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Order-like structure of monotonically normal spaces

Scott W. Williams, Haoxuan Zhou

Abstract. For a compact monotonically normal space X we prove: (1) X has a dense
set of points with a well-ordered neighborhood base (and so X is co-absolute with a
compact orderable space); (2) each point of X has a well-ordered neighborhood π-
base (answering a question of Arhangel’skii); (3) X is hereditarily paracompact iff X

has countable tightness. In the process we introduce weak-tightness, a notion key to
the results above and yielding some cardinal function results on monotonically normal
spaces.
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Introduction

A space X is called orderable provided there is a linear ordering of X whose
induced order topology is the topology of X . All closed continuous images of
metric or orderable spaces satisfy a strong version of normality (see [Gr], [HLZ],
or [Bo]): A space X is called monotonically normal (or MN for brevity) provided
that for each pair (x, G) consisting of a point and its neighborhood G, there is an
open set µ(x, G) satisfying two conditions:

MN1. x ∈ µ(x, G) ⊆ G;

MN2. if µ(x, G) ∩ (y, H) 6= ∅, then either x ∈ H or y ∈ G.

We call µ the monotone operator for X . See [BR] and [WZ] for recent and related
results on MN spaces.
Recently at the 8th Prague Topological Symposium, Mary Ellen Rudin [Ru3]

announced that each compact MN separable space is the continuous image of a
compact orderable space. This partially answered a question of J. Nikiel [Ni]:
Is each compact MN space the continuous image of a compact orderable space?
In addition, Rudin conjectured that Nikiel’s problem has a negative solution in
general. The underlying theme of this paper is to show how similar compact
MN spaces are to compact orderable spaces. The results we exhibit here (and
presented at the 7th Prague Topological Symposium in 1991) are all known or
very easy to prove for continuous images of compact orderable spaces. Our main
results are:

1.7 and 3.1. Each point of a compact MN space has a well-ordered neighborhood

π-base of cardinality both its π-character and the cofinality of its character. (This
answers Arhangel’skii question.)
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2.5. A compact MN space has a point with a linear ordered neighborhood base.

2.8. A compact MN almost-P space has a P -point.

3.5. A compact MN space is hereditarily paracompact iff it has countable tight-

ness.

4.1. A compact MN space has a dense orderable subspace.

4.8. An MN space has a tree p-base iff each of its points has a pairwise-disjoint
neighborhood π-base.

Notation and preliminaries

All spaces are assumed Hausdorff and infinite. We use nbhd to abbreviate
“neighborhood” and bdry for “boundary”. The closure and interior operators are
denoted by cl(·) and int(·). A cellular family in a space is a family of pairwise-
disjoint non-empty sets. A π-base is a cofinal subset of (TOP(X)\{∅},⊇). A nbhd
π-base at a point x in a space X is a subset B of TOP(X) \ {∅} such that each
nbhd of x contains a member of B.
For a set X , |X | denotes the cardinality of X . In a space X , x ∈ X is a

complete accumulation point of a set A ⊆ X if |A ∩ N | = |A| for each nbhd N
of x. For a function f : X → Y , rng(f) denotes the range of f .
We use the standard (see [Ho]) cardinal functions c (for cellularity = sup car-

dinality of cellular families), d (for density), L (for Lindelöf degree), χ (for cha-
racter), t (for tightness), πw (for π-weight = least cardinality of a π-base), and
πχ (for π-character). A prefix of “h” in front of a cardinal function is the “hered-
itary” version. An affix “(p, A)” behind a cardinal function is the local version
with respect to A. So πχ(p, A) is the least cardinality of an A-nbhd π-base at
p ∈ A.

1. Cardinal functions and applications

There are numbers of cardinal function results such as d(X) ≤ c(X)+, known
for the class of orderable spaces which hold for MN spaces (see 4.7). The following
result, whose countable version appeared in [Os] and generalized by P. Moody, is
a key to the entire paper.

1.1 Theorem. For an MN space X , hL(X) ≤ hc(X) = c(X).

In any space c(X) ≤ d(X). In any compact space, χ(X) ≤ hL(X) (see [Ho,
7.1]). Thus, 1.1 yields the next lemma.

1.2 Lemma. For a compact MN space X , χ(X) ≤ hL(X) ≤ c(X) ≤ d(X). �

We define a useful cardinal function — weak tightness. Suppose x is a point
in a space X . Let wt(x, X) = ℵ0 · min{|A| : x ∈ cl(A) \ A} and let wt(X) =
sup{wt(x, X) : x ∈ X}. The following two results are either obvious or routine.
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1.3 Lemma. The following hold for a space X .

