
Commentationes Mathematicae Universitatis Carolinae

Tadie
Decaying positive solutions of some quasilinear differential equations

Commentationes Mathematicae Universitatis Carolinae, Vol. 39 (1998), No. 1, 39--47

Persistent URL: http://dml.cz/dmlcz/118982

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118982
http://project.dml.cz


Comment.Math.Univ.Carolin. 39,1 (1998)39–47 39

Decaying positive solutions of some

quasilinear differential equations

Tadie

Abstract. The existence of decaying positive solutions in R+ of the equations (Eλ) and
(E1

λ
) displayed below is considered. From the existence of such solutions for the subho-

mogeneous cases (i.e. t1−pF (r, tU, t|U ′|) ց 0 as t ր ∞), a super-sub-solutions method
(see § 2.2) enables us to obtain existence theorems for more general cases.

Keywords: quasilinear elliptic, integral operators, fixed points theory

Classification: 35J70, 35J65, 34C10

1. Introduction

Let F ∈ C([0,∞)3; R+) and F0 ∈ C([0,∞)2; R+) be such that

(f)











F (r, T, S) ≤ f(r)T γ (1 + Sq);

F0(r, T ) ≤ f(r)T γ

where γ, q ≥ 0; f(r) ≃ rθ at ∞, θ ∈ R.

For a > 1 and p ∈ (1, a+1), we investigate the existence of (u, λ) ∈ C1([0,∞))×
(0,∞) which satisfy for r ≥ 0 the equations

Dau+ λr
aFu(r) := (ra|u′|p−2u′)′ + λraF (r, u, |u′|) = 0(Eλ)

and Dau+ λr
aF0(r, u) = 0,(E1λ)

where u is positive and decaying element of

C1ap := {u ∈ C1([0,∞)) | ra|u′|p−2u′ ∈ C1([0,∞))}.

For a = n−1, n ∈ N such u is a radial solution in R
n of the p-Laplacian equations

div(|∇u|p−2∇u) + λF (|x|, u, |∇u|) = 0 and

div(|∇u|p−2∇u) + λF0(|x|, u) = 0, respectively.

We show that for γ0 + q0 < p− 1

(i) such solution U exists for

(E0) DaU + r
af(r)Uγ0(1 + |U ′|q0) = 0, r ≥ 0;
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(ii) there is λ0 ≡ λ(f, p) > 0 such that

(E0λ0) Dau+ λ0r
af(r)uγ0(1 + |u′|q0) = 0, r ≥ 0

has such a solution u0, say, with |u0|∞, |u
′
0|∞ ∈ (0, 1].

Using u0 as a supersolution for (Eλ), we extend the result to more general cases
where γ ≥ γ0, q ≥ q0 and λ ∈ (0, λ0).
We will also consider for σ > 0 and θ, γ, q ≥ 0 the equation

(Fσ) DaV +
σra

(1 + r)θ
V γ{1 + |V ′|q} = 0, r ≥ 0

in the goal to investigate the existence of solutions in C1ap for (Fσ) where F
satisfies

(fθ) 0 ≤ F (r, T, S) ≤ (1 + r)−θ T γ(1 + Sq).

It is important to note that the usual condition F (r, u, 0) 6≡ 0 found in the lit-
erature for the decaying solutions ([7], [8]) is not required here as the use of a
sub-super-solutions method enables us to circumvent that condition.
In the sequel the following notations and conventions will be used:
µ := 1/(p− 1); t∗ := max{1, t};

∫

φ :=
∫

φ(s) ds;

(1.0)

{

w(t) := (1 + t)−m, m = µb, b ∈ (0, a+ 1− p]

∀R > 0, |u|R := |u|C([0,R]) and ψ(t) := w(t)γ f(t).

C or c will denote generic positive constants.
The main results are the following:

Theorem 1. Suppose that (γ0 + q0) < p− 1 and that

(1.1)

∫ ∞

0
sb+p−1 ψ(s) <∞ or γ0 < (p− 1)

{b+ p+ θ

b

}

.

(1) Then (E0) has a decaying positive solution U ∈ C1ap such that at ∞,

(1.2) U(r) ≤ C r−m (U(r) ≃ r−m if b = a+ 1− p).

