
Commentationes Mathematicae Universitatis Carolinae

Shigeru Hasegawa; Ryotaro Sato
On a d-parameter ergodic theorem for continuous semigroups of operators
satisfying norm conditions

Commentationes Mathematicae Universitatis Carolinae, Vol. 38 (1997), No. 3, 453--462

Persistent URL: http://dml.cz/dmlcz/118944

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118944
http://project.dml.cz


Comment.Math.Univ.Carolin. 38,3 (1997)453–462 453

On a d-parameter ergodic theorem for continuous

semigroups of operators satisfying norm conditions

Shigeru Hasegawa, Ryotaro Sato

Abstract. A continuous multiparameter version of Chacon’s vector valued ergodic theo-
rem is proved.

Keywords: vector valued multiparameter pointwise ergodic theorem, Chacon’s ergodic
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Classification: 47A35

1. Introduction and the theorem

Let X be a reflexive Banach space with norm | · | and (Ω,Σ, µ) be a σ-finite
measure space. For 1 ≤ p ≤ ∞, let Lp(Ω;X) = Lp((Ω,Σ, µ);X) denote the usual
Banach space of all X-valued strongly measurable functions f on Ω with the norm
given by

‖f‖p =
(

∫

|f |p dµ
)1/p

< ∞ if 1 ≤ p < ∞,

‖f‖∞ = ess sup{|f(ω)| : ω ∈ Ω} < ∞ if p =∞.

Let d ≥ 1 be an integer, and let Ti = {Ti(t) : t > 0}, 1 ≤ i ≤ d, be strongly con-
tinuous one-parameter semigroups of linear contractions in L1(Ω;X) such that
all the operators Ti(t) are also bounded linear operators in L∞(Ω;X). Thus Ti,
1 ≤ i ≤ d, can be considered to be strongly continuous one-parameter semi-
groups of bounded linear operators in Lp(Ω;X) for each 1 < p < ∞, by the Riesz
convexity theorem. In this paper we shall assume that there are strongly contin-
uous one-parameter semigroups Pi = {Pi(t) : t > 0}, 1 ≤ i ≤ d, of positive linear
contractions in L1(Ω;R), R being the real numbers, such that

(i) for all f ∈ L1(Ω;X) and t > 0,

(1) |Ti(t)f(ω)| ≤ Pi(t)|f |(ω) a.e. on Ω,

(ii) for all f ∈ L1(Ω;R) ∩ L∞(Ω;R) and α > 0,

(2) ‖Aα(Pi)f‖∞ ≤ K‖f‖∞ < ∞,

where
Aα(Pi)f =

1

α

∫ α

0
Pi(t)f dt for f ∈ L1(Ω;R).

Under this hypothesis we will prove the following multiparameter pointwise
ergodic theorem for T1, . . . , Td.
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Theorem. If the semigroups T1, . . . , Td commute and the semigroups P1, . . . , Pd
are both L1 and L∞ contraction semigroups, or if the semigroups P1, . . . , Pd
commute, then for every f ∈ L1(Ω;X) the limit

q– lim
α→∞

α−d
∫ α

0
· · ·

∫ α

0
T1(t1)T2(t2) . . . Td(td)f dt1 . . . dtd

exists a.e. on Ω, where q– limα→∞ means that the limit is taken as α tends to

infinity along a countable dense subset of the positive real numbers.

This theorem may be considered to be a continuous multiparameter version
of Chacon’s vector valued ergodic theorem ([2]). See also [4]. Here of course the
authors think that it is more natural to ask whether the conclusion of the theorem
holds without assuming the existence of such positive semigroups P1, . . . , Pd, when
the semigroups T1, . . . , Td commute and they are both L1 and L∞ contraction
semigroups. But we failed to have an idea for its proof.

2. A lemma

Let T1, . . . , Td and P1, . . . , Pd be the same as in the preceding section. By
letting Ti(0) = Pi(0) = I (the identity operator) for each 1 ≤ i ≤ d, we can

obviously extend Ti and Pi to the one-parameter semigroups T̃i and P̃i defined
on the interval [0,∞), respectively. Let us suppose the semigroups T1, . . . , Td
commute, and define

(3) T̃ (t) = T̃1(t1)T̃2(t2) . . . T̃d(td) for t = (t1, . . . , td) ∈ R+d ,

where
R+d = {t = (t1, . . . , td) : ti ≥ 0, 1 ≤ i ≤ d}.