(1) ∀x ∈ X , wt(x, X) ≤ πχ(x, X) (≤ χ(x, X)).
(2) ∀x ∈ X , t(x, X) = sup{wt(x, A) : x ∈ cl(A) \ A}.
(3) wt(X) ≤ t(X). �

1.4 Proposition. The following hold for a subspace X of an orderable space.

(1) Suppose N is an infinite family of neighborhoods of x ∈ X such that

|N | < wt(x, X). Then
⋂
N is a nbhd of x.

(2) x ∈ X has a linear ordered nbhd base iff χ(x, X) = wt(x, X).
(3) x ∈ X has a linear ordered nbhd π-base of cardinality wt(x, X) and has
a cellular nbhd π-base of cardinality wt(x, X).

(4) If K is a nowhere dense subspace of X , then χ(K) ≤ χ(K, X). �

1.5 Lemma. Suppose X is an MN space and N is an infinite family of neigh-
borhoods of x ∈ X such that |N | + L(X) < wt(x, X). Then

⋂
N is a nbhd

of x.

Proof: Without loss of generality, we may assume that the members of N are
open and ∀N ∈ N , u(x, N) ∈ N . ∀N ∈ N , ∃FN ⊆ X \ cl(µ(x, N)) with
|FN | ≤ L(X) such that X \ N ⊆

⋃
{µ(y, X \ cl(µ(x, N))) : y ∈ FN}. Thus,

X\
⋂
N ⊆

⋃
{µ(y, X)\cl(µ(x, N)) : FN , N ∈ N}. LetG = X\cl(

⋃
{FN : NeN}).

Since |N | + L(X) < wt(x, X), x ∈ G. So ∀N ∈ N ∀ y ∈ FN , µ(x, G) ∩ µ(y, X \
cl(µ(x, N))) = ∅. Therefore, µ(x, G) ⊆

⋂
N . �

1.6 Corollary. A point x in a Lindelöf MN space X has a linear ordered nbhd
base iff χ(x, X) = wt(x, X). �

A space is said to be radial (see [Ar1] and [Ar2]) provided each boundary point
of a subset is the limit of a well-ordered sequence in the set. A.V. Arhangel’skii
asked in 1986 whether a compact MN space is radial. If each point of each closed
subset of a space has a linear ordered relative neighborhood π-base, then the space
is clearly radial, so 1.7 shows the answer to Arhangel’skii’s question is yes.

1.7 Theorem. Each point x in a compact MN space X has a linear ordered

nbhd π-base of cardinality wt(x, X).

Proof: Suppose x ∈ cl(A) \ A and |A| = wt(x, X) = κ. From 1.2, χ(x, A) ≤ κ.
So χ(x, A) = κ. According to 1.5, there is a family {Bα : α ∈ κ} of nbhds of
x such that {cl(A) ∩ Bα : α ∈ κ} is a cl(A)-nbhd base at x and such that the
following holds:

(*) β < α implies cl(Bα) ( Bβ and A ∩ Bβ \ cl(Bα) 6= ∅.

∀α ∈ κ let Cα = Bα \ cl(Bα+1) and choose xα ∈ A ∩ Cα. So C = {µ(xα, Cα) :
α ∈ κ} is a cellular family in X . Suppose G is an open nbhd of x and let
I = {α ∈ κ : µ(xα, Cα) \ G 6= ∅}. ∀α ∈ I choose yα ∈ µ(xα, Cα) \ G. Since
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X is compact and C is cellular, {yα : α ∈ I} has a complete accumulation point
y ∈ X \ (G ∪ (

⋃
C)).

Suppose H is an arbitrary nbhd of y missing x. Applying MN2 shows yα ∈
µ(y, H) implies xα ∈ H . So y is a complete accumulation point of {xα : α ∈ I}.
Since x 6= y, (*) implies |I| < κ. Therefore, {

⋃
α>β µ(xα, Cα) : β ∈ κ} is a cellular

nbhd π-base at x. �

In general for compact or for MN spaces, there is no relationship between
t(x, X) and πχ(x, X).

1.8 Corollary. For each point x in a compact MN spaceX , wt(x, X) = πχ(x, X)
≤ t(x, X) and πχ(x, X) is a regular cardinal.

Proof: From 1.7, there is a linear ordered nbhd π-base at x of cardinality the
cofinality of wt(x, X). �

2. On neighborhood bases and π-bases

In this section, we strengthen some of the results in the last.