Moreover ∃λ0 ≡ λ(f, p) > 0 such that (E0λ0) has a similar solution u0, say, with

|u0|∞, |u
′
0|∞ ∈ (0, 1].

(2) For λ ∈ (0, λ0), γ ≥ γ0 and q ≥ q0, (Eλ) has a decaying positive solution
u ∈ C1ap which satisfies (1.2).
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Theorem 2. Suppose that θ ∈ [0, p]. If

(1.3) γ >
(p− 1){a+ 1− θ}

a+ 1− p
,

then ∀ q ≥ 0, (Fσ) has a decaying positive solution V ∈ C1ap and for τ > 1 such

that γ = (p− 1)[a+ 1− p+ τ(p − θ)]/(a+ 1− p), at ∞

(1.4) V (r) ≤ C r−(a+1−p)/τ(p−1),

provided that σ is small enough e.g.

(1.5) 0 < σ <
{

max(1,
a+ 1− p

τ(p− 1)
)
}γ+1−p (a+ 1− p

τ

)p
(p− 1)1−p(τ − 1).

In particular if

(1.6) γ ≥ γ1 := {p2 + (p− 1)(a+ 1− p− θ)}/(a+ 1− p),

then ∀ q ≥ 0 and 0 < 2σ < σ1 := (a+ 1){
a+1−p

p−1 }γ1 ,

(Fσ) has such a solution V with V (r) ≃ r−(a+1−p)/(p−1) at ∞.

Theorem 3. (1) If γ0(p− 1) < 1 and (1.1) holds, then ∀λ > 0 and γ = γ0,
(E1λ) has a decaying positive solution uλ ∈ C1ap which satisfies (1.2).

There is λ0 ≡ λ(f, p) > 0 such that (E1λ0) has such a solution u with |u|∞, |u
′|∞ ∈

(0, 1].
For λ ∈ (0, λ0) and γ ≥ γ0, (E

1
λ) has a decaying solution in C

1
ap which satis-

fies (1.2).

(2) Let θ ∈ [0, p]; for γ > (p− 1)(a+ 1− θ)/(a+ 1− p) and τ > 1 such that

(1.7) γ = (p− 1)
a+ 1− p+ τ(p− θ)

a+ 1− p

and 0 < λ ≤ {a+1−p
τ }p (p− 1)1−p(τ − 1),

(E1λ) has a decaying positive solution u ∈ C1ap which satisfies (1.4). In particular

if 0 ≤ F0(r, u) ≤ uγ/(1 + r)θ , λ ≤ {(a+1− p)/τ}p(p− 1)1−p(τ − 1) and γ ≥ γ1,

it has such a solution u such that u(r) ≃ r−(a+1−p)/(p−1) at ∞.

Remarks 4. (1) In Theorem 1, when p ≥ 2, θ has to be less than −p and even
for this case the existence of solutions for γ > p− 1 is an extension of the known
results ([7], [8]).

(2) As concerned (E1λ) with F0 in (f) and a = n−1, radial solutions in C
1([0,∞))∩

C2((0,∞)) are known to exist ([3]) for

γ ≥
(p−1)n+p

n−p if θ = 0; γ >
(p−1)n+p(1+θ)

n−p if θ ∈ (−p, 0);

p− 1 < γ <
(p−1)n+p

n−p if θ < −p;

γ < p− 1 with θ < −p ([6]).

So, the existence of solutions of (E1λ) in C
1
ap for γ >

(p−1)(n−θ)
n−p and θ ∈ [0, p]

provided by Theorem 3 seems to be new.
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2. Preliminaries

2.1. Properties of some integrals.
Define

J(t) :=

∫ ∞

t

(

∫ r

0
(
s

r
)a ψ(s)

)µ
and K(t) := J(t)/w(t);(2.1)

ν :=

{

0 if b = a+ 1− p

a+ 1− p− b if b ∈ (0, a+ 1− p);
(2.2a)

Ψ0 :=

{

1
m

( ∫ 1
0 s

aψ
)µ

if b = a+ 1− p

p−1
a+1−p

{ ∫ 1
0 s

a ψ(s)
}µ

if b < a+ 1− p;
(2.2b)