Then T̃ = {T̃ (t) : t ∈ R+d } becomes a d-parameter semigroup of linear con-
tractions in L1(Ω;X) such that it is strongly continuous on the interior Pd =

{t = (t1, . . . , td) : ti > 0, 1 ≤ i ≤ d} of R+d , and for all f ∈ L1(Ω;X) and

t = (t1, . . . , td) ∈ R+d we have

|T̃ (t)f(ω)| ≤ P̃1(t1) . . . P̃d(td)|f |(ω) a.e. on Ω.

Lemma. Suppose the semigroups T1, . . . , Td commute, and let T̃ = {T̃ (t) :
t ∈ R+d } be the d-parameter semigroup defined by (3). Then to any u =

(u1, . . . , ud) ∈ R+d there corresponds a positive linear contraction τ(u) defined

in L1(Ω;R), called the linear modulus of T̃ (u), such that

(i) |T̃ (u)f | ≤ τ(u)|f | ≤ P̃1(u1) . . . P̃d(ud)|f | a.e. on Ω for all f ∈ L1(Ω;X),

(ii) τ(u)g = sup{∑k
i=1 |T̃ (u)fi| : fi ∈ L1(Ω;X),

∑k
i=1 |fi| ≤ g, 1 ≤ k < ∞}

for all g ∈ L+1 (Ω;X),

(iii) τ(s + t) ≤ τ(s)τ(t) for all s, t ∈ R+d ,
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(iv) if u ∈ Pd then

τ(u) = strong- lim
t→u
t≥u

τ(t).

Proof: See the proof of Lemma 1 in [7]. �

3. Proof of the theorem

We first consider the case d = 1. For u > 0 let ϕu(x) = u−2ϕ(xu−2), where

ϕ(x) =

{

2−1π− 1
2 x−

3

2 e−
1

4x (x > 0),

0 (x ≤ 0).

Define

Q1(u)f =

∫ ∞

0
ϕu(x)P1(x)f dx for f ∈ L1(Ω;R).

It follows (cf. [3], [1]) that Q1 = {Q1(u) : u > 0} becomes a strongly con-
tinuous semigroup of positive linear contractions in L1(Ω;R) such that for all

f ∈ L+1 (Ω;R) and α > 0

(4)
1

α

∫ α

0
P1(t)f dt ≤ C1 ·

1√
α

∫

√
α

0
Q1(u)f du a.e. on Ω,

where C1 is an absolute constant, and also such that

(5) ‖Q1(u)‖∞ ≤ M ′K for all u > 0,

where

M ′ =
∫ ∞

0

∣

∣

∣

∂ϕu(x)

∂x

∣

∣

∣
xdx < ∞

(M ′ does not depend on u > 0). Thus we have

q– sup
α>0

1

α

∫ α

0
P1(t)f dt ≤ C1 · q– sup

α>0

1

α

∫ α

0
Q1(u)f du,

where q– supα>0 means that the supremum is taken as α ranges along a countable
dense subset of the positive real numbers.
Define for f ∈ L+p (Ω;R) with 1 ≤ p < ∞,

Q∗
1f = q– sup

α>0

1

α

∫ α

0
Q1(u)f du.

By (5) together with Theorem 3 in [5], we see that
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(i) if 1 < p < ∞ then there exists a constant K(p) with

(6) ‖Q∗
1f‖p ≤ K(p)‖f‖p for all f ∈ L+p (Ω;R),

(ii) if p = 1 then there exits a constant K(1) with

(7) µ({ω : Q∗
1f(ω) > α}) ≤ 1

α
K(1)‖f‖1

for all f ∈ L+1 (Ω;R) and α > 0; hence Q∗
1f < ∞ a.e. on Ω for all f ∈ L+1 (Ω;R).

We now prove that if f ∈ L1(Ω;X) then

(8) q– lim
α→∞

1

α

∫ α+1

α
T1(t)f dt = 0 on Ω.