2.1 Lemma. Suppose K is a closed subset of a countably compact hereditarily
normal space X . If R is a family of open sets of X locally-finite in

⋃
R and such

that ∀R ∈ R R ∩ bdry(K) 6= ∅, then |R| ≤ χ(K, X).

Proof: Let N be a nbhd base at K such that |N | = χ(K, X) = κ. Assume
|R| = λ > κ. ∀R ∈ R choose an open set CR with cl(CR) ⊆ R and such that
∀R ∈ R, CR ∩ bdry(K) 6= ∅. Let C = {CR : R ∈ R}. For N ∈ N define
DN =

⋃
{cl(C) \ N : C ∈ C} and AN = cl(DN ) \ DN . If x ∈

⋃
R, then there is

a nbhd G of x meeting just finitely many C ∈ C. Since each cl(C) \ N is closed,⋃
R∩ AN = ∅.
Let A =

⋃
{AN : N ∈ N}. Thus,

⋃
R is a nbhd of T = bdry(K) ∩

⋃
C

missing A. Since int(bdry(K)) = ∅, X \ cl(T ) is a nbhd of A missing T . Since
X is hereditarily normal, there is an open set V such that T ⊆ V and cl(V ) ∩
A = ∅. As N is a nbhd base at K, we may choose ∀C ∈ C, NC ∈ N such that
C ∩V \ cl(NC) 6= ∅. Since κ < λ, ∃N ∈ N such that N = NC for infinitely many
C ∈ C. So V meets infinitely many sets C \ cl(N). Since X is countably compact,
cl(V ) ∩ A 6= ∅ — a contradiction. �

The following result strengthens 1.7.

2.2 Lemma. Each point x in a compact MN space X has a cellular nbhd π-base
of cardinality χ(x, X).

Proof: Suppose X is a compact MN space and µ is a monotone operator on X .
“Compactness” is unnecessary and trivial for points with a countable nbhd base.
Thus, we assume the theorem is true for points y with χ(y, X) < κ, and x ∈ X
has χ(x, X) = κ > ℵ0, say B = {Bα : α ∈ κ} is a nbhd base at x such that
∀α ∈ κ Bα+1 ( µ(x, Bα). Arbitrarily choose x0 ∈ B0 \ cl(B1) and its nbhd
G0 with cl(G0) ⊆ B0 \ cl(B1). Suppose that λ < κ and we have built a cellular
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family {µ(xα, Gα) : α < λ} satisfying ∀α < λ cl(Gα) ⊆ Bα \ {x}. Let C =
cl({xα : α < λ}) ∪ {x} and D = {Bα : α ≤ λ+ 1} ∪ {X \ cl(Gα) : α < λ}.
Now suppose

⋂
D ⊆ C. Since χ(C) ≤ d(C) ≤ |λ| and C is a compact MN

space, there is a family N ⊆ B, |N | = |λ| such that {C ∩N : N ∈ N} is a C-nbhd
base at x. Since X is compact, N ∪ D is a nbhd base at x; i.e. χ(x, X) < κ —
a contradiction. Therefore, (

⋂
D) \ C 6= ∅.

Choose xλ ∈ (
⋂
D) \ C and its nbhd Gλ ⊆ Bλ+1 \ C. Then ∀α < λ, xλ /∈ Gα

and xα /∈ Gλ. So ∀α < λ, µ(xα, Gα) ∩ µ(xλ, Gλ) = ∅. In this fashion, we can
build a cellular family {µ(xα, Gα) : α ∈ κ} as a nbhd π-base ar x. �

It is easy to see that for a closed nowhere dense subspace K of a compact MN
spaceX , wt(K) ≤ χ(K, X). According to 1.3(1), the following lemma strengthens
this result.

2.3 Theorem. Suppose K is a closed nowhere dense subspace of a compact MN
space X . Then χ(K) ≤ χ(K, X).

Proof: Consider x ∈ K. According to 2.2, there is a K-open cellular family B,
|B| = χ(x, X), such that B is a nbhd π-base at x. ∀B ∈ B choose xB ∈ B and an
X-open set GB such that GB ∩K = B. Then µ(xB , GB)∩µ(xC , GC) 6= ∅ implies
either xC ∈ GB ∩K or xB ∈ GC ∩K, and hence C = B. Thus, {µ(xB , GB) : B ∈
B} is a cellular X-open family. 2.1 shows χ(x, X) = |{µ(xB , GB) : B ∈ B}| ≤
χ(K, X). �

2.4 Lemma. Suppose κ is a regular cardinal and N = {Nα : α ∈ κ} is a
well-ordered family of open sets in a compact MN space X subject to the two
conditions below:

(1) int(
⋂
N ) = ∅;

(2) β < α ∈ κ implies cl(Nα) ( Nβ .

