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Semiconvex compacta

O.R. Nykyforchyn

Abstract. We define and investigate a generalization of the notion of convex compacta.
Namely, for semiconvex combination in a semiconvex compactum we allow the existence
of non-trivial loops connecting a point with itself. It is proved that any semiconvex
compactum contains two non-empty convex compacta, the center and the weak center.
The center is the largest compactum such that semiconvex combination induces a convex
structure on it. The convex structure on the weak center does not necessarily coincide
with the structure induced by semiconvex combination but generates the latter in a spe-
cial manner. A sufficient condition for a net of semiconvex combinations to converge to
the weak center (“the law of large numbers”) is established. A semiconvex compactum
is called strongly semiconvex if its center and its weak center coincide. Some natural
constructions of topology and functional analysis are shown to be (strongly) semicon-
vex compacta. It is shown that the construction of center is functorial and gives the
reflector that is the left adjoint to the embedding of the category of convex compacta
into the category of strongly semiconvex compacta. Also the left adjoint to the forgetful
functor from the category of strongly semiconvex compacta to the category of compacta
is constructed.

Keywords: convexor, convex compactum, (strongly) semiconvex compactum, left adjoint
functor

Classification: 18B40, 52A01, 54B30

We use the following notations: I = [0, 1] is a unit segment, ∆n = {(λ1, . . . ,
λn+1) ∈ In+1

∣
∣ λ1 + · · · + λn+1 = 1} an n-dimensional simplex. A compactum

is a (not necessarily metrizable) compact Hausdorff topological space. A convex
compactum is a compactum with a fixed convex structure induced by an affine
embedding into a locally convex linear topological space. Let Comp and Conv
be the categories of compacta and convex compacta resp. and let exp and P be
the hyperspace and the probability measure functor resp. [5]. Denote by Cl and
conv the closure and the convex hull operators.

1. Semiconvex structure

Let X be a set with ternary operation c : X × X × I → X . We usually
write λ(x, y) instead of c(x, y, λ). The pair (X, c) is called a convexor ([6]) if
the following axioms hold:

(1) for all x ∈ X , λ ∈ I : λ(x, x) = x;
(2) for all x, y ∈ X , λ ∈ I : λ(x, y) = (1− λ)(y, x) (commutative law);
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(3) for all x, y, z ∈ X , λ, µ, ν ∈ I, λ+ µ+ ν = 1, µ 6= 0:

λ(x,
µ

µ+ λ
(y, z)) = (λ + µ)(

λ

λ+ µ
(x, y), x)

(associative law);
(4) for all x, y ∈ X : 1(x, y) = x.

In this case λ(x, y) is called a convex combination of x and y. The pair (X, c) is
said to be a semiconvexor (and respectively λ(x, y) a semiconvex combination)
if axioms (2)–(4) hold.
A semiconvexor (x, c) is said to be a semiconvex compactum if X is a com-

pactum, the semiconvex combination is continuous and the topology onX satisfies
the condition

(5) there exists a base β of the unique uniformity inducing the topology on
X ([3]) such that B ∈ β, (x, y), (z, t) ∈ B, λ ∈ I implies
(λ(x, z), λ(y, t)) ∈ B.

The following axiom is equivalent to (5):

(5′) the topology on X is generated by a saturated family of pseudometrics
(dα)α∈A such that x, y, z, t ∈ X , ε > 0, α ∈ A, dα(x, y) < ε, dα(z, t) < ε,
λ ∈ I implies dα(λ(x, z), λ(y, t)) < ε.

Axioms (1)–(5) (or (1)–(4), (5′)) are equivalent to the usual definition of convex
compactum. Axiom (5) (or (5′)) provides local convexity.
In the sequel (X, c) is a semiconvex compactum with a fixed family of pseudo-

metrics (dα)α∈A satisfying (5
′).

The notion of semiconvex combination can be extended onto finite and count-
able number of elements of X . Let (λ1, . . . , λn) ∈ ∆n−1 and x1, . . . , xn ∈ X ,

(λ1, . . . , λn)(x1, . . . , xn) =

{

x1 if λ1 = 1;

λ1(x1, (
λ2
1−λ1

, . . . , λn

1−λ1
)(x2, . . . , xn))1 if λ1 6= 1.

If λ1, λ2, · · · ∈ I, λ1 + λ2 + · · · = 1, x1, x2, · · · ∈ X , then define
(λ1, λ2, . . . )(x1, x2, . . . ) = lim

n→∞
(λ1, . . . , λn, 1− λ1 − · · · − λn)(x1, . . . , xn+1).

Note that we can permute the arguments (simultaneously with the coefficients)
of the semiconvex combination without changing its value.
Semiconvex combinations are equicontinuous in the following sense: if

x1, x
′
1, x2, x

′
2, · · · ∈ X is a finite or infinite sequence with dα(x1, x

′
1) < ε,

dα(x2, x
′
2) < ε, . . . for α ∈ A and ε > 0, then for any λ1, λ2, · · · ∈ I with

λ1 + λ2 + · · · = 1 we have

dα((λ1, λ2, . . . )(x1, x2, . . . ), (λ1, λ2, . . . )(x
′
1, x

′
2, . . . )) < ε.

Consider the equivalence relation on the simplex ∆n−1, n ∈ N, defined as
follows: (λ1, . . . , λn) ∼ (µ1, . . . , µn) if (λ1, . . . , λn) and (µ1, . . . , µn) coincide up
to a permutation of indices.
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Let S =
∞⋃

n=i

(∆n−1/∼) and denote by [λ1, . . . , λn] the equivalence class which

contains (λ1, . . . , λn). Define a commutative semigroup operation on S in the fol-
lowing manner. Let n, m ∈ N, k : {1, . . . , nm} → {1, . . . , n} × {1, . . . , m} be
an arbitrary bijection and k1 = pr1 ◦ k, k2 = pr2 ◦ k. Put

[λ1, . . . , λn] · [µ1, . . . , µm] = [λk1(1) · µk2(1), . . . , λk1(nm) · µk2(nm)]

for [λ1, . . . , λn], [µ1, . . . , µm] ∈ S. Obviously [1] is the unit and thus S is a monoid.
Two partial order relations naturally arise on S:

(1) [µ1, . . . , µm] is called to be inscribed in [λ1, . . . , λn] ([λ1, . . . , λn] ≤
[µ1, . . . , µm]) if there is a surjection h : {1, . . . , m} → {1, . . . , n} such that
λi =

∑

j∈h−1(i)

µj for all 1 ≤ i ≤ n;

(2) [λ1, . . . , λn] is called to be divisible by [µ1, . . . , µm] ([λ1, . . . , λn] ≺
[µ1, . . . , µm]) if there is [ν1, . . . , νl] ∈ S such that [λ1, . . . , λn]·[ν1, . . . , νl] =
[µ1, . . . , µm].

Obviously, [λ1, . . . , λn] ≺ [µ1, . . . , µm] implies [λ1, . . . , λn] ≤ [µ1, . . . , µm]. The
set S with any of these relations becomes upward directed.
The monoid S naturally acts on X :

[λ1, . . . , λn]x = (λ1, . . . , λn)(x, . . . , x), x ∈ X,

and on expX :

[λ1, . . . , λn] ∗ A = {(λ1, . . . , λn)(a1, . . . , an) | a1, . . . , an ∈ A}, A ∈ expX.

There is another action of S on expX defined by the formula

[λ1, . . . , λn]A = {[λ1, . . . , λn]a | a ∈ A}, A ∈ expX.

The mappings s(−) : X → X , s ∈ S, are equicontinuous, i.e. if α ∈ A, ε > 0,
x, y ∈ X and dα(x, y) < ε, then dα(sx, sy) < ε.

2. Center and weak center of semiconvex compactum.

“Law of large numbers”

Call a subset semiconvex if it is closed with respect to the semiconvex combi-
nation. Denote {sa | s ∈ S} by Sa.

Lemma 2.1. For any a ∈ X the set Cl(Sa) is the least closed semiconvex subset
A ⊂ X containing a.

Proof: Obvious. �
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Lemma 2.2. Let a ∈ X , A = Cl(Sa), then
⋂

s∈S

sA is a unique minimal with

respect to inclusion closed semiconvex subset B ⊂ A.

Proof: By Zorn lemma there exists a minimal subset B ⊂ A satisfying the
conditions of the lemma. It is easy to see that for any s ∈ S the set sB is closed
and semiconvex. Since sB ⊂ B and B is minimal, we obtain sB = B. Then
B ⊂ A, B = sB ⊂ sA implies B ⊂

⋂

s∈S

sA and the latter set is closed and

semiconvex.
Let ε > 0, α ∈ A. Since B ⊂ A, for any b ∈ B there exists s′ ∈ S such that

dα(b, s
′a) < ε/2. For x ∈

⋂

s∈S

sA we have z = s′y, y ∈ A. There is s′′ ∈ S such

that dα(s
′′a, y) < ε/2 and therefore dα(s

′s′′a, s′y) < ε/2. As dα(s
′′b, s′s′′a) < ε/2,

the inequality dα(s
′′b, z) < ε holds. Thus z ∈ Cl(SB) = B and B =

⋂

s∈S

sA. �

We are going to investigate the set B =
⋂

s∈S

sA. Due to the above lemma, for

any s ∈ S the mapping s(−) : B → B is a non-expanding surjection with respect
to all pseudometrics dα, α ∈ A. Since any non-expanding surjection of a metric
compactum onto itself is an isometric map, for any x, y ∈ B, s ∈ S, α ∈ A we
have dα(sx, sy) = dα(x, y). Putting λ((x, y), (z, t)) = (λ(x, z), λ(y, t)) we turn
B × B into a semiconvex compactum.
For x, y ∈ B put (x → y) = Cl(S(x, y)). We have dα(z, t) = dα(x, y) if

(z, t) ∈ (x → y), x, y, z, t ∈ B. Since s(−) : B → B as a surjection, pr1((x →
y)) = pr2((x → y)) = B.
Assume that (z1, t1) = s1(x, y), (z2, t2) = s2(x, y), dα(z1, z2) < ε, ε > 0,

x, y, z1, t1, z2, t2 ∈ B, α ∈ A. As B is minimal there is s ∈ S such that
dα(sx, y) < ε. Then dα(t1, t2) = dα(s1y, s2y) ≤ dα(s1y, s1sx) + dα(s1sx, s2sx) +
dα(s2sx, s2y) = dα(y, sx) + dα(s1x, s2x) + dα(sx, y) < 3ε. Thus (z, t1), (z, t2) ∈
(x → y) implies t1 = t2. Therefore (x → y) is the graph of some isometry.
The graph of the inverse isometry is (y → x).
Let x, y1, y2, z, t1, t2 ∈ B, (z, t1) ∈ (x → y1), (z, t2) ∈ (x → y2). There exists

a net of the form (sβx), sβ ∈ S, converging to z. Then we have the conver-
gence sβy1 −→ t1, sβy2 −→ t2. Since dα(sβy1, sβy2) = dα(y1, y2), the equality
dα(y1, y2) = dα(t1, t2) holds.
Fix an arbitrary point b ∈ B. For any x, y ∈ B there exists a unique z ∈ B

such that (x → y) = (b → z). Thus we can properly define an operation on B by
the formula: z = z1z2 ⇐⇒ (z2, z) = (b → z1). With one argument fixed, this
operation becomes an isometry with respect to any pseudometric dα, α ∈ A, and
therefore it is continuous as a mapping B × B → B.
Assume that z1 = s1b, z2 = s2b. Then (b → z1) = {(x, sx) |x ∈ B} and

z1z2 = s1s2b. Thus z1z2 = z2z1. As the operation is continuous, the commutative
law holds for an arbitrary pair of elements in B. In the same way the associative
law for the monoid S implies the associative law for the constructed operation.
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The inverse for x ∈ B is a unique y ∈ B such that (y, b) ∈ (b → x). Uniqueness
of the inverse and the compactness of B implies the continuity of the inversion.
Consequently B is an Abelian compact contractible topological group. It is

known [7], [1] that it is trivial, i.e. B is a singleton. The point b ∈ B is a unique
in A such that λ(b, b) = b for any λ ∈ I. Let bX : X → X be the map taking any
point a ∈ X into this point b ∈ Cl(Sa). Thus bX(X) is a closed subset consisting
of all points b ∈ X such that λ(b, b) = b for any λ ∈ I. Call it the center of
the semiconvex compactum X and denote by Ctr(X).

Theorem 1. The net sx, s ∈ (S,≺) is uniformly convergent to bX(x), x ∈ X and
the mapping bX is a non-expanding with respect to all dα, α ∈ A (and therefore
continuous) retraction of the semiconvex compactum X onto its center Ctr(X).

Proof: Since X is a compactum and all s(−) : X → X are non-expanding, it
is sufficient to prove the pointwise convergence. Let a ∈ X , A = Cl(Sa). For
any s, s′ ∈ S, s ≺ s′ we have s′A ⊂ sA. As {bX(a)} =

⋂

s∈S

sA, for any open

U ∋ bX(a) there is s ∈ S such that sA ⊂ U . Then s′a ∈ U for any s′ ∈ S, s ≺ s′.
�

Since axioms (1)-(5) hold for Z = Ctr(X), define a map ϕ : PZ → Z as
a (unique) continuous extension of the map defined on the subspace of finite

measures by the formula: ϕ(
n∑

n=1
λiδxi) = (λ1, . . . , λn)(x1, . . . , xn) (by δxi we

denote the Dirac measure in xi), (λ1, . . . , λn) ∈ ∆
n−1, x1, . . . , xn ∈ X . Then

(Z, ϕ) is a P-algebra ([9]), and due to Świrszcz, Z is a convex compactum and
c

∣
∣ Z is a convex combination.

By lim the upper limit ([5]) is denoted.

Lemma 2.3. For any subset A ⊂ X the equality lims∈(S,≤) s∗A = lim|s|→0 s∗A
holds.

Proof: Let a ∈ lims∈(S,≤) s ∗ A, Ua be a neighborhood of a, ε > 0. Take

an arbitrary s0 ∈ S, |s0| < ε. There exists s ∈ S, s0 ≤ s such that s∗A∩Ua 6= ∅.
Thus |s| < 0 implies a ∈ lim|s|→0 s ∗ A.

Assume that a ∈ lim|s|→0 s ∗ A, Ua is a neighborhood of a of the form {x ∈

X | dα(x, a) < ε}, s = [λ1, . . . , λn] ∈ S. Choose δ > 0 such that dα(x, λ(y, x)) <
ε/4 for all x, y ∈ X , 0 ≤ λ < δ. There is s′ ∈ S, s′ = [p1, . . . , pm], |s′| < δ/n such
that the inequality dα(a, b) < ε/2 holds for some b = (p1, . . . , pm)(a1, . . . , am),
a1, . . . , an ∈ A.
Construct s′′ that is inscribed in both s and s′. Put λ̃j = λ1 + · · · + λj ,

1 ≤ j < n, p̃00 = 0, p̃
0
i = p1 + · · · + pi, 1 ≤ i ≤ m (obviously p̃0m = 1). Assume

that the segment [p̃0i , p̃
0
i+1), 0 ≤ i < m, contains ki of points λ̃j . Denote them (in

increasing order) p̃1i , . . . , p̃
ki

i . We have a non-decreasing sequence

0 = p̃00 ≤ p̃10 ≤ · · · ≤ p̃k0
0 ≤ p̃01 ≤ · · · ≤ p̃0m−1 ≤ p̃1m−1 ≤ · · · ≤ p̃

km−1

m−1 ≤ p̃0m = 1.
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Put for 1 ≤ i ≤ m

q0i = p̃1i−1 − p̃0i−1, q1i = p̃2i−1 − p̃1i−1, . . . , qki−1
i = p̃ki

i−1 − p̃ki−1
i−1 , qki

i = p̃0i − p̃ki

i−1.

Let c = (q01 , . . . , d
k0
1 , . . . , d0m, . . . , d

km−1

m )(x1, . . . , x1
︸ ︷︷ ︸

k0

, . . . , xm, . . . , xm
︸ ︷︷ ︸

km−1

).

It is easy to see that s′′ = [q01, . . . , q
km−1

m ] is inscribed in s and the cardinality
of the subset I ⊂ {1, . . . , m} of indices i such that ki−1 6= 0 is not greater than

n. Thus ∆p =
∑

i∈I
pi < δ

n · n = δ.

Due to the choice of δ, dα(b, d) < ε/4, dα(c, d) < ε/4, where d is the convex
combination of xi such that ki−1 = 0, with coefficients

pi

1−∆p . Therefore dα(b, c) <

ε/2 and dα(a, c) < ε, hence c ∈ Ua. Thus c ∈ s′′ ∗ A, s ≤ s′′. �

Consider the largest semiconvex closed subset A ⊂ X such that (λ1, . . . , λn) :
An → A is surjective for any (λ1, . . . , λn) ∈ ∆n−1, n ∈ N. It is easy to see that
it coincides with

⋂

s∈S

s ∗ X = lim
(S,≤)

s ∗ X = lim
|s|→0

s ∗ X . Call it the weak center of

X and denote WCtr(X). Always Ctr(X) ⊂ WCtr(X).

Lemma 2.4. Let X be a semiconvex compactum and (λ1, . . . , λn) : X
n → X be

surjective for some n ∈ N, (λ1, . . . , λn) ∈ ∆n−1, [λ1, . . . , λn] 6= [1, 0, . . . , 0]. Then
all mappings [1/k, . . . , 1/k] : X → X , k ∈ N are isometries with respect to all dα,

α ∈ A and preserve semiconvex combination.

Proof: Due to the previous lemma, all (1/k, . . . , 1/k) : Xk → X , k ∈ N are
surjective. Let α ∈ A, ε > 0 and {y1, . . . , ym} be a ε/2-net with respect to dα.
There exists δ > 0 such that 0 ≤ λ < δ, x, y ∈ X implies dα(x, λ(y, x)) < ε/2.

Take N ∈ N such that mk
N < δ. If x ∈ X , then there is x1, . . . , xN ∈ X such

that (1/N, . . . , 1/N)(x1, . . . , xN ) = x. For any xi there exists yji
, 1 ≤ ji ≤ m,

such that dα(xi, yji
) < ε/2. Let the point y1 appears l1 times in the sequence

yj1 , . . . , yjN
, the point y2 appears l2 times, etc. We have l1 + · · · + lm = N .

Assume that p1, . . . , pm ∈ {0} ∪ N, 0 ≤ li − pik < k, 1 ≤ i ≤ m. Then

a = (
1

N
, . . . ,

1

N
)(y1, . . . , y1

︸ ︷︷ ︸

l1

, . . . , ym, . . . , ym
︸ ︷︷ ︸

lm

)

fulfills dα(x, a) < ε/2.
Let p = p1 + · · ·+ pm, then 0 ≤ N − kp < km. If

b = (
1

p
, . . . ,

1

p
)(y1, . . . , y1

︸ ︷︷ ︸

p1

, . . . , ym, . . . , ym
︸ ︷︷ ︸

pm

),

c = (
1

N − kp
, . . . ,

1

N − kp
)(y1, . . . , y1

︸ ︷︷ ︸

l1−kp1

, . . . , ym, . . . , ym
︸ ︷︷ ︸

lm−kpm

)
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(if N = kp, then let c be arbitrary), then a = N−kp
N (c, [1/k, . . . , 1/k]b). Since

N−kp
N < δ, we have: dα(a, [1/k, . . . , 1/k]b) < ε/2 and therefore dα(x, [1/k, . . . ,
1/k]b) < ε. Thus [1/k, . . . , 1/k]X is dense and closed. Consequently, it coincides
with X .
The preservation of semiconvex combination is obvious. �

Let the conditions of the previous lemma hold. Denote [ 1n , . . . 1n ]x by 〈 1n 〉x.

For any x ∈ X and m ∈ N there exists a unique y ∈ X such that 〈 1m〉y = x.

Denote it by 〈m〉x. If q = m
n ∈ Q+, then define 〈q〉x = 〈m〉〈 1n 〉x (the result does

not depend on the choice of such m, n).
The action of the multiplicative group Q+ on X is obtained. Prove that this

action is equicontinuous (with x ∈ X as parameter) with respect to the metric on
Q+ induced from R.
It is sufficient to show the continuity in 1 only. Let ε > 0, α ∈ A and let δ > 0

be such that dα(x, λ(y, x)) < ε if x, y ∈ X , 0 ≤ λ < δ. If m1, m2 ∈ N, m1 < m2,

then 〈 1m2 〉x =
m2−m1

m2
(〈 1

m2−m1
〉x, 〈 1m1 〉x). Thus for 0 ≤ m2−m1

m2
< δ we have

dα(〈
1

m1
〉x, 〈 1m2 〉x) < ε. Since 〈m1〉 and 〈m2〉 are isometries with respect to dα,

for any x ∈ X we have

dα(〈m1〉〈
1

m1
〉x, 〈m1〉〈

1

m2
〉x) = dα(x, 〈

m1
m2

〉x) =

dα(〈m2〉〈
1

m1
〉x, 〈m2〉〈

1

m2
〉x) = dα(x, 〈

m2
m1

〉x) < ε.

Therefore it is sufficient to choose a neighborhood U of 1 such that m1
m2

∈ U

implies
max(m1,m2)−min(m1,m2)

max(m1,m2)
< δ.

Thus an action 〈−〉 : Q+ × X → X can be uniquely extended to a continuous
action 〈−〉 : R+ × X → X that is consistent with semiconvex combination.

Define a new operation ⋄ : X × X × I → X by λ ⋄ (x, y) = λ(〈 1
λ
〉x, 〈 11−λ

〉y),

x, y ∈ X , 0 < λ < 1, 1 ⋄ (x, y) = x, 0 ⋄ (x, y) = y. The continuity (and even
equicontinuity in the above mentioned sense) of this operation is obvious. It is
easy to check that for (X, ⋄), (dα)α∈A, the axioms (1)–(4), (5

′) hold. Thus (X, ⋄)
is a convex compactum, and 〈−〉 : R+ × X → X is an action that is consistent
with convex combination.
The following result describes the nature of the weak center of a semiconvex

compactum.

Theorem 2. A semiconvex compactum X is the weak center of some semiconvex
compactum if and only if there exists a continuous operation ⋄ : X ×X × I → X
and a continuous action 〈−〉 : R+ × X → X of the multiplicative group R+ such

that (X, ⋄) is a convex compactum, 〈−〉 : R+ × X → X is an action that is

consistent with convex combination and for any x, y ∈ X , λ ∈ I, the equality
λ(x, y) = λ ⋄ (〈λ〉x, 〈1 − λ〉y) holds.
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Proof: It is easy to check that for such (X, ⋄) and 〈−〉 : R+×X → X , the formula
λ(x, y) = λ ⋄ (〈λ〉x, 〈1 − λ〉y) defines properly a semiconvex combination on X ,
for which any (λ1, . . . , λn) : X

n → X , (λ1, . . . , λn) ∈ ∆n−1, is surjective. �

A semiconvex compactum is said to be strongly semiconvex if Ctr(X) =
WCtr(X). If this holds, then any closed semiconvex subset A ⊂ X such that
any (λ1, . . . , λn) : An → A, (λ1, . . . , λn) ∈ ∆n−1, is surjective, is contained in
Ctr(X). Here are equivalent axioms:

(6) the intersection
⋂

n∈N

[1/n, . . . , 1/n]X lies in Ctr(X);

(6′) for any x ∈ X , α ∈ A we have: lim
n→∞

dα([1/n, . . . , 1/n]x, Ctr(X)) = 0.

Thus for a semiconvex compactum, “averages” of elements converge to the weak
center if coefficients become “small” (“law of large numbers”). If all the elements
are taken equal to x and X is a strongly semiconvex compactum, then the “aver-
ages” converge uniformly to bX(x): lim

|s|→0
sx → bX(x).

Examples.

(a) Let a convex compactum X be affinely embedded into a locally convex
topological vector space L. Then the requirements of (5) are satisfied for
the base of the uniformity

β =
{
{(x, y) ∈ X2

∣
∣ x − y ∈ U}

∣
∣ U is a balanced convex

neighbourhood of zero in L
}
.

The center of X is X itself (and therefore X is a strongly semiconvex
compactum).

(b) Let X = I, λ(x, y) = max(λx, (1 − λ)y), λ, x.y ∈ I. The usual metric on
I meets the definition. The set {0} is the (weak) center.

(c) Let a convex compactum Y be affinely embedded into a locally convex
topological vector space L, X = expY , λ(A, B) = λA+ (1− λ)B, λ ∈ I,

β =
{
{(A, B) ∈ X2

∣
∣ A ⊂ b+ U for any b ∈ B, B ⊂ a+ U for any

a ∈ A}
∣
∣ U is a balanced convex neighbourhood of zero in L

}
.

The center (and the weak center) of X is the hyperspace of convex closed
subsets ccX ⊂ expX .

(d) Let Y, L be as in (c), y ∈ Y a fixed point, X = {A ∈ ccY |A ∋ y},
λ(A, B) = conv((λA + (1 − λ)y) ∪ (λy + (1 − λ)B)), A, B ∈ X , λ ∈ I.
A base that meets (5) is defined as in (c). The (weak) center is a singleton
{{y}} and X is also a strongly semiconvex compactum.

(e) Let Y be a semiconvex compactum with a base β0 of the unique uniformity
that satisfies (5). Put X = expY and λ(A, B) = {λ(a, b) | a ∈ A, b ∈ B}.
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The suitable base is of the form

β =
{
{(A, B) ∈ X2

∣
∣ for any a ∈ A there exists b ∈ B such

that d(a, b) < F ; for any b ∈ B there exists a ∈ A such

that d(a, b) < F}
∣
∣ F ∈ β0

}
.

The center consists of all semiconvex closed subsets of the weak center.
This construction preserves the class of strongly semiconvex compacta.

(f) Let Y be a semiconvex compactum with a family of pseudometrics
(ρα)α∈A that satisfies (5

′), X = PY and λ ∈ I, m1, m2 ∈ X . Ifm = m1⊗
m2 is a tensor product ([5]) and h : Y × Y → Y is defined by h(y1, y2) =
λ(y1, y2), then define λ(m1, m2) as Ph(m). Construct a family (dα)α∈A
of pseudometrics on X by a method of Kantorovich and Rubinstein [8]

dα(m1, m2) =

inf{m3(ρα)
∣
∣ m3 ∈ P (Y × Y ), P pr1(m3) = m1, P pr2(m3) = m2}.

If Y is a strongly semiconvex compactum, then the (weak) center is the
set of Dirac measures with supports lying in the center of Y .

3. Categorial properties of strongly semiconvex compacta

Denote by SsConv the category of all strongly semiconvex compacta and their
continuous maps preserving semiconvex combinations. We have three forgetful
functors ([2]): U : Conv → Comp, Us : Conv → SsConv, Us : SsConv → Comp.
The left adjoint to the first one is known (the probability measure functor) [9]
and thoroughly investigated [4]. We are going to introduce and investigate the left
adjoints to the two other functors.
The construction of the center of a strongly semiconvex compactum determines

a functor Ctr : SsConv → Conv. Indeed, if f : X → Y is an arrow in SsConv,
then f(Ctr(X)) ⊂ Ctr(Y ) and f

∣
∣ Ctr(X) is an affine mapping, and we can

define Ctr(f) as f
∣
∣ Ctr(X).

Theorem 3. The functor Ctr is the left adjoint to the embedding of the cat-
egories Us : Conv → SsConv, bX is a component of a natural transformation

b : 1SsConv → Us ◦ Ctr that is the unit of the adjunction (i.e. Conv ⊂ SsConv is
a reflective subcategory and Ctr is the reflector).

Proof: Since bX preserves semiconvex combinations, it is sufficient to prove
that for any strongly semiconvex compactum X , a convex compactum Y and a
map f : X → Y that preserves semiconvex combination, there exists a unique
representation of the form f = f̃ ◦ bX such that f̃ : Ctr(X) → Y is an affine
continuous map.
For arbitrary x ∈ X , s ∈ S we have f(sx) = sf(x) = f(x). As lim

|s|→0
sx =

bX(x), the equality f(x) = f ◦ bX(x) holds. Denote f
∣
∣ Ctr(X) by f̃ , then
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f = f̃ ◦ bX . Since Ctr(X) is a convex compactum, the restriction of f to it is

affine. Uniqueness of such an f̃ is a consequence of the surjectivity of bX . �

We shall construct the left adjoint to Us : SsConv → Comp. Let Y be a com-
pactum, Sc(Y ) ⊂ P (Y × I) be the subspace of all measures m satisfying the
following properties:

(a) for any a ∈ (0; 1] the set suppm ∩ (Y × [a; 1]) is finite;
(b) if a > 0 and (y, a) ∈ suppm, then m({(y, a)}) = ka for some k ∈ N.

Obviously, Sc(Y ) is closed in P (Y × I). Let hλ((y, a)) = (y, λa). Define the
combination λ(m1, m2) for m1, m2 ∈ Sc(Y ), λ ∈ I by the formula λPhλ(m1) +
(1− λ)Ph1−λ(m2).

Theorem 4.

(a) Sc(Y ) with the above defined operation is a strongly semiconvex com-
pactum;

(b) if f : Y1 → Y2 is an arrow in Comp, then P (f × 1I)(Sc(Y1)) ⊂ Sc(Y2),
and Sc(f) : Sc(Y1)→ Sc(Y2) defined as the restriction P (f ×1I)

∣
∣ Sc(Y1)

is an arrow in SsConv;
(c) this defines a functor Sc : Comp → SsConv that is the left adjoint to
the forgetful functor Us : SsConv → Comp.

Proof: (a) Axioms (2)-(4) are easily checked. Show that (5′) holds. Let
(ρα)α∈A be a family of pseudometrics generating the topology on Y . Putting
ρ̃α((y1, t1), (y2, t2)) = ρα(y1, y2)+ |t1−t2| we obtain a respective family for Y ×I.
Now define the pseudometric dα on P (Y × I) by

dα(m1, m2) = inf{m(ρ̃α) |m ∈ P ((Y × I)2), Ppr1(m) = m1, Ppr2(m) = m2}.
The restrictions of these pseudometrics to Sc(Y ) are the required family that

meets (5′).
Since for any (λ1, . . . , λn) ∈ ∆n−1, n ∈ N, m1, . . . , mn ∈ Sc(Y ) we have

(λ1, . . . , λn)(m1, . . . , mn) ∈ P (Y × [0, |(λ1, . . . , λn)| ]), the (weak) center of Sc(Y )
is P (Y × {0}) and (6) holds.

(b) Since the functor P preserves supports, for m ∈ P (Y1 × I) we have:
suppP (f ×1I)(m)∩ (Y2× [a; 1]) = (f ×1I)(suppm∩ (Y2× [a; 1])). Consequently,
it preserves the subsets Sc(−) ⊂ P (− × I). The preservation of semiconvex
combinations can be checked directly.

(c) Define an embedding i : Y → Sc(Y ) as i(y) = δ(y,1). If m ∈ Sc(Y ), then

m =
N∑

i=1
aiδ(yi, ai) + a0m0, where N ∈ {0}∪N∪ {∞}, yi ∈ Y , m0 ∈ P (Y ×{0}),

a0, ai ∈ I, a0 +
N∑

i=1
ai = 1.

Let X be a strongly semiconvex compactum and f : Y → X be continuous.
Since PY is a free convex compactum over Y , there exists a unique affine con-

tinuous extension f̂ : PY → Ctr(X) of the map bX ◦ f : Y → Ctr(X). Assume
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that b = f̂ ◦ Ppr1(m0) and f̃(m) = (a0, a1, a2, . . . )(b, f(y1), f(y2), . . . ). One can

check that f̃ ◦ i = f and f̃(λ(m1, m2)) = λ(f̃(m1), f̃(m2)).

Let us prove the continuity of f̃ . It is sufficient to show that for any ε > 0 and
a pseudometric dα satisfying (5

′), the map f̃ is (dα, ε)-continuous, i.e. for anym ∈

Sc(Y ) there exists a neighborhood Om, m ∈ Om such that dα(f̃(m), f̃(m
′)) < ε

whenever m′ ∈ Om.
Recall that h0((y, a)) = (y, 0). There is an δ1 > 0 such that for all m ∈

Sc(Y )∩P (Y × [0; δ1]), the inequality dα(f̃(m), f̃(Ph0(m))) < ε/3 holds. We can
take any δ1 > 0 such that |(λ1, . . . , λn)| < 2δ1, (λ1, . . . , λn) ∈ ∆n−1, x1, . . . , xn ∈
X , n ∈ N implies dα(x, bX(x)) < ε/3 where x = (λ1, . . . , λn)(x1, . . . , xn). Let

m =
N∑

i=1
aiδ(yi,ai) + a0m0 (see above), ai ≤ δ1. Choose a k ∈ N such that

a0/k ≤ δ1. We have

f̃(m) = (
a0
k

, . . . ,
a0
k

︸ ︷︷ ︸

k

, a1, a2, . . . )(b, . . . , b
︸ ︷︷ ︸

k

, f(y1), f(y2), . . . ),

because b = f̂ ◦ Ppr1(m0) belongs to the convex compactum Ctr(X).

Since |(a0
k

, . . . , a0
k

k

, a1, a2, . . . )| ≤ δ1 < 2δ1, we have dα(f̃(m), bX ◦ f̃(m)) < ε/3.

We have

bX ◦ f̃(m) = (
a0
k

, . . . ,
a0
k

︸ ︷︷ ︸

k

, a1, a2, . . . )(b, . . . , b
︸ ︷︷ ︸

k

, bX ◦ f(y1), bX ◦ f(y2), . . . ) =

(
a0
k

, . . . ,
a0
k

︸ ︷︷ ︸

k

, a1, a2, . . . )(b, . . . , b
︸ ︷︷ ︸

k

, f̃(δ(y1,0)), f̃(δ(y2,0)), . . . ) =

f̃(

N∑

i=1

aiδ(yi,0) + a0m0) = f̃(Ph0(m)),

and dα(f̃(m), f̃(Ph0(m))) < ε/3.
There exists δ2 > 0 such that for all x, y ∈ X , 0 ≤ λ ≤ δ2, the inequality

dα(x, λ(y, x)) < ε/3 holds. Take a natural M > 1
δ1δ2

and define a map G :

∆M−1 × Y M × Sc(Y )× I → Sc(Y ) by the formula

G((λ1, . . . , λM ), (y1, . . . , yM ), m0, λ) = λ(

M∑

i=1

λiδ(yi,λi), m0).

Let

B1 = ∆
M−1 × Y M × Sc(Y )× [1− δ2, 1],

B2 = ∆
M−1 × Y M × Sc(Y ) ∩ P (Y × [0, δ1])× I.
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The map G is a surjection as well as the restriction of G to B1 ∪ B2.
Since G is a continuous map of compacta, for proving (dα, ε)-continuity of f̃ it

is sufficient to show the (dα, ε)-continuity of f̃ ◦ G
∣
∣ B1 and f̃ ◦ G

∣
∣ B2.

We have

f̃ ◦ G((λ1, . . . , λM ), (y1, . . . , yM ), m0, λ) =

λ((λ1, . . . , λM )(f(y1), . . . , f(yM )), f̃(m0)).

If λ ∈ [1− δ2], then for any (λ1, . . . , λM ) ∈ ∆
M−1, y1, . . . , yM ∈ Y , m0 ∈ Sc(Y )

the following holds

dα(f̃ ◦ G((λ1, . . . , λM ), (y1, . . . , yM ), m0, λ),

(λ1, . . . , λM )(f(y1), . . . , f(yM ))) < ε/3.

Since the value of (λ1, . . . , λM )(f(y1), . . . , f(yM )) is a continuous function of
λi, yi, there exist neighborhoods O(λ1, . . . , λM ) ∋ (λ1, . . . , λM ), Oy1 ∋ y1, . . . ,
OyM ∋ yM such that

dα((λ1, . . . , λM )(f(y1), . . . , f(yM )), (λ
′
1, . . . , λ

′
M )(f(y

′
1), . . . , f(y

′
M ))) < ε/3

whenever (λ′1, . . . , λ
′
M ) ∈ O(λ1, . . . , λM ), y1 ∈ Oy1, . . . , yM ∈ OyM . Taking into

consideration

dα(f̃ ◦ G((λ′1, . . . , λ
′
M ), (y

′
1, . . . , y

′
M ), m

′
0, λ

′),

(λ′1, . . . , λ
′
M )(f(y

′
1), . . . , f(y

′
M ))) < ε/3

for any m′
0 ∈ Sc(Y ), λ′ ∈ [1− δ2, 1], we obtain

dα(f̃ ◦ G((λ′1, . . . , λ
′
M ), (y

′
1, . . . , y

′
M ), m

′
0, λ

′),

f̃ ◦ G((λ1, . . . , λM ), (y1, . . . , yM ), m0, λ)) < ε

for (λ′1, . . . , λ
′
M ) ∈ O(λ1, . . . , λM ), y1 ∈ Oy1, . . . , yM ∈ OyM , m′

0 ∈ Sc(Y ),

λ′ ∈ [1− δ2, 1]. Thus f̃ ◦ G
∣
∣ B1 is (dα, ε)-continuous.

Let m0 ∈ Sc(Y ) ∩ P (Y × [0, δ1]). Then by the property of δ1, we have

dα(f̃ ◦ G((λ1, . . . , λM ), (y1, . . . , yM ), m0, λ),

f̃ ◦ G((λ1, . . . , λM ), (y1, . . . , yM ), Ph0(m0), λ)) < ε/3

for arbitrary (λ1, . . . , λM ) ∈ ∆
M−1, y1, . . . , yM ∈ Y , λ ∈ I. Since

f̃ ◦ G((λ1, . . . , λM ), (y1, . . . , yM ), Ph0(m0), λ) =

λ((λ1, . . . , λm)(f(y1), . . . , f(ym)), f̂ ◦ Ppr1(m0))
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depends continuously on λ, λi, yi, m0, there exist neighborhoods O(λ1, . . . , λM ) ∋
(λ1, . . . , λM ), Oy1 ∋ y1, . . . , OyM ∋ yM , Oλ ∋ λ, Om0 ∋ m0, Om0 ⊂ P (Y ×
[0, δ1]) such that (λ

′
1, . . . , λ

′
M ) ∈ O(λ1, . . . , λM ), y1 ∈ Oy1, . . . , yM ∈ OyM ,

λ′ ∈ Oλ, m′
0 ∈ Om0 implies

dα(f̃ ◦ G((λ′1, . . . , λ
′
M ), (y

′
1, . . . , y

′
M ), Ph0(m

′
0), λ

′),

f̃ ◦ G((λ1, . . . , λM ), (y1, . . . , yM ), Ph0(m0), λ)) < ε/3.

As a consequence we get

dα(f̃ ◦ G((λ′1, . . . , λ
′
M ), (y

′
1, . . . , y

′
M ), m

′
0, λ

′),

f̃ ◦ G((λ1, . . . , λM ), (y1, . . . , yM ), m0, λ)) < ε.

Thus f̃ ◦ G
∣
∣ B1 and therefore also f̃ , is (dα, ε)-continuous. This completes the

proof of continuity.
Let us prove that f̃ is a unique continuous extension of f onto Sc(Y ) that

preserves semiconvex combinations. It is sufficient to prove that for any contin-
uous extension g̃ of f onto Sc(Y ) that preserves semiconvex combinations, and

m ∈ P (Y × {0}) ⊂ Sc(Y ) we have g̃(m) = f̂ ◦ Ppr1(m). It is known ([5]) that
finite measures form a dense subset in the space of probability measures. Thus

there is a net (
kβ∑

i=1
aβ
i δ

y
β
i

)β∈B that converges to Ppr1(m). Without loss of gene-

rality we can assume that a
β
i > 0, max

1≤i≤kβ

a
β
i →

β
0. Then (

kβ∑

i=1
a
β
i δ
(yβ

i ,a
β
i )
)→

β
m in

Sc(Y ), and by preservation of semiconvex combinations we have

g̃(

kβ∑

i=1

aβ
i δ
(yβ

i ,a
β
i )
) = (aβ

1 , . . . , a
β
kβ
)(f(yβ

1 ), . . . , f(y
β
kβ
))→

β
g̃(m).

Since |(aβ
1 , . . . , a

β
kβ
)| →

β
0, we have

lim
β∈B
(a

β
1 , . . . , a

β
kβ
)(f(y

β
1 ), . . . , f(y

β
kβ
))= lim

β∈B
bX((a

β
1 , . . . , a

β
kβ
)(f(y

β
1 ), . . . , f(y

β
kβ
)))=

lim
β∈B
(aβ
1 , . . . , a

β
kβ
)(bX ◦ f(yβ

1 ), . . . , bX ◦ f(yβ
kβ
)) = lim

β∈B
f̂(

kβ∑

i=1

aβ
i δ

y
β
i

) =

f̂( lim
β∈B
(

kβ∑

i=1

a
β
i δ

y
β
i

)) = f̂ ◦ Ppr1(m).

Thus Sc(Y ) is a free strongly semiconvex compactum over the compactum Y .
The isomorphism SsConv(Sc(−),−) ∼= Comp(−, Us(−), ) is checked by a direct
substitution. Thus Sc is the left adjoint. �
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