For this purpose, by (1) it is enough to show that

(9) q– lim
α→∞

1

α

∫ α+1

α
P1(t)g dt = 0 a.e. on Ω

for any g ∈ L+1 (Ω;R). To do so, let 0 < h ∈ L1(Ω;R)∩L∞(Ω;R) be any function.
Then we have

1

α

∫ α+1

α
P1(t)g dt = Aα(P1)h ·

∫ α+1
α P1(t)g dt
∫ α
0 P1(t)h dt

≤ K‖h‖∞ ·
∫ α+1
α P1(t)g dt
∫ α
0 P1(t)h dt

,

and

q– lim
α→∞

∫ α+1
α P1(t)g dt
∫ α
0 P1(t)h dt

= 0

a.e. on {ω : q– supα>0(
∫ α
0 P1(t)h dt)(ω) > 0} by virtue of the Chacon-Ornstein

lemma (cf. Lemma 3.2.3 in [6]). Hence (9) follows.
Next let 1 < p < ∞ be fixed. We observe that the net {Aα(T1) : α > 0}

is ergodic with respect to the one-parameter semigroup T1 = {T1(t) : t > 0} of
bounded linear operators in Lp(Ω;X) in the sense of Chapter 2 of [6]. Indeed, for
any t > 0 we have

‖T1(t)Aα(T1)− Aα(T1)‖p =
∥

∥

∥

1

α

∫ α+t

α
T1(u) du − 1

α

∫ t

0
T1(u) du

∥

∥

∥

p

≤
∥

∥

∥

1

α

∫ α+t

α
T1(u) du

∥

∥

∥

p
+
1

α

∥

∥

∥

∫ t

0
T1(u) du

∥

∥

∥

p

≤
∥

∥

∥

1

α

∫ α+t

α
P1(u) du

∥

∥

∥

p
+
1

α

∥

∥

∥

∫ t

0
P1(u) du

∥

∥

∥

p
→ 0 as α → ∞,
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by the Riesz convexity theorem together with (1) and (2). Since X is reflexive
by hypothesis, Lp(Ω;X) is also reflexive. Thus by a mean ergodic theorem (cf.
Theorem 2.1.5 in [6]) for any f ∈ Lp(Ω;X) the limit

lim
α→∞

Aα(T1)f

exists in the Lp-norm, and we have Lp(Ω;X) = F ⊕ N , where

F = {f ∈ Lp(Ω;X) : T1(t)f = f for all t > 0},
N = the closed linear span of {f − T1(t)f : f ∈ Lp(Ω;X), t > 0}.

Since (9) holds for all g ∈ L+1 (Ω;R), (6) together with an approximation argument

proves that (9) holds for all g ∈ L+p (Ω;R). By this and (1), for all f ∈ Lp(Ω;X)
we have

(10) q– lim
α→∞

1

α

∫ α+1

α
T1(t)f dt = 0 a.e. on Ω.

Here clearly α+1 can be replaced by any α+u with u > 0. So for u > 0 we have

q– lim
α→∞

Aα(T1)(f − T1(u)f)

= q– lim
α→∞

( 1

α

∫ u

0
T1(t)f dt − 1

α

∫ α+u

α
T1(t)f dt

)

= 0 a.e. on Ω,

whence (1), (4), (6) and Banach’s convergence principle (cf. Theorem 1.7.2 in [6])
prove that for any f ∈ Lp(Ω;X) the limit

q– lim
α→∞

1

α

∫ α

0
T1(t)f dt

exists a.e. on Ω. Since Lp(Ω;X)∩L1(Ω;X) is dense in L1(Ω;X), (7) and Banach’s
convergence principle prove that the theorem holds for d = 1.

Since the case d = 1 has been done, we now proceed by an induction argu-
ment. First suppose that the semigroups T1, . . . , Td commute and the semigroups
P1, . . . , Pd are both L1 and L∞ contraction semigroups. Let T̃ = {T̃ (t) : t ∈ R+d }
and {τ(t); t ∈ R+d } be as in the lemma. We notice that ‖τ(t)‖p ≤ 1 for all
1 ≤ p ≤ ∞ and t ∈ R+d , and that if u ∈ Pd then τ(u) = strong-limt→u,t≥u τ(t) in
Lp(Ω;R) for each 1 ≤ p < ∞. For u = (u1, . . . , ud) ∈ Pd and g ∈ Lp(Ω;R) with
1 ≤ p < ∞, define

(11)

S(u)g = S(u1, . . . , ud)g

=

∫ ∞

0
· · ·

∫ ∞

0
ϕu1(x1) . . . ϕud

(xd)τ(x1, . . . , xd)g dx1 . . . dxd.
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S(u) becomes a positive linear contraction in Lp(Ω;R) for each 1 ≤ p < ∞.
Further, by putting

τ̃ (x1, x̃1, . . . , xx, x̃d) = τ(x1, . . . , xd),

we get for all g ∈ Lp(Ω;R) with 1 ≤ p < ∞

S(u)g =

=

∫ ∞

0
· · ·

∫ ∞

0
ϕu1(x1)ϕu1(x̃1) . . . ϕud

(xd)ϕud
(x̃d)τ̃ (x1, , x̃1, . . . , x̃d)g dx1 . . . dx̃d.