Then each point of
⋂
N possesses a well-ordered nbhd base of cardinality κ.

Proof: Let K =
⋂
N . Then (1) implies K is nowhere dense. Since X is

compact and (2) holds, K is non-empty. Suppose x ∈ K. According to 2.3,
wt(x, X) ≤ χ(K) ≤ κ. From 1.8 there is a nbhd π-base B at x of cardinality
wt(x, X). If |B| < κ, then (2) finds B ∈ B with B ⊆

⋂
N — contradicting (1).

Hence, wt(x, X) = κ. From 1.6, each point of K has a well-ordered nbhd base of
cardinality κ. �

2.5 Theorem. A compact MN space contains a dense set of points with a well-

ordered nbhd base.

Proof: Since the space is regular, in any open set one can recursively construct
a family N satisfying the hypothesis of 2.4. �

2.6 Corollary. If each point of a compact MN space X has countable π-charac-
ter, then X has a dense first countable subspace.

Proof: Use the dense set guaranteed by 2.5. �
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2.7 Corollary. Suppose κ is a regular uncountable cardinal and G = {Gα : α ∈
κ} is a well-ordered family of open sets in a compact MN space X such that

∀α ∈ κ cl(Gα+1) ( Gα. Then bdry(
⋂

G) is finite.

Proof: Let K = bdry(
⋂
G) and Y = X \ int(

⋂
G). Then for the compact MN

space Y , {Gα \ int(
⋂
G) : α ∈ κ} satisfies the conditions of 2.4. Thus, each point

in K has a well-ordered Y -nbhd base of order type κ. Therefore, no countably
infinite subset of K has a limit point — hence K is finite. �

E.K. van Douwen has called a space X an almost -P space provided each non-
empty Gδ-set has non-empty interior. A point in a space is called a P -point if it
is in the interior of every Gδ-set containing it. R. Levy [Le] has shown that each
compact orderable almost-P space has a P -point. S. Watson [Wa] has found a
compact almost-P space with no P -points. The following result improves Levy’s
theorem.

2.8 Theorem. A compact MN almost-P space has a P -point.

Proof: Notice that any non-P -point in a space X has wt(x, X) = ω. From 2.6,
if X is also a compact MN space, then X has a dense first countable space. Each
element of the dense set shows X is not an almost-P space. �

3. More on neighborhood π-bases and tightness

Our first result in this section is yet another strengthening of 1.7.

3.1 Theorem. Each point x of a compact MN space X has a well-ordered nbhd
π-base of cardinality cf (χ(x, X)).

Proof: This is true if x has a countable nbhd base. Suppose κ = χ(x, X)
is uncountable and {Bα : α ∈ κ} is a nbhd base at x. We will assume each
cl(Bα+1) ( Bα. For each ordinal λ ≤ κ, let Lλ =

⋂
α<λ Bα and η be the first

ordinal such that x /∈ cl(int(Lη)). Clearly η is a limit ordinal and Lη is closed.
Let Y = X \ int(Lη) and K = Lη \ int(Lη). Since x /∈ cl(int(Lη)), χ(x, Y ) = κ.
On the other hand, χ(K, Y ) ≤ |η|. Since K is closed nowhere dense in Y , 2.3
shows η = κ. Thus, {int(Lα) : α ∈ κ} is a nbhd π-base at x. �

Recall that a set S is stationary in an ordinal κ with cf (κ) > ω, provided it
intersects each closed unbounded subset of κ. The following generalizes the well
known result that βκ = κ+ 1 for such an ordinal.

3.2 Lemma. Suppose S is a stationary set of a regular ordinal κ densely embed-
ded into a compact space X . Then X \S has at most one complete accumulation
point x of S and t(x, X) ≥ κ.

Proof: Suppose x ∈ X \ S is a complete accumulation point of S. If y ∈ X \ S
is another, choose nbhds G and H of x and y with disjoint closures. Let W be
the set of all α ∈ κ such that both G ∩ α and H ∩ α are cofinal in α. Since x
and y are complete accumulation points, W is clearly closed and unbounded in κ.



