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On CCC boolean algebras and partial orders

A. Hajnal∗, I. Juhász∗, Z. Szentmiklóssy∗

Abstract. We partially strengthen a result of Shelah from [Sh] by proving that if κ = κω

and P is a CCC partial order with e.g. |P | ≤ κ+ω (the ωth successor of κ) and |P | ≤ 2κ

then P is κ-linked.
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Shelah has proved in [Sh] that if κ is a cardinal with κω = κ then every
CCC boolean algebra B with |B| ≤ κ+ is κ-centered. Equivalently, this means
that every CCC compact Hausdorff space X of weight w(X) ≤ κ+ has density
d(X) ≤ κ.

Since w(X) ≤ 2d(X) is always valid for a compact T2 space X , it is natural
to raise the question whether κ+ could be replaced by 2κ in the above result.
Shelah mentions in [Sh] without proof that, at least consistently, this cannot
be done. Moreover, we have recently shown in [HJSz] that there is, in ZFC, a
compact CCC Hausdorff space of density ω2 and weight 2

ω2 . Thus if 2ω = ω1
and 2ω1 = 2ω2 = ω3 this yields a CCC compact T2 space of weight ω3 = 2

ω1 with
density greater than ω1, or equivalently a CCC boolean algebra of size ω3 = 2

ω1

that is not ω1-centered.

Our aim in this note is to show that some strengthenings of Shelah’s result are
nonetheless provable for higher successors of κ. Let us recall for this purpose that
a subset A of a partially ordered set 〈P,≤〉 is said to be linked if for any p, q ∈ A
there is r ∈ P with r ≤ p, q, i.e. any two members of A are compatible. We say
that P is κ-linked if it is the union of κ many linked subsets and we write

link(P ) = min{κ ≥ ω : P is κ-linked}.

If B is a boolean algebra then, of course, we put link(B) = link(B+).

We have, implicitly, referred above to the fact that any κ-centered boolean al-
gebra B satisfies |B| ≤ 2κ. In fact, the following stronger result is easily provable.
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Lemma 1. If B is a boolean algebra then |B| ≤ 2link(B).

Proof: Let B+ =
⋃

{Aα : α ∈ κ} where each Aα is linked. By Zorn’s lemma,
we may actually assume that Aα is a maximal linked subset of B

+ for all α ∈ κ.
Given b ∈ B+, let

Ib = {α ∈ κ : b ∈ Aα}.

Clearly, it suffices to show that if b 6= b′ then Ib 6= Ib′ .
Assume that b − b′ 6= 0 and fix α ∈ κ with b − b′ ∈ Aα. Then b′ /∈ Aα since

Aα is linked, while b ∈ Aα follows from the maximality of Aα. Thus we see that
Ib 6= Ib′ . �

We may now formulate a partial strengthening of Shelah’s result as follows.

Theorem 2. Let κ = κω and B be a CCC boolean algebra with |B| ≤ 2κ and
also satisfying the following condition (∗):

(∗) for every cardinal µ if κ < µ < |B| and cf (µ) = ω then µω = µ+ and
�µ hold.

Then B is κ-linked.

The proof of this theorem is based on the following lemma.

Lemma 3. Assume κω = κ and that B is a boolean algebra which can be written
as

B =
⋃

{Xα : α ∈ λ},

where λ ≤ 2κ and {Xα : α ∈ λ} is an increasing and continuous sequence of
subsets of B such that for each α ∈ λ we have Xα =

⋃

{Bn
α : n ∈ ω} with

every Bn
α being a subalgebra of B that is complete and κ-linked. Then B is also

κ-linked.

Proof: Let us start by defining for any b ∈ B and 〈α, n〉 ∈ λ × ω the element
πn

α(b) of B
n
α by

πn
α(b) =

∧

{a ∈ Bn
α : b ≤ a}.

This is always possible since Bn
α is complete.

Then we define σ(b) as the set of those α ∈ λ for which there is some bα ∈ Xα

such that b ≤ bα and for every c ∈ Xβ with β < α and b < c we have c − bα 6= 0.
We claim that σ(b) is a countable subset of λ. Indeed, let us assume indirectly

that |σ(b)| ≥ ω1 and let {αξ : ξ ∈ ω1} enumerate in the increasing order the first
ω1 members of σ(b). For each ξ ∈ ω1, since αξ ∈ σ(b) there is some bξ ∈ Xαξ

such that b ≤ bξ and c − bξ 6= 0 whenever b ≤ c and c ∈
⋃

{Xβ : β ∈ αξ}.
If α =

⋃

{αξ : ξ ∈ ω1} then there is n ∈ ω such that the set

z = {ξ ∈ ω1 : bξ ∈ Bn
α}

is uncountable and hence {αξ : ξ ∈ z} is cofinal in α. Now, {bξ : ξ ∈ z} ⊂ Bn
α,

hence we have c =
∧

{bξ : ξ ∈ z} ∈ Bn
α, as Bn

α is complete. By continuity, there is
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some β < α with c ∈ Xβ . But there is some ξ ∈ z with β < αξ as well, and then
b ≤ c ≤ bξ contradicts the choice of bξ.