Thus it follows from the lemma (iii) and a standard calculation (cf. p. 700 in [3])
that if u, t ∈ Pd and g ∈ L+p (Ω;R) with 1 ≤ p < ∞ then

(12) S(u)S(t)g ≥ S(u+ t)g a.e. on Ω,

that is, S = {S(t) : t ∈ Pd} becomes a d-parameter sub-semigroup of positive
linear contractions in Lp(Ω;R) for each 1 ≤ p < ∞. Since S is strongly continuous
on Pd, the proof of Lemma VIII.7.13 in [3] shows that there exists a constant
Cd > 0, dependent only on d, and a strongly continuous one-parameter sub-
semigroup S1 = {S1(t) : t > 0} of positive linear contractions in L1(Ω;R) such
that

(13) ‖S1(t)‖∞ ≤ 1 for all t > 0,

and also such that for all g ∈ L+p (Ω;R) with 1 ≤ p < ∞

(14) q– sup
α>0

1

αd

∫

[0,α]d
τ(u)g du ≤ Cd · q– sup

α>0

1

α

∫ α

0
S1(t)g dt a.e. on Ω.

Let us fix a g ∈ L+p (Ω;R) with 1 ≤ p < ∞, and let Q+denote the set of all
positive rational numbers. Since

lim
n→∞

∥

∥

∥

1

r

∫ r

0
S1(t)g dt − 1

r(n!)

r(n!)−1
∑

i=0

S1
( i

n!

)

g
∥

∥

∥

p
= 0

for all r ∈ Q+, where S1(0) = I, the Cantor diagonal method can be applied to
choose a subsequence (n′) of (n) such that

1

r

∫ r

0
S1(t)g dt = lim

n′→∞
1

r(n′!)

r(n′!)
∑

i=0

S1
( i

n′!

)

g

≤ lim inf
n′→∞

1

r(n′!)

r(n′!)−1
∑

i=0

(

S1
( 1

n′!

))i
g a.e. on Ω
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for all r ∈ Q+. Thus putting

(15) g∗(n′) = sup
k≥1

1

k

k−1
∑

i=0

(

S1
( 1

n′!

))i
g,

and for each a > 0

E(n′, a) = {ω ∈ Ω : g∗(n′)(ω) > a},

we see that the function

(16) g∗ = sup
r∈Q+

1

r

∫ r

0
S1(t)g dt

satisfies

(17) g∗ ≤ lim inf
n′→∞

g∗(n′) a.e. on Ω,

and
{ω : g∗(ω) > a} ⊂ lim inf

n′→∞
E(n′, a).

Therefore by Fatou’s lemma, if g ∈ L+1 (Ω;R) then

∫

{g∗>a}
(a −min{a, g}) dµ ≤ lim inf

n′→∞

∫

E(n′,a)
(a −min{a, g}) dµ

≤
∫

Ω
(g −min{a, g}) dµ (by Theorem 1 in [5]),

so that

µ({g∗ > a}) ≤ 1
a
‖g‖1,

whence g∗ < ∞ a.e. on Ω. By this together with (14) and the lemma, we have
for all f ∈ L1(Ω;X)

(18) q– sup
α>0

α−d
∣

∣

∣

∫ α

0
· · ·

∫ α

0
T̃ (t1, . . . , td)f dt1 . . . dtd

∣

∣

∣
< ∞ a.e. on Ω.

Let 1 < p < ∞. If g ∈ L+p (Ω;R) then the function g∗ in (16) satisfies, by (17)
and Fatou’s lemma,

‖g∗‖p ≤ lim inf
n′→∞

‖g∗(n′)‖p.

From (13) it follows (cf. [5]) that there exists a constant K̃(p) > 0 such that

‖g∗(n′)‖p ≤ K̃(p)‖g‖p;
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thus

(19) ‖g∗‖p ≤ K̃(p)‖g‖p (g ∈ L+p (Ω;R)).