Order-like structure of monotonically normal spaces 213

Hence, W ∩ S 6= ∅. Each nbhd of s ∈ W ∩ S, intersects both cl(G) and cl(H).
Therefore, s ∈ cl(G) ∩ cl(H) — a contradiction.
Suppose t(x, X) < κ. Since x is a complete accumulation point of S, we may

choose ∀α ∈ S ∃α∗ ∈ S with α∗ > α and x ∈ cl(S∩[α+1, α∗]). LetW be the set
of all λ ∈ κ such that α < λ implies α∗ < λ. Since x is a complete accumulation
point of S, W is closed and unbounded in κ. So W ∩ S 6= ∅. As each nbhd of
s ∈ W ∩ S includes S ∩ [α+ 1, α∗], x = s — a contradiction. �

3.4 Theorem ([BR]). An MN space is paracompact iff it does not embed, as
a closed subspace, some stationary set in an ordinal.

3.5 Theorem. A compact MN spaceX is hereditarily paracompact iff t(X) = ω.

Proof: Suppose Y is a non-paracompact subspace of X . From 3.4, a stationary
set embeds into cl(Y ). From 3.3, t(cl(Y ) > ω).
Conversely, suppose t(X) > ω. Then there is A ⊆ X such that x ∈ cl(A) \ A

and wt(x, cl(A)) = κ > ω. We can assume cl(A) = X . From 1.5, there is a
family {Nα : α ∈ κ} nbhds of x satisfying β < α ∈ κ implies cl(Nα) ( Nα. So⋃

α∈ω1
X \Nα is a countably compact non-closed subspace of X . Therefore, X is

not hereditarily paracompact. �

4. Trees

In this section we prove the following result.

4.1 Theorem. A compact MN space has a dense orderable subspace.

According to [Wi], 4.1 implies: For each compact MN space X , there is a
compact space and a compact linear ordered space L such that both X and L are
perfect irreducible images of E.

4.2 Theorem ([Wi]). If a space X has a dense set of points with a linear ordered
nbhd base, then X has a dense orderable space iff it has a tree π-base.

A tree is a partially ordered set by in which each element has a well-ordered
set of predecessors. All of our trees will be contained in the partially ordered set
(TOP(X) \ {∅},⊇) for some space X , and their elements S and T are unrelated
iff they are disjoint. We call such a tree, a tree in X .
Suppose T is a tree in X . For each ordinal α, let Tα denote those members

T ∈ T whose set ↑ T = {S ∈ T : T ( S} of predecessors has order type α,
and let T |α =

⋃
β<α Tα. The height h(T ) of T is the least ordinal α with

T |α = T |α + 1. A branch in T is a maximal chain. Br(T ) is the set of all
branches of ct. Let bot(T ) = {x ∈ X : ∃ b ∈ Br(T ), x ∈

⋂
b}.

We remind the reader of well-known linear order induced by trees. First, given
T ∈ T , let M = {S ∈ T : ↑ S = ↑ T}. Give M a linear order ⊳ (with no
end-points ifM is infinite). The node order is defined on T by S < T iff T ( S
or ↑ S = ↑ T and S ⊳ T .
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In a space X , one can recursively build an unbounded tree ([Wi]); i.e. a tree T
in (TOP(X) \ {∅}, () satisfying:

UT1. X is the largest member of T ;

UT2. if T ∈ T has a proper open subset, then the immediate successors to T
is a cellular (infinite if T is infinite) open family D such that T ⊆ cl(

⋃
D) and

∀S ∈ D, cl(S) ⊆ T ;

UT3. if C is a chain in T with int(
⋂

C) 6= ∅, then int(
⋂

C) ∈ T .

4.3 Lemma ([Wi]). Suppose X is an MN space. Each tree π-base for X contains
a tree π-base satisfying UT1, UT2, and UT3.

4.4 Lemma. Suppose X is an MN space with monotone operator µ. Then X
has a tree π-base satisfying UT1, UT2, UT3 and

UT4. In UT2, ∀S ∈ D, there is open G ⊆ T and x ∈ G such that µ(x, G) = S.

Proof: Obvious from 4.3. �

Suppose T is an unbounded tree satisfying UT1–4 in a space X with a mono-
tone operator µ, define

T ∗ = T \
⋃

{Tλ : λ ∈ h(T ) is a limit ordinal}.

