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Finite spaces and the universal bundle of a group

Peter Witbooi

Abstract. We find sufficient conditions for a cotriad of which the objects are locally trivial
fibrations, in order that the push-out be a locally trivial fibration. As an application, the
universal G-bundle of a finite group G, and the classifying space is modeled by locally
finite spaces. In particular, if G is finite, then the universal G-bundle is the limit of an

ascending chain of finite spaces. The bundle projection is a covering projection.
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The work of Alexandroff [1] supplemented by that of McCord [6], describes the
functorial relationship between finite topological spaces and finite posets. Finite
posets arise in different mathematical problems, for example, certain subposets of
the lattice of subgroups of a group was introduced by K.S. Brown in the study of
Euler characteristic of groups with torsion. Such posets play an important role
in the representation and cohomology of finite groups. In particular, the work of
McCord shows that one can work with a finite T0 space directly, instead of going
via the polyhedron associated with it. In [3] it is shown how one can rectify the
lack of morphisms in the category of finite T0 spaces when studying homotopy
properties of its objects. Different aspects of finite spaces are studied in the paper
[8] of Stong. In particular, [8, Theorem 6] shows that a finite T0 space F with
base point admits an H-structure of type II (see [8, Section 5]) if and only if F
is pointed homotopy equivalent to a discrete space. Thus the finite T0 H-spaces
of type II are essentially the finite (discrete) groups. In this article we study the
action of a discrete group on a locally finite topological space. This leads to a
model for the universal principal G-bundle projection of a discrete group G, as
a covering projection between locally finite T0 spaces. In our constructions the
cylinder object I (the compact unit interval), is replaced by a finite space, so
as to yield non-Hausdorff constructions as in [6]. We prove a basic theorem for
push-outs of locally trivial fibrations. This theorem is then adapted to be utilized
in the formation of non-Hausdorff homotopy push-outs.

Notation. By a map we shall mean a continuous function between topological
spaces. The category of topological spaces and maps is denoted by Top. By
Top2 we mean the category of which the objects are the morphisms of Top and
a morphism p0 → p1 in Top

2 is a pair (g, f) of maps such that f ◦ p0 = p1 ◦ g,
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that is, diagram A is commutative.

E0

p0

��

g
// E1

p1

��

B0
f

// B1

A

Such a Top2-morphism (g, f) : p0 → p1 is said to be a homeomorphism of fibres

if for each b ∈ B0, the induced map p−10 (b)→ p−11 [f(b)] is a homeomorphism.
We shall often work with a commutative diagram B in Top. This can be

regarded as a cotriad in Top2. The spaces obtained as the push-outs of the Top-
cotriads appearing as the upper and lower rows of diagram B, are denoted by E
and B respectively.

E1

p1

��

E0
g1

oo

p0

��

g2
// E2

p2

��

B1 B0
f1

oo
f2

// B2

B

The push-out of the Top2-cotriad coincides with the unique map p : E → B
that exists since E and B are push-outs.

1. Locally trivial fibrations

We shall sometimes require a space to satisfy the following condition Q. This
condition is satisfied by every locally compact Hausdorff space F . A proof can
be found in [2, Problem 25, p. 330]. In Section 2 we show that the property also
holds for locally finite spaces.

Condition Q (for a space F ). Whenever a map q : X → Y is a quotient map,
then the map q × F : X × F → Y × F is a quotient map. �

The concept of locally trivial fibration is well known. The other terminology
defined in Definition 1.1 below is not so standard.

Definition 1.1. Let p : E → B be a map of topological spaces.
(a) For a subset U of B, U is said to be p-projected if there exists a space G

and a homeomorphism φ : U ×G → p−1(U) such that for every (x, g) ∈ U ×G,
we have pφ(x, g) = x. The map φ is said to be a trivialization of p over U .

(b) The map p is a locally trivial fibration if B has an open cover of p-projected
subsets.

(c) Let F be any topological space. The map p is a locally trivial fibration
with fibre F if p is a locally trivial fibration and p−1(b) is homeomorphic to F for
every b ∈ B.
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Examples of locally trivial fibrations are abundant, see for example [9]. In
particular, every covering projection is a locally trivial fibration.

The proof of the following proposition is elementary and we omit it. We refer
to diagram C below.