Ψ1 := 2
m

{

∫ 1

0

(

∫ r

0
ψ

)µ
+
1

m

(

∫ ∞

0
sb+p−1ψ

)µ}

.(2.2c)

Lemma 2.1. If

(2.3)

∫ ∞

0
sb+p−1 ψ(s) <∞ or γ > (p− 1)

(b+ p+ θ)

b
,

where b ∈ (0, a+ 1− p], then ∀ t ≥ 0

Ψ0t
−ν/(p−1)
∗ ≤ K(t) ≤ Ψ1;(2.4)

|J(t)′| ≤
(

∫ ∞

0
(1 + sb+p−1)ψ

)µ
t−m−1
∗ := Ψ1 t−m−1

∗ .(2.5)

Proof: J(t) =
∫ ∞
t r−m−1{r−a+b+p−1

∫ r
0 s

aψ}µ ≤
∫ ∞
t r−m−1(

∫ ∞
0 sb+p−1ψ)µ

on one hand and
J(t) ≤

∫ 1
0 (

∫ r
0 ψ)

µ +
∫ ∞
1 (

∫ ∞
0 sb+p−1ψ)µ on the other hand; the right hand side of

(2.4) then follows from the fact that (1 + t)mt−m
∗ ≤ 2m.

0 ≤ −J(t)′ ≤ t−m−1(
∫ ∞
0 sb+p−1ψ)µ on one hand and

|J(t)′| ≤ (
∫ ∞
0 ψ)µ on the other hand; (2.5) is obtained.

J(t) =
∫ ∞
t r−aµ(

∫ r
0 s

a ψ(s))µ ≥ (
∫ 1
0 s

a ψ(s))µ
∫ ∞
t r−aµ dr for t ≥ 1 and for t < 1,

J(t) ≥ J(1). So

J(t) ≥ Ψ0t
−(a+1−p)/(p−1)
∗ whence K(t) ≥ Ψ0t

−ν/(p−1)
∗ .

The left hand side of (2.4) is then obtained. �

For B > A > 0 define for C1 := C1([0,∞))

(2.6) E := E(A,B) =

{v ∈ C1; A ≤ v ≤ B; |(wv)′| ≤ Bt−m−1
∗ } if b = a+ 1− p,

{v ∈ C1; 0 ≤ v ≤ B; V ≥ A in [0, 1]; |(wv)′| ≤ Bt−m−1
∗ } otherwise.

Define the operator G on E by

(2.7) Gφ(t) := (1 + t)m
∫ ∞

t

{

r−a
∫ r

0
sa ψ(s)φ(s)γ(1 + |(wφ)′|q)

}µ
.
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Lemma 2.2. If (2.3) holds, then G : E −→ C1 is continuous and GE is equicon-
tinuous in C1.

Proof: With Fu
1 := u

γ(1 + |(wu)′|q), ∀u, v ∈ E,
Γ1(A) := A

γ ≤ Fu
1 ≤ Bγ(1+Bq) := Γ2(B) and |F

u
1 −F

v
1 | ≤ C(γ, q, A,B)|u−v|C1 ;

Γ standing for Γ1(A) or Γ2(B) according to the sign of µ− 1,

(2.8)
∣

∣

∣

(

∫ r

0
(
s

r
)a ψ(s)Fu

1 (s)
)µ

−
(

∫ r

0
(
s

r
)a ψ(s)F v

1 (s)
)µ∣

∣

∣

≤ µ{Γ

∫ r

0
(
s

r
)aψ}µ−1

∫ r

0
(
s

r
)a ψ(s)|Fu

1 − F v
1 |

≤ C1(µ,C,Γ)|u − v|C1
{

∫ r

0
(
s

r
)aψ

}µ
.

From (2.8) simple estimations lead to

(2.9) |(Gu−Gv)′(t)|+ |(Gu−Gv)(t)| ≤ C |u− v|C1{|K(t)
′|+K(t)}

and the continuity is obtained via Lemma 2.1.

(i) ∀u ∈ E,

|(Gu(t)′| ≤ Γµ{(1 + t)m|K(t)′|+m(1 + t)m−1K(t)} ≤ C (Γ, B, ψ)
by Lemma 2.1 whence GE is equicontinuous in C([0,∞)).

(ii) ∀ t > s > 0 and u ∈ E,
|(Gu)′(t)− (Gu)′(s)| ≤ Γµ{|(1 + t)mt−a − (1 + s)ms−a|(

∫ s
0 y

aψ(y))µ+

+m|(1+t)m−1−(1+s)m−1|K(t)+m(1+s)m−1|K(t)−K(s)|} := O(t−s)
and {(Gu)′ | u ∈ E} is equicontinuous in C([0,∞)). The equicontinuity
follows from (i) and (ii).

�

2.2 A super-sub-solutions method.
Consider for h ∈ C([0,∞)3; R+)

(H) H(v) := Dav + r
ahv(r) ≡ (ra|v′|p−1v′)′ + rah(r, v, |v′|) = 0.

Definition 2.3. (1) Let v ∈ C1([0,∞)) be piecewise C2. v will be said to be a
supersolution (subsolution) of (H) if

H(v) ≤ (≥) 0 ∀ a.e. r ≥ 0.

(2) w, v ∈ C1([0,∞)) piecewise C2 will be said to be H-compatible if

∀ a.e. r ≥ 0 0 ≤ w(r) ≤ v(r); v′(r) ≤ w′(r) ≤ 0; H(v) ≤ 0 ≤ H(w).

Lemma 2.4. Suppose that hu is non decreasing in u and |u′|. Let w, v ∈
C1([0,∞)) be H-compatible with |v|C1 ≡ |v|C1([0,∞)) <∞. Then

DaV + r
ahv(r) := (ra|V ′|p−2V ′)′ + rahv(r) = 0 and DaW + r

ahw(r) = 0
have solutions V,W ∈ C1ap such that ∀ r ≥ 0,

(2.10) w ≤W ≤ V ≤ v and v′ ≤ V ′ ≤W ′ ≤ w′ ≤ 0.
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Proof: The existence of solutions of the equations in the lemma is in no doubt
in view of the hypotheses on v. We are going to indicate how to construct those
which satisfy (2.10). Define the sequences

vn(r) =

{

v(n) + Inv(r) for r < n

v(r) otherwise

where Inv(r) :=
∫ n
r (

∫ t
0 (s/t)

ahv)µ, µ := 1/(p− 1).

Davn + r
ahv(r) = 0 in Bn = [0, n); Vn = v for r ≥ n.

wn are defined from w in the same way.
In Bn, vn(r)

′ = −(
∫ r
0 (s/r)

ahv)µ ≤ −(
∫ r
0 (s/r)

ahw)µ = wn(r)
′.

As v′, (vn)
′ ≤ 0 in Bn, {r

a[|(vn)
′|p−1 − |v′|p−1]}′ ≤ 0 whence

v′ ≤ (vn)
′ ≤ (wn)

′ there. Thus wn ≤ vn ≤ v as v(n) = vn(n) ≥ w(n) = wn(n).
Similarly in Bn, w ≤ wn and (wn)

′ ≤ w′. So, ∀n ∈ N w ≤ wn ≤ vn ≤ v and
v′ ≤ (vn)

′ ≤ (wn)
′ ≤ w′ ≤ 0.

So, ∀M > 0 and BM := [0,M),

n > M =⇒ |wn|C1(BM )
≤ |v|C1 and |vn|C1(BM )

≤ |v|C1

whence (wn) and (vn) have subsequences (w̄n) and (v̄n) say, which converge in
C1(BM ) to WM and VM say, such that for some w(M) ≤ aM ≤ bM ≤ v(M), in
BM WM (r) = aM + IMw(r) and VM (r) = bM + IMv(r).
In the same way (w̄n)n>2M and (v̄n)n>2M have subsequences which converge in
C1(B2M ) to W2M and V2M say, and W2M |BM

=WM , V2M |BM
= VM .

W and V are obtained as inductive limit of (WkM )k∈N and (VkM )k∈N ([5]). �

Theorem 2.5. (1) Suppose that the hypotheses on w and v in the Lemma 2.4
hold. Then (H) has a solution φ ∈ C1ap such that w ≤ φ ≤ v.

(2) The existence of such a positive and decreasing supersolution v for (H)
is sufficient for the existence of a non trivial solution u ∈ C1ap of (H) such that
0 ≤ u ≤ v.

Proof: (1) Define on E = {φ ∈ C1([0,∞)) | w ≤ φ ≤ v and v′ ≤ φ′ ≤ w′} the

operator I by Iφ(t) := A+
∫ ∞
t (

∫ r
0 (s/r)

ahφ(s))µ where A := lim∞ v(r).

(a) Let Φ = Iφ for φ ∈ E;

hw ≤ hφ ≤ hv whence using the same arguments as in Lemma 2.4,
IE ⊂ E as W ≤ Φ ≤ V and V ′ ≤ Φ′ ≤W ′, W and V being those in that lemma.

(b) The continuity of I : E −→ E is easy to verify, following the same steps (with
slight modifications) as for Lemma 2.2.

(c) IE is equicontinuous as: (i) ∀φ ∈ E and t > s > 0,

(2.11) |Φ′(t)− Φ′(r)|

≤











{

ta−sa

ta

(

1
s

∫ s
0 rh

v
)

+ 1
t

∫ t
s rh

v
}µ

if µ ≤ 1,

µ
(

1
sa

∫ t
0 r

ahv
)µ−1{

ta−sa

ta

(

1
s

∫ s
0 rh

v
)

+ 1t
∫ t
s rh

v
}

if µ > 1
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and {Φ′ | φ ∈ E} is equicontinuous as a subset of C([0,∞));

(ii) |Φ′(t)| ≤ |v′|∞ whence IE is equicontinuous as a subset of C([0,∞)).

As E is a closed and convex subset of C1, the three reasons enable us to apply
the Schauder-Tychonoff fixed point theorem to I; I has a fixed point in E which
is such a solution.

(2) For σ ≥ µ(2a − p) and z(r) = r−σ in D = [1,∞), Daz > 0 in D. Let ρ > 0
be such that z < v/2 and v′ ≤ z′ ≤ 0 for r > ρ. Define z1 and z2 by

z1(r) =

{

z(ρ) for r ≤ ρ

z(r) for r > ρ
and z2(r) =

{

0 for r ≤ ρ

|z′(r)| for r > ρ.

For hz
1 := h(r, z1, z2), the function Z constructed from v asW in Lemma 2.4 with

hz
1 replacing h

v is such that Z, v are H-compatible and (1) applies. �

Without any extra difficulties, Definition 2.3, Lemma 2.4 and Theorem 2.5
apply to (H) where rather h ∈ C([0,∞)2; R+) and h(r, u) non decreasing in
u ≥ 0.

3. Proofs of the main theorems

3.1. Proof of Theorem 1. Let E be that in (2.6). ∀φ ∈ E,
Gφ(t) = (1+ t)m

∫ ∞
t {

∫ r
0 (

s
r )

a ψ(s)φ(s)γ0(1 + |(wφ)′|q0)}µ ≤ Bµγ0(1 +Bq0)µK(t)
≤ Bµγ0(1 +Bq0)µΨ1 by (2.4).
|(wGφ)′(t)| ≤ Bµγ0(1 +Bq0)µ|J(t)′| ≤ Ψ1Bµγ0(1 +Bq0)µ by (2.5).
For t ∈ [0, 1] if b < a+ 1− p,

Gφ(t) ≥
∫ ∞
1 {

∫ r
0 (

s
r )

a ψ(s)φ(s)γ0}µ ≥ Aµγ0J(1) ≥ Aµγ0 1
m(

∫ 1
0 s

aψ)µ := N2A
µγ0

and for b = a+ 1− p similar lower bound is obtained ∀ t ≥ 0.
GE ⊂ E if we can find B > A > 0 such that

(3.1) {Bγ0(1 +Bq0)}µ(Ψ1 +Ψ1) ≤ B and N2A
µγ0 ≥ A.

Because µ(γ0+ q0) < 1, in {(x, y); x > 0, y > 0} the curve of y = x lies above
that of y = {xγ0(1 + xq0)}µ(Ψ1 +Ψ1) for
x ≥ x0 ≡ x0(Ψ

1,Ψ1, γ0, q0). Also N2A
µγ0 ≥ A for A ≥ A0 := A0(N2) as µγ0 < 1.

So, with A1 := min{x0, A0},
∀ (A,B) ∈ (0, A1]× [x0,∞), (3.1) holds and for such A and B, GE ⊂ E.
In that case, as from Lemma 2.2 G is continuous on E and GE equicontinuous
in E, G has a fixed point φ, say, in E as E is a closed and convex subset of C1

by Schauder-Tychonoff fixed point theorem. U(t) := w(t)φ(t) is such a required
solution.
For the equation (E0λ0), with B = 1,(3.1) reads

(3.1a) (2λ0)
µ(Ψ1 +Ψ1) ≤ 1 and N2λ

µ
0A

µγ0 ≥ A.

So, for λ0 = (1/2)(Ψ
1+Ψ1)

−1/µ and some A ∈ (0, 1), we obtain U0 as U obtained
above.
For λ ∈ (0, λ0), γ ≥ γ0 and q ≥ q0 U0 is a supersolution of (Eλ) and Theorem 2.5
applies.
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3.2 Proof of Theorem 2. From Theorem 2.5, it suffices to find a supersolution
of the problem in C1. Define

(3.3) v(r) := (1 + rs)−β ; s > 1; β > 0,

then for a > 1 and p ∈ (1, a+ 1)

Dav = −ra
(sβ)p−1r(s−1)(p−1)−1

(1 + rs)β(p−1)+p
{(s− 1)(p− 1) + a+ rs(a+1− p− sβ(p− 1))}.

For s = p/(p− 1) and β = (a+ 1− p)/τp, τ > 1,

(3.4) Dav + r
a

{a+ 1− p

τ(p− 1)

}p−1 {a+ 1 + [(a+ 1− p)(τ − 1)/τ ]rs

(1 + rs)β(p−1)+p

}

= 0.

This implies that

Dav + {
a+ 1− p

τ
}p(p− 1)1−p(τ − 1) ra (1 + rs)−(p−1)(β+1) ≤ 0

whence ∀ θ ≥ 0

(3.5)



















Dav +D
ravγ

(1+r)θ
≤ 0, r ≥ 0

∀ γ ≥ γ(τ, θ) := (p− 1)
a+1−p+τ(p−θ)

a+1−p ;

D := D(a, p, τ) =
(

a+1−p
τ

)p
(p− 1)1−p (τ − 1).

For v0 = max{1,
a+1−p
τ(p−1)

} and V (r) = v(r)/v0, V (r), |V (r)
′| ∈ [0, 1] ∀ r ≥ 0

hence

(3.6)

{

∀ γ ≥ γ(τ, θ), σ ∈ (0, v
1+γ−p
0 D/2] and q ≥ 0

DaV + σ
raV γ

(1+r)θ
(1 + |V ′|q) ≤ 0, r ≥ 0,

V is then a supersolution of (Fσ). The proof is completed by the fact that
∀ γ > (p− 1)(a+1− p+ τ(p− θ) )/(a+1− p) and θ ≤ p, there is τ > 1 such that
γ = γ(τ, θ). For τ = 1 in (3.4) and v0 = (a+ 1− p)/(p− 1), (3.6) becomes

(3.7)

{

DaV +
σraV γ

(1+r)θ
(1 + |V ′|q) ≤ 0, r ≥ 0

∀ q ≥ 0, σ < σ1 and γ ≥ γ1.

The proof is completed by Theorem 2.5.

3.3 Proof of Theorem 3. (1) Adapting the proof of Theorem 1 to (E1λ), we see
that GE ⊂ E if for any λ > 0, there are B > A > 0 such that

λµBµγ0(Ψ1 +Ψ1) ≤ B and λµAµγ0N2 ≥ A;

the fact that µγ0 < 1 ensures the existence of such A and B.

As µγ0 < 1, this part of (1) follows the same process as for Theorem 1. In the
same manner, the part (2) of the theorem is obtained by a simple adaptation of
the proof of Theorem 2.
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