Next, given two elements a, b ∈ B+ we call them “connected”, and denote this
by a ∼ b, if for each α ∈ σ(a) ∩ σ(b) and for every n ∈ ω we have

πn
α(a) ∧ πn

α(b) 6= 0.

We prove then that a ∼ b implies a ∧ b 6= 0.
Indeed, if a ∧ b = 0 then let α be the smallest cardinal for which there is some

c ∈ Xα that separates a and b, i.e. a ≤ c and b ∧ c = 0. We first show that

α ∈ σ(a) ∩ σ(b).

That α ∈ σ(a) is witnessed by c, because if β < α and d ∈ Xβ with a ≤ d then
d cannot separate a and b by the minimality of α, hence d ∧ b 6= 0, consequently
d− c 6= 0. Similarly, we can show that −c witnesses α ∈ σ(b). Let us now choose
n ∈ ω such that c ∈ Bn

α (and so −c ∈ Bn
α). Then a ≤ c implies πn

α(a) ≤ c and
similarly b ≤ −c implies πn

α(b) ≤ −c, consequently πn
α(a) ∧ πn

α(b) = 0, showing
that a and b are not connected.
Given 〈α, n〉 ∈ λ × ω let

Ln
α = {Ln

α(ν) : ν ∈ κ}

be a family of linked subsets of Bn
α with (B

n
α)
+ =

⋃

Ln
α, i.e. L

n
α shows the κ-

linkedness of Bn
α.

Consider λ×ωκ as a power of the discrete spaceD(κ) of size κ with the countable
support product topology. It is well-known (see e.g. [EK]) that since κ = κω and

|λ × ω| = λ ≤ 2κ this space has a dense subset H ⊂ (λ×ω)κ with |H | = κ.
For any b ∈ B+ let sb be the function with domain σ(b) × ω and having for

any α ∈ σ(b) and n ∈ ω the value

sb(α, n) = min{ν ∈ κ : πn
α(b) ∈ Ln

α(ν)}.

Then sb determines a basic open set in the above mentioned countable support
product space, hence there is some h ∈ H with sb ⊂ h as H is dense in this space.
In other words, if we set for h ∈ H

Lh = {b ∈ B+ : sb ⊂ h},

then
B+ =

⋃

{Lh : h ∈ H},

hence we shall be done if we can show that Lh is linked for every h ∈ H .
This, in turn, follows from the following observation: any two members of Lh

are connected. Indeed, if a, b ∈ Lh then sa ∪ sb ⊂ h, in particular the functions
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sa and sb are compatible. But this means that for any α ∈ σ(a)∩ σ(b) and n ∈ ω
we have

sa(α, n) = sb(α, n) = h(α, n) = ν,

hence both πn
α(a) and πn

α(b) belong to Ln
α(ν), i.e. π

n
α(a) ∧ πn

α(b) 6= 0. �

The proof of Lemma 3 has thus been completed, and we can now return to
that of Theorem 2.

Proof of Theorem 2: We do induction on λ = |B|. Of course, we may assume
that κ < λ. So let us assume that λ > κ is given and Theorem 2 holds for |B| < λ.
We will distinguish three cases.

Case 1. cf (λ) = ω. Now we can write B =
⋃

{Bn : n ∈ ω}, where Bn is a
subalgebra of B with |B| < λ for each n ∈ ω. Then B is κ-linked because so is
every Bn.

Case 2. cf (λ) > ω and µ < λ implies µω < λ. Clearly, in this case we have
λω = λ, hence the completion of B also has cardinality λ, hence we may actually
assume that B is complete. Standard arguments, using that B is CCC and µω < λ
for µ < λ, then imply that we can write B in the form

B =
⋃

{Bα : α ∈ λ},

where {Bα : α ∈ λ} is an increasing and continuous sequence of subalgebras of
B such that |Bα| < λ, moreover Bα is complete whenever cf (α) > ω. Note that
this automatically implies that for cf (α) = ω the subalgebra Bα is the union
of countably many complete subalgebras of B, hence with Bα = Xα all the
assumptions of Lemma 2 are clearly satisfied. Consequently, B is κ-linked.