X
f

~~~~
~~

~~
~

g
// Z

f ′

��~~
~~

~~
~

Y
g′

// P

C

Proposition 1.2. Suppose that the commutative diagramC is a push-out square
in Top. Suppose further that F is a space satisfying Condition Q, and in dia-
gram D the three unlabeled vertical arrows are projection maps.

X × F
f×F

yyttttttttt

g×F
// Z × F

f ′
×Fyyttttttttt

��

Y × F

��

g′×F

//

��

P × F

�

�

�

X
f

yysssssssssss
//

v
��
�

�

� Z

f ′

yysssssssssss

Y
g′

// P

D

Then the rhombus in the top of diagramD is a push-out square, and the unique
map v : P × F → P , guaranteed by push-out properties to make diagram D
commutative, is the projection map. �

Theorem 1.3. Suppose that in diagram B every map pi is a locally trivial fibra-

tion with fibre F , where F is a space satisfying Condition Q. Suppose further that
there exists an index set S which determines for each s ∈ S and each j ∈ {1, 2}
an open subset Us

j of Bj , such that the following conditions hold.

(1) For each j ∈ {1, 2}, the collection {Us
j : s ∈ S} covers Bj .

(2) For each s ∈ S, f−1
1 (U

s
1 ) = f−1

2 (U
s
2 ). This subset of B0 will be denoted

by Us
0 .

(3) For each s ∈ S with Us
0 nonempty, we require the following (and now we

drop the superscript s of the sets Us
i ):

There exist homeomorphisms hi : Ui×F → p−1i (Ui) such that diagram E
is commutative.
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U1 × F

q1

��
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

h1

##GG
GG

GG
GG

G
U0 × F

k1×F
oo

h0

##GG
GG

GG
GG

G

k2×F
// U2 × F

h2

##GG
GG

GG
GG

G

V1

r1

��

V1
l1oo

r0

��

l2 // V2

r2

��

U1 U0
k1oo

k2 // U2

E

In this diagram, Vi = p−1i (Ui) and the vertical arrow ri is induced by pi. The maps

kj and lj are induced by fj and gj respectively. The maps ri ◦ hi : Ui × F → Ui,

which we shall denote by qi, are required to be projections.

Then the push-out p : E → B of the Top2-cotriad of diagram B is a locally trivial
fibration with fibre F .

Proof: For each s ∈ S, there are Top2-cotriads in diagram E, formed by the
triples hi, ri and qi. In view of Condition Q and (1), Proposition 1.2 applies,
ensuring that the push-out of the Top2-cotriad formed by the maps qi is precisely
the projection map q : U × F → U . The map q together with the push-outs of
the triples hi and ri, yield a commutative triangle as in diagram F.

U × F
h //

q
((PPPPPPPPPPPPP V

r

��

U

F

Since each of the maps hi is a homeomorphism, h is a homeomorphism. U can
be considered to be a subset of B while r is the pull-back of p over the inclusion
U ⊂ B. By commutativity of diagram F, it immediately follows that U is p-
projected. By condition (2), the open subset U1 + U0 + U2 of B1 + B0 + B2 is
saturated with respect to the quotient map η : B1 + B0 + B2 → B. Hence U is
open in B. Thus U is a p-projected open subset of B. By condition (1) it follows
that these sets Us, for the different s ∈ S, form a cover of B. This completes the
proof. �

2. Locally finite spaces

A locally finite space is a topological space in which every point has a neigh-
bourhood which is a finite set. Note that for every point x in a locally finite
space X , X has a smallest (finite) neighbourhood for x. In this section we look at
two properties of such spaces which make them particularly useful when studying
locally trivial fibrations.

Definition 2.1. Let F and A be topological spaces. We say that F is a rigid
fibre over A if for every open subset B of A, with p : F × B → B denoting the
projection map, the following condition is satisfied:
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Whenever f : F ×B → F × B is a map such that p ◦ f = p and for every b ∈ B
the map F × b → F × b induced by f is a homeomorphism, then f is itself a
homeomorphism.

F ×B

p
##FF

FF
FF

FF
F

f
// F ×B

p
{{xx

xx
xx

xx
x

B

The rigidity property has the following significance. Suppose that in dia-
gram A, (g, f) is a homeomorphism of fibres. Then if B1 is p1-projected and
p0 is a locally trivial fibration with fibre F which is a rigid fibre over B0, then B0
is p0-projected.
It is known that a Hausdorff space F is a rigid fibre over any space B provided

that F is either compact or locally compact and locally connected. This rigidity
property is studied in greater generality in [10]. Returning to locally finite spaces,
we have the following result.

Proposition 2.2. If F and A are locally finite spaces, then F is a rigid fibre
over A.
Proof: Let B be any open subspace of A, and let p : F×B → B be the projection
map. Suppose that f : F × B → F × B is a map such that p ◦ f = p, and for
every b ∈ B, the map fb : F × b→ F × b induced by f is a homeomorphism. We
show that f is a homeomorphism by exhibiting an open cover U of its codomain
such that for every U ∈ U , the induced map f−1(U)→ U is a homeomorphism.
