup

t→∞

tΨ ′(t)

Ψ(t)

)
= min

(
ℓ , lim sup

t→∞

tG′(t)

G(t)

)

= min

(
ℓ , lim sup

t→∞

tΦ′(t)

Φ(t)

)
= ℓ.

On the other hand,

i(Ψ) ≥ min
(
lim inf

t→0

tΨ ′(t)

Ψ(t)
, lim inf

t→∞

tΨ ′(t)

Ψ(t)

)
= min

(
ℓ , lim inf

t→∞

tG′(t)

G(t)

)

= min

(
ℓ , lim inf

t→∞

tΦ′(t)

Φ(t)

)
= ℓ.

The estimate for I(Ψ) follows directly from Theorem 1.3 because Ψ = G near
infinity, and G and Φ differ by a constant on (2,∞). �

Similarly, one can prove the “dual” statement:

Lemma 5.5. Let Φ be a Young function such that

lim sup
t→∞

tΦ′(t)

Φ(t)
≤ ℓ < ∞.

Then there is a Young function Ψ such that

(5.19) c1Φ(t)− c2 ≤ Ψ(t) ≤ c3Φ(t) + c4, t ∈ R
1,

for some c1, c2, c3, c4 > 0 independent of t, and

(5.20) I(Ψ) = ℓ, i(Ψ) ≥ lim inf
t→∞

tΦ′(t)

Φ(t)
.

Combining Lemma 5.4 with the foregoing considerations we arrive at
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Theorem 5.6. The assertions (i) and (ii) in Theorem 5.1 hold also under the
conditions (5.13) with p̃Φ < n and (5.14), respectively.

Next we shall pay attention to one of the interesting pioneering results due to
Simonenko [26] on extrapolation of integral operators with a kernel, which enables
very simply and naturally to carry over for instance the theorems on singular
integrals from Lp to LΦ spaces with finite indices. The original assumption in
[26] for the claim in the following theorem reads 1 < p(Φ) ≤ q(Φ) < q.

Theorem 5.7. Let

Kf(x) =

∫

Ω
A(x, y)f(y) dy

and let us suppose that K is continuous in Lq(Ω). Let B(x0, r) denote a ball
centered at x0 and of the radius r. Assume that

sup

∫

(B(x0,r)c)∩Ω
|A(x, y) − A(x, y′)| dx < ∞,

where the sup is taken over all y, y′ ∈ B(x0, 2r), x0 ∈ R
n, r > 0, and (B(x0, r))

c

denotes the complement of B(x0, r). If Φ is a Young function such that 1 <
i(Φ) ≤ I(Φ) < q, then K is continuous in LΦ(Ω).

Proof: It is clear that the function Φ can be substituted by an equivalent Young
function in the claim and at the same time we see that this cannot be done in
the assumption. Nevertheless, arguing as in the proof of Theorem 1.1, we find
an equivalent Young function Λε whose Simonenko index q(Φ) is arbitrarily near
to I(Φ) and we apply Simonenko’s theorem from [26] to K in LΛε

. �

One can think about possible applications in the above described spirit to other
problems, too, since the growth condition (1.1) appears also in connections with
areas which we have not touched here. For instance, (1.1) plays a major role in
the recent paper by Aı̈ssaoui [1] on Bessel potentials in Orlicz spaces.

Example 5.8. The following examples illustrate possible behaviour of Young
functions. The verification is a matter of simple calculation.
(1) Let Φ(t) = e|t|3 if |t| < e and Φ(t) = t4+sin log log t if |t| ≥ e (cf. [9]). Then

p(Φ) = 4−
√
2, q(Φ) = 4 +

√
2, further, (5.4) holds with p = 3 and q = 5. At the

same time, using just the definition, it is likely extremely difficult to find the lower
and the upper indices. Further, the limit r∞ does not exist so that Theorem 1.3
cannot be used. Nevertheless, invoking Theorem 1.2, we simply obtain that i(Φ)
and I(Φ) coincide with p(Φ) and q(Φ), respectively. Indeed, every truncation of

FΦ by µ > 4 −
√
2 makes the integral in (4.1) infinite; similarly for the upper

index.

(2) Put Φ(0) = 0 and Φ(t) = |t|r exp(
√
1 + s log+ |t|) otherwise, r ≥ 1, s > 0

(Talenti [27]). Then i(Φ) = I(Φ) = r simply by Theorem 1.3. As to the Simonenko
indices we have p(Φ) = r and q(Φ) = r + s/2. Notice that q(Φ) depends on s
while I(Φ) does not.
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