Case 3. λ = µ+ with cf (µ) = ω. (Note that, by (∗), this must occur if neither
Case 1 nor Case 2 applies.) Again, by λω = λ we may assume that B is also
complete. Let us then index the members of B by the ordinals below λ, i.e. set
B = {bξ : ξ ∈ λ}.

Since (∗) also implies �µ, let us fix a corresponding �-sequence 〈Cα : α ∈ λ′〉,
that is for each limit ordinal α ∈ λ then Cα is a closed unbounded subset of α
such that |Cα| < µ and Cβ = β ∩ Cα whenever β ∈ C′

α.
Using cf (µ) = ω we may write µ =

∑

{µn : n ∈ ω} with µn < µ for each
n ∈ ω, moreover every ordinal β ∈ λ can be written as β =

⋃

{Sn
β : n ∈ ω}

with |Sn
β | ≤ µn for all n ∈ ω. Next, if α ∈ λ′ is a limit ordinal then we set

T n
α =

⋃

{Sn
β : β ∈ Cα}. Then we have |T n

α | ≤ |Cα| · µn < µ.

It is clear from (∗) that µ must be ω-inaccessible, i.e. ̺ < µ implies ̺ω < µ.
This and the fact that B is CCC imply that for any subset A ⊂ B if |A| < µ
then | gen(A)| < µ as well, where gen(A) denotes the complete subalgebra of B
generated by A. In particular, we always have

| gen({bξ : ξ ∈ Sn
β})| < µ
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and
| gen({bξ : ξ ∈ T n

α })| < µ

for any β ∈ λ, α ∈ λ′, n ∈ ω. Consequently, if we let D denote the set of those
limit ordinals δ ∈ λ that satisfy both

{η : bη ∈ gen({bξ : ξ ∈ Sn
β})} ⊂ δ

for each 〈β, n〉 ∈ δ × ω and

{η : bη ∈ gen({bξ : ξ ∈ T n
α })} ⊂ δ

for all limit ordinals α ∈ δ and n ∈ ω, then D is closed and unbounded in λ.
Let D = {δν : ν ∈ λ} be the increasing (and continuous) enumeration of D

and set for each ν ∈ λ
Xν = {bξ : ξ ∈ δν}.

We claim that {Xν : ν ∈ λ} satisfies the conditions of Lemma 3. That it forms
an increasing and continuous sequence with B as its union is obvious. To see the
rest, it will clearly suffice to show that each Xν is the union of countably many
complete subalgebras of B, for (by the inductive hypothesis) they must all be
κ-linked.
Here we have to distinguish two cases. First, if cf (δν) = ω then we may choose

ordinals {βi : i ∈ ω} ⊂ δν with δν =
⋃

{βi : i ∈ ω} and observe that from

βi =
⋃

{Sn
βi
: n ∈ ω}

and from δν ∈ D we have

Xν =
⋃

{gen({bξ : ξ ∈ Sn
βi
}) : 〈n, i〉 ∈ ω2}.

Secondly, if cf (δν) > ω then we have

Xν =
⋃

{gen({bξ : ξ ∈ T n
δν
}) : n ∈ ω}.

Indeed, this follows from the fact that if cf (δν) > ω then α, β ∈ C′
δν
with α ∈ β

imply T n
α ⊂ T n

β , moreover we also have

T n
δν
=

⋃

{T n
α : α ∈ C′

δν
}

and
δν =

⋃

{T n
δν
: n ∈ ω}.

The proof is now completed, since we have shown that Lemma 3 can be applied
to {Xν : ν ∈ λ} and consequently B is κ-linked. �

Let us recall now the well-known fact that if P is a CCC partial ordering then
its completion B is a CCC boolean algebra with |B| ≥ |P |ω (see e.g. [K, II. 3.3]).
Consequently we immediately obtain the following equivalent formulation of The-
orem 2.
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Theorem 2′. Let κ = κω and P be a CCC partial ordering such that |P | ≤ 2κ,
moreover if κ < µ < |P | and cf (µ) = ω then µω = µ+ and �µ holds. Then P is
κ-linked.

Note that if 2κ is a finite successor of κ, i.e. 2κ < κ+ω, then the latter condition
is automatically satisfied.
Now, if G is any graph and Q(G) is the partial order of finite G-independent

sets (see e.g. [HJSz]) then it is easy to see that Q(G) is κ-linked if and only if it
is κ-centered. Consequently, if e.g. κ = κω and 2κ < κ+ω and G is a graph for
which Q(G) is CCC and |G| ≤ 2κ then Q(G) must be κ-centered. In particular, we
obtain the following result which shows that the use of hypergraphs, as opposed
to just ordinary graphs, was essential in [HJSz] in producing ZFC examples of
CCC partial orders with prescribed centeredness.