Applying UT4, we have

4.5 Lemma. Suppose T is an unbounded tree satisfying UT1–4 in an MN space
X with monotone operator µ. Then there is a pair (f, g) = (fT , gT ) of injections
f : T ∗ → X and g : T ∗ → top(X) such that ∀T ∈ T ∗, g(T ) ⊆

⋂
↑ T and

µ(f(T ), g(T )) = T . �

4.6 Lemma. Suppose T is an unbounded tree in an MN space X . Then for f
as defined in 4.5, rng(f) is dense in X and has a coarser order topology.

Proof: Suppose that x ∈ G = X \ cl(rng(f)). Since any branch of T has either
an open singleton or nowhere dense intersection, UT1 finds a first α ∈ h(T )
such that µ(x, G) 6⊂ T ∈ Tα. From UT2 and UT3, µ(x, G) meets two members
µ(f(R), g(R)), µ(f(S), g(S)) ∈ Tα+1, where g(R) and g(S) are, by UT2, disjoint.
From UT4 and MN2, x ∈ g(R) ∩ g(S) — a contradiction. Therefore, rng(f) is
dense. The order on rng(f) induced by the node order on T induces a topology
coarser than the subspace topology. �

4.7 Corollary. Suppose X is an MN space. Then d(X) ≤ c(X)+.

Proof: From UT2 and UT3, the tree S has at most c(X)+ elements. So the
result follows from 4.6. �
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4.8 Theorem. AnMN spaceX has a tree π-base iff each point of X has a cellular
nbhd π-base.

Proof: We only prove the non-trivial implication. For ∀x ∈ X , let B(x) be
a cellular nbhd π-base at x. We can easily build an unbounded tree T satisfying
the following extension of UT4.

UT5. If T = µ(f(T ), g(T )) ∈ Tα, then ∀B ∈ B(f(T )) ∃S ∈ Tα+1 such that
S ⊆ B ∩ T .

From UT5, {rng(f) ∩ T : T ∈ T } is a π-base for rng(f). From 4.5, rng(f) is
dense in X . So T is a π-base for X . �

4.9 Corollary. If each point of an MN space X has a linear ordered nbhd base,
then X has a dense orderable subspace.

Proof: Any point with a linear ordered nbhd π-base has a cellular nbhd π-base.
So the theorem follows from 4.2. �

Proof of Theorem 4.1: Use 2.5 and 4.9. �

5. Remarks

5.1. The question of radiality was first solved, six months prior to our work,
by G. Gruenhage (unpublished) for a class strictly including all compact MN
spaces; namely compact hereditarily collectionwise normal, hereditarily weakly
collectionwise Hausdorff spaces where χ(F ) ≤ d(F ) for each closed subset F .
On the other hand, the proofs of 1.5 and 1.7, together, are different from and
considerably shorter than Gruenhage’s proof.

5.2. Related to radial is the notion of biradial (each convergent ultrafilter con-
tains a convergent chain), a property satisfied orderable spaces and known to be
preserved by perfect maps. At Mary Ellen Rudin retirement conference, Boris
Shapirovskii asked the following question for which for which we have no answer:
Is each compact MN space biradial?

5.3. From 3.1, one might conjecture that for a point x in a compact MN space X ,
χ(x, X) is regular (a fact true for any orderable space). For a compact extremely
normal (see [WZ]) counter-example, consider the one-point compactification of
the discrete space of cardinality ℵ0.

5.4. R.W. Heath has shown that the space of all eventually 0 sequences of ratio-
nals with the box topology is a countable stratifiable (and hence MN) group G
with each πχ(x, G) uncountable (also see [Bo2]). So no point of G has a linear
ordered nbhd π-base. Clearly G has no MN compactification. Since any cellular
family in Gmust be countable, G does not even have a tree π-base. Note M. Rudin
[Ru2] has constructed a locally compact MN space with no MN compactification.

5.5. The proof of 4.1 also shows that a compact extremely normal space has
countable tightness and hence (by 3.5) it is hereditarily paracompact. However,
in [WZ] we proved that all extremely normal spaces are hereditarily paracompact.
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5.6. The following simple result may be of independent interest to the reader:
suppose f : X → Y is continuous and irreducible. If x ∈ X has a linear ordered
(by ⊆) nbhd π-base, then f(x) has a linear ordered (by ⊆) nbhd π-base.

5.7. The following questions related to our work here are also of interest.

1. [UH problem 210] Is every compact MN space supercompact? J. Nikiel has
announced a “yes” for continuous images of orderable spaces.

2. [UH problem 211] Is every compact MN space the image of a zero-dimensional
compact MN space?

Acknowledgment. The authors wish to thank Gary Gruenhage for his com-
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Prague Topological Symposium.
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