Let z = (e, b) be any point of F ×B. Let Uz be the subset V ×W , where V is

the smallest open subset of F containing e andW is the smallest open subset of B
containing b. From the definition of product topology, it turns out that Uz is the
smallest neighbourhood of z. Let V ′ = {y ∈ F : (y, b) = f(x, b) for some x ∈ V }.
Then since fb is a homeomorphism, it follows that V

′ is an open subset of F . Thus
V ′ ×W is open in F × B. Since f is continuous, the set f−1(V ′ ×W ) is open.
Therefore, f−1(V ′ ×W ) is a neighbourhood of z. By minimality of Uz , it follows
that Uz ⊂ f−1(V ′ ×W ). However the latter two sets are cardinally equivalent
and are finite, and so Uz = f−1(V ′ ×W ). Thus f(Uz) is open. Moreover Uz is
homeomorphic to f(Uz), and a continuous bijection between finite spaces which
are known to be homeomorphic, is necessarily a homeomorphism. We can choose
U to be the collection, U = {f(Uz) : z ∈ F ×B}. �

Proposition 2.3. If F is a locally finite space, then F satisfies Condition Q.

Proof: Let U be any open subset of F ×X which is saturated with respect to
the map F × q. We show that U ′ = (F × q)(U) is open in F × Y .
Let z be an arbitrary element of U ′. Then z is of the form (e, y) ∈ F × Y . Let

V be the minimal neighbourhood of e in F . Let W = {x ∈ X : (e, x) ∈ U}. For
each x ∈ W , by minimality of V and since U is open, there exists Tx open in X
such that (e, x) ∈ V ×Tx ⊂ U . ThusW is open in X . Note also that V ×W ⊂ U .
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Since U is saturated with respect to F × q, W is saturated with respect to q.
Consequently W ′ = q(W ) is open in Y . Since V ×W ⊂ U , V ×W ′ ⊂ U ′. So
V ×W ′ is a neighbourhood of z that lies entirely in U ′. Thus U ′ is open in F ×Y .

�

3. The non-Hausdorff double mapping cylinder

In order to construct suitable adjunction spaces, we require a version of map-
ping cylinders in the context of locally finite spaces.
Let Rd be the set of integers, topologized by taking as a subbase the collection

of all subsets of the form {2n−1; 2n; 2n+1}, n ∈ Z. The space Rd will be referred
to as the digital line. This topological space was introduced by Khalimsky [4].
Let Id be the subspace {0, 1, 2} of Rd. As is pointed out in [3], the subspace
Id together with its barycentric subdivisions constitute the appropriate cylinder
object for locally finite spaces, to fulfill the role of the compact unit interval in
the category of Hausdorff spaces. Without further subdivision, Id will suffice for
the purposes of this paper. Every compact interval in Rd is contractible onto
every point which is closed as a one-point set. The following argument shows a
particular instance of this phenomenon.

Example 3.1. Let [0, 1] denote the unit interval of real numbers, and let Id be
our conventional subset of the digital line. We define a map h : Id × [0, 1] → Id

as follows:

h(x, t) =











x if t = 0;

1 if t ∈ (0, 1) and x = 1, 2;

0 otherwise.

Then h is a homotopy from the identity map of Id to the constant map Id → {0}.
�

We now describe the version of the double mapping cylinder that arises from
this cylinder object Id, for a cotriad,

E1 E0
g1

oo
g2

// E2 .

Let E be the disjoint union E1 + E0 × Id + E2. We form the quotient space E′

by identifying a point (x, 0) ∈ E0 × Id with the point g1(x) ∈ E1, and a point
(x, 2) ∈ E0 × Id is identified with the point g2(x) ∈ E2.
Let D1 and D2 respectively, be the images under the identification map E →

E′, of the subsets E1+E0×{0, 1} and E2+E0×{1, 2}. The sets D1 and D2 are
open. Let D0 = D1∩D2. The resulting double mapping cylinder construction, to
which we shall refer as the non-Hausdorff double mapping cylinder , is functorial.
We further note that the non-Hausdorff double mapping cylinder construction is
possible even if the spaces in the cotriad are not locally finite, just as the standard
double mapping cylinder construction is possible regardless of the nature of the
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spaces in the cotriad. Note furthermore that by taking special cotriads, we obtain
non-Hausdorff mapping cylinders and non-Hausdorff mapping cones.
In Proposition 3.2 below, we compare the non-Hausdorff double mapping cylin-

der with the standard double mapping cylinder. A proof of the proposition can
be found in [6].

Proposition 3.2. Let [0, 1] be the compact unit interval in R. Let h : [0, 1]→ Id

be the map defined by:

0 7→ 0, (0, 1) 7→ 1 and 1 7→ 2.

Then for every Top-cotriad, the map h induces a weak equivalence from the
ordinary double mapping cylinder to the non-Hausdorff double mapping cylinder.

For the purposes of the following adjunction theorem, we refer to the notation
agreed upon just prior to Section 1. With reference to diagram B, we note that
there is an obvious map p : E′ → B′ whereE′ andB′ are the non-Hausdorff double
