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Some types of implicative ideals
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Abstract. This paper studies basic properties for five special types of implicative ideals
(modular, pentagonal, even, rectangular and medial). The results are used to prove
characterizations of modularity and distributivity.
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1. Introduction

In this paper, we study lattice ideals that are implicative analogs of semiprime
ideals. In particular, we focus upon a complete description of all possible inclusion
relations between the corresponding classes. We also exhibit examples showing
that the considered concepts define different classes. Since semiprime ideals occur
as a natural tool for a description of Boolean algebras, it is not surprising that
also these five classes of ideals play an interesting role in the theory of Boolean
algebras (see [3] and the techniques of [5]). As a by-product we obtain new
characterizations of modularity and distributivity.
First we note that the Rav’s definition of a semiprime ideal ([4]) can be given

in a slightly modified form: An ideal I of a lattice L is semiprime if

(1.1) ∀ a, b, c, d ∈ L (a ∧ b) ∨ (a ∧ c) ∈ I ⇒ a ∧ (b ∨ c) ∈ I.

The class of all semiprime ideals will be denoted by Sp.

The new approach to the semiprimeness suggests a definition of a more general
class of ideals in the following way: An ideal I of L is called implicative, if there
exist two lattice polynomials p(x1, x2, · · · , xn) and q(x1, x2, · · · , xn) such that

∀ a1, a2, · · · , an ∈ L p(a1, a2, · · · , an) ∈ I ⇒ q(a1, a2, · · · , an) ∈ I.

As usual, for any a, b, c of a lattice L, the upper median med(a, b, c) is the
element (a∨b)∧(a∨c)∧(b∨c); the lower median is defined dually by med(a, b, c) :=
= (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).
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2. Five classes of implicative ideals

To introduce the first class, we will need the following lemma.

Lemma 2.1. The following are equivalent for an ideal I of a lattice L.

∀ a, b, c ∈ L [a ∨ (b ∧ c) ∈ I & a ≤ c] ⇒ (a ∨ b) ∧ c ∈ I;(2.1)

∀ a, b, c ∈ L (a ∧ c) ∨ [b ∧ (a ∨ c)] ∈ I ⇒ [(a ∧ c) ∨ b] ∧ (a ∨ c) ∈ I;(2.1′)

∀ a, b, c ∈ L (a ∧ b) ∨ (a ∧ c) ∈ I ⇒ a ∧ [b ∨ (a ∧ c)] ∈ I.(2.1′′)

Proof: Immediate. �

An ideal I of L is said to be modular if it satisfies one of the conditions (2.1)–
(2.1′′). The class of modular ideals will be denoted byM.
An ideal I of L is called pentagonal, if

(2.2) ∀ a, b, c ∈ L a ∨ (b ∧ c) ∈ I ⇒ (a ∨ b) ∧ (a ∨ c) ∈ I.

The class of all such ideals will be denoted by Pe.
An ideal I of L is said to be even, if

(2.3) ∀ a, b, c ∈ L [a ∧ (b ∨ c)] ∨ [b ∧ (a ∨ c)] ∈ I ⇒ med(a, b, c) ∈ I.

We will use the letter E to denote the class of even ideals.

Remark 2.2. The ideal (s] of the lattice L9 pictured in Figure 1 (see [6, p. 192]) is
modular. It is not even: If a = r, b = u and c = t, then [a∧(b∨c)]∨[b∧(a∨c)] = 0
and med(a, b, c) = t. Note that the same argument applies to the ideal (0] of L9.
The ideal (s] is not pentagonal, since s ∨ (u ∧ w) = s and (s ∨ u) ∧ (s ∨ w) = x.
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Figure 1
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Remark 2.3. As noted above, the ideal (0] of the lattice L9 is not even. It can be
verified that it is pentagonal. Hence the class Pe is not a subclass of the class E.

Remark 2.4. The ideal (e] of the lattice L7 (see Figure 2) is even and it is not
pentagonal: Here a ∨ (b ∧ c) = e and (a ∨ b) ∧ (a ∨ c) = 1. Therefore, the class E
is not a subclass of Pe.
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Figure 2

Theorem 2.5. Let I be an ideal of a lattice L. Then

(i) if I is pentagonal, it is modular;
(ii) if I is even, it is modular.

Proof: (i) Combine the definition of a pentagonal ideal with (2.1).

(ii) Suppose (x∧y)∨(x∧z) ∈ I. Putting a := x∧z, b := y, c := x, we get [a∧(b∨
∨c)] ∨ [b ∧ (a ∨ c)] = (x ∧ y) ∨ (x ∧ z) ∈ I, and, by (2.3), I ∋ med(a, b, c) =
= [(x ∧ z) ∨ y] ∧ x. Thus I is modular by (2.1′′). �

Theorem 2.6. Let L be a lattice. Then the following conditions are equivalent.

(i) The lattice L is modular.
(ii) Every ideal of L is modular.
(iii) Every ideal of L is even.

Proof: (i) ⇒ (iii): Let s := [a∧ (b∨ c)]∨ [b∧ (a∨ c)] be an element of an ideal I.
By modularity,

I ∋ s = {[b ∧ (a ∨ c)] ∨ a} ∧ (b ∨ c) = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c).

(iii) ⇒ (ii): This follows from Theorem 2.5.

(ii) ⇒ (i): Suppose a ≤ c. Since J := (a ∨ (b ∧ c)] is modular for any b ∈ L,
(a∨b)∧c ∈ J by (2.1). Therefore, (a∨b)∧c ≤ a∨(b∧c) and so a∨(b∧c) = (a∨b)∧c.

�
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An ideal I of a lattice L is called rectangular, if

(2.4) ∀ a, b, c ∈ L (a ∧ c) ∨ [b ∧ (a ∨ c)] ∈ I ⇒ med(a, b, c) ∈ I.

The class of all rectangular ideals will be denoted by Re.

Lemma 2.7. Any rectangular ideal of a lattice is modular.

Proof: Suppose