Corollary 4. Let κ = κω < λ < 2λ = 2κ < κ+ω. Then there is no CCC partial

order P with link(P ) = λ. In particular, there is no graph G such that Q(G) is
CCC and cent(G) = cent(Q(G)) = λ.

Proof: Assume, indirectly, that link(P ) = λ. Then for the completion B of P

we also have link(B) = λ, hence by Lemma 1 we have |B| ≤ 2λ = 2κ < κ+ω.
Consequently Theorem 2 applies to B and thus we have

link(B) = link(P ) ≤ κ < λ,

which is a contradiction. �

As a particular case, we get for instance that 2ω = ω1 and 2
ω1 = 2ω2 = ω3

imply that there is no CCC partial order of linkedness ω2, in particular there is
no graph G for which Q(G) is CCC and cent(G) = ω2.
Of course, Corollary 4 remains valid if instead of 2κ < κ+ω we only assume

the weaker condition that κ < µ < 2κ and cf (µ) = ω imply both µω = µ+ and
�µ.
Next we are going to examine the naturally arising question whether condition

(∗) in Theorem 2 (or the corresponding condition in Theorem 2′) is essential. The
answer to this question is “yes”, and it necessarily involves large cardinals. Indeed,
it is well-known that the existence of a cardinal µ > 2ω for which cf (µ) = ω but
either µω 6= µ+ or �µ fails implies the consistency of e.g. measurable cardinals.

Example 5. If there is supercompact cardinal then it is consistent to have a
model W of ZFC in which 2ω = ω1, 2

ω1 = ωω+1 = λ and there is a graph
G = 〈λ, E〉 of chromatic number ω2 such that Q(G) is CCC. In particular, we
have then that |Q(G)| = 2ω1 but

link(G) = cent(G) ≥ chr(G) > ω1!

Proof: In [HJSh, 4.6 and 4.7] it was shown that the existence of a supercompact
cardinal implies the consistency of GCH with the existence of a stationary set
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S ⊂ λ and a sequence 〈Aα : α ∈ S〉 such that
⋃

Aα = α, tpAα = ω1 and
|Aα ∩ Aβ | < ω if {α, β} ∈ [S]2, moreover that GCH plus the existence of such
a sequence 〈Aα : α ∈ S〉 imply the existence of a graph G = 〈λ, E〉 such that
chr(G) = ω2 and [ω, ω] does not embed into G. A closer look at the proof of 4.7
will reveal that from GCH we only need CH and ♦(S) to obtain this graph G.
Consequently, if we start with a ground model V satisfying GCH and having
the above mentioned stationary set S ⊂ λ of ω1-limits and the ω-almost disjoint
sequence 〈Aα : α ∈ S〉 and then we add λ-many Cohen subsets of ω1 to V , i.e. we

set W = V Fn(λ;ω1), then we have such a graph in the extension W as well.
Indeed, that S remains stationary and CH holds in W are standard. To show

that ♦(S) will also be valid in W , we can use, in V , ♦(S) together with the facts
that Fn(λ;ω1) has the ω2-CC and |Fn(λ;ω1)| = λ = λω1 to “capture” all nice
names of subsets of λ in W (see [K]).
Consequently, we shall be done if we can show that Q(G) is CCC for every

graph G that does not embed the complete bipartite graph [ω, ω]. �

Lemma 6. If G = 〈κ, E〉 is a graph such that [ω, ω] does not embed into G then
Q(G) is CCC.

Proof: Assume, indirectly, that there is a pairwise incompatible collection X ∈
[Q(G)]ω1 . By the usual ∆-system and counting arguments we may assume that
X = {xα : α ∈ ω1} with xα ∩ xβ = ∅ and |xα| = n for {α, β} ∈ [ω1]

2. Let

xα = {ζ
(α)
i : i ∈ n}.

We can now define a partition

p : ω × (ω1 \ ω) −→ n × n

such that if 〈k, α〉 ∈ ω × (ω1 \ ω) and p(k, α) = 〈i, j〉 then {ζ
(k)
i , ζ

(α)
j } ∈ E, for

this is exactly what the incompatibility of xk and xα means. Applying to this
partition p the Erdös-Rado polarized partition relation

(

ω1
ω

)

−→

(

ω1, ω

ω, ω

)1,1

,

or rather its easy consequence

(

ω1
ω

)

−→

(

ω

ω

)1,1

n2

then yields infinite sets A ⊂ ω and B ⊂ ω1 \ ω and a fix pair 〈i, j〉 ∈ n × n such

that {ζ
(k)
i , ζ

(α)
j } ∈ E whenever 〈k, α〉 ∈ A×B, hence we obtain that [ω, ω] embeds

into G, and this is a contradiction. �
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