Let f ∈ Lp(Ω;X) and t > 0 be fixed. Since

q– lim
α→∞

1

α

∫ α

0
Td(u)[f − Td(t)f ] du = 0 a.e. on Ω,

the functions

M(α)[f − Td(t)f ] = sup
b>α

b∈Q+

1

b

∣

∣

∣

∫ b

0
Td(u)[f − Td(t)f ] du

∣

∣

∣
(α > 0)

satisfy
lim

α→∞
M(α)[f − Td(t)f ] = 0 a.e. on Ω.

Further, since

M(α)[f − Td(t)f ] ≤ sup
r∈Q+

1

r

∣

∣

∣

∫ r

0
Td(u)[f − Td(t)f ] du

∣

∣

∣
∈ Lp(Ω;R)

by the preceding argument for d = 1, it follows from Lebesgue’s convergence
theorem that

lim
α→∞

‖M(α)[f − Td(t)f ]‖p = 0.

This together with the inequalities (14) for the case d − 1 and (19) yield

q– lim
α→∞

α−(d−1)
∫ α

0
· · ·

∫ α

0
T̃ (u1, . . . , ud−1)

( 1

α

∫ α

0
Td(s)[f − Td(t)f ] ds

)

du1 . . . dud−1 = 0 a.e. on Ω.

Since Lp(Ω;X) = Fd ⊕ Nd, where

Fd = {h ∈ Lp(Ω;X) : Td(t)h = h for all t > 0},
Nd = the closed linear span of {h− Td(t)h : h ∈ Lp(Ω;X), t > 0},

we then apply the induction hypothesis together with Banach’s convergence prin-
ciple (cf. (14), (16) and (19)) to show for any f ∈ Lp(Ω;X) the limit

q– lim
α→∞α−d

∫ α

0
· · ·

∫ α

0
T̃1(t1, . . . , td)f dt1 . . . dtd
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exists a.e. on Ω. This and (18) for f ∈ L1(Ω;X) prove that the conclusion of
the theorem holds, when T1, . . . , Td commute and P1, . . . , Pd are both L1 and L∞
contraction semigroups.

Finally suppose that the semigroups P1, . . . , Pd commute. For u = (u1, . . . , ud)
∈ Pd and g ∈ L1(Ω;R), define

(20)

Q(u)g = Q(u1, . . . , ud)g

=

∫ ∞

0
· · ·

∫ ∞

0
ϕu1(x1) . . . ϕud

(xd)P1(x1) . . . Pd(xd)g dx1 . . . dxd.

It follows from (5) (cf. [8]) that Q = {Q(u) : u ∈ Pd} becomes a d-parameter
semigroup of positive linear contraction in L1(Ω;R) such that

(21) ‖Q(u)‖∞ ≤ (M ′K)d for all u ∈ Pd.

Thus there exists a strongly continuous one-parameter semigroup Q1 = {Q1(t) :
t > 0} of positive linear contractions in L1(Ω;R) such that ‖Q1(t)‖∞ ≤ (M ′K)d

for all t > 0, and if g ∈ L+p (Ω;R) with 1 ≤ p < ∞ then

q– sup
α>0

1

αd

∫ α

0
· · ·

∫ α

0
P1(u1) . . . Pd(ud)g du1 . . . dud

≤ Cd · q– sup
α>0

1

α

∫ α

0
Q1(t)g dt < ∞ a.e. on Ω.

Since (1) implies that if f ∈ Lp(Ω;X) with 1 ≤ p < ∞ then the function

Mf = q– sup
α>0

1

αd

∣

∣

∣

∫ α

0
· · ·

∫ α

0
T1(t1) . . . Td(td)f dt1 . . . dtd

∣

∣

∣

satisfies

Mf ≤ q– sup
α>0

1

αd

∫ α

0
· · ·

∫ α

0
P1(u1) . . . Pd(ud)|f | du1 . . . dud,

it follows that

Mf < ∞ a.e. on Ω

for all f ∈ Lp(Ω;X) with 1 ≤ p < ∞. Using this and the fact that the one-
parameter semigroup Td = {Td(t) : t > 0} of bounded linear operators in Lp(Ω;X)
with 1 < p < ∞ satisfies the mean ergodic theorem, we can prove that the
conclusion of the theorem holds in this case, too. We may omit the details.
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