mapping cylinders of the Top-cotriads constituted by the rows in (respectively)
the top and the bottom.

Theorem 3.3. Suppose that in the commutative diagram B, every map pi is a

locally trivial fibration with fibre F , and that F and every space shown in dia-
gramB is a locally finite space. Suppose further that each of the Top2-morphisms
p0 → pj is a homeomorphism of fibres, j = 1; 2.

Then the map p′ : E′ → B′ of non-Hausdorff double mapping cylinders de-

termined by the Top2-cotriad in diagram B, is a locally trivial fibration with
fibre F .

Proof: The commutative square in the right hand part of diagram C induces
a map ζ : Z ′ → Z from the non-Hausdorff mapping cylinder of g1 to the non-
Hausdorff mapping cylinder of f1.
There is an open subset Y of Z which admits retractions h : ζ−1(Y ) → E0

and k : Y → B0, such that kζ(x) = ζh(x) for every x ∈ ζ−1(Y ), and the Top2-
morphism (h, k) : η → p1 is a homeomorphism of fibres, where η is the pull-back
of ζ over the inclusion Y ⊂ Z.
The space B2 has an open cover consisting of p2-projected subsets. Let U2

be such an open subset, let U0 = f−1
2 (U2) and let U1 = k−1(U0). Then U0

is p0-projected. Since (h, k) is a homeomorphism of fibres it follows that U1 is
p1-projected. In fact, for the cotriad U1 ← U0 → U2, we can find trivializations
satisfying the hypotheses as spelt out in 1.3(3). We further note that the image
of B0 in Z is a closed subset. Thus by Theorem 1.3, it follows that p′ : E′ → B′

is a locally trivial fibration. �

4. The universal bundle of a discrete group

We motivate this section by means of the following example, showing two ac-
tions of discrete groups on topological spaces. The examples show the importance
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of having totally discontinuous group action. In 4.2 we point out (omitting the
straightforward proof) this significance more precisely. Theorem 4.3 is the main
result of this article.

Example 4.1.
(a) For Rd the digital line, let Sd be the quotient space obtained from Rd

by identifying elements which are congruent modulo 4. Notice that the additive
group Z of integers acts on the topological space Rd, (z : n 7→ n + 4z), and in
fact the orbits of this action are precisely our equivalence classes. The action is
totally discontinuous and by a well-known theorem, see [5] for example, it follows
that the quotient map is a covering projection. In fact we have found a locally
finite space model for the classical exponential map R→ S, R being the real line
and S the set of complex numbers with modulus 1.

(b) Taking Sd as in (a) above, we have a (unique) non-trivial topological
action of the group Z/2 with 2 elements on S. The action is however not totally
discontinuous, and the orbit projection is very far from being a fibration. �

Proposition 4.2. Let G be a discrete group acting freely on a topological
space E. Then the following conditions are equivalent:

(1) the action is totally discontinuous,
(2) the orbit projection p : E → E/G is a locally trivial fibration,
(3) the orbit projection is a covering projection. �

For a space A and a group G, we can define a (topological) action of G on
G × A by the rule: g(g′, a) = (gg′, a). Let CA be the non-Hausdorff cone on A.
Equip the spaces G×A and G×CA with the action defined above. Suppose now
that A is a G-space. Then we have the cotriad of G-maps below, where α is the
action on A. The space obtained as the push-out of the cotriad is a G-space, and
we denote it by G ∗A.

G× CA G×A?
_oo α // A ,

Theorem 4.3. Let G be a discrete topological group, and E a G-space. If the
action of G on E is totally discontinuous, then the action of G on G∗E is totally
discontinuous.

Proof: In view of 4.2, it suffices to show that the orbit projection p : G∗E → (G∗
E)/G is a locally trivial fibration with fibre G. The latter follows by Theorem 3.3
applied to diagram G.

G× CE

p1

��

G× E?
_oo

��

α // E

q

��

CE E?
_oo

q
// E/G

G
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Here q is the orbit projection, and the other vertical arrows are product space
projections. The space obtained in the push-out of the cotriad in the bottom, can
be seen to coincide (up to homeomorphism) with (G ∗ E)/G. �

Theorem 4.3 gives a method for determining, for a given discrete group G, a
sequence, pn : En → Bn of locally trivial fibrations with fibre G. In view of 3.2
our construction is (weakly homotopy) equivalent to that of Milnor [7]. In our
sequence, E0 = G, and otherwise, En+1 = G∗En. For every non-negative integer
n, Bn = En/G and pn is the orbit projection. The spaces En and Bn are locally
finite. In particular, if G is a finite group of order k, then En has (k + 1)

n+1 − 1
elements. This follows by induction, using the relations |Bn+1| = |Bn|+ |En|+1
and |En| = k|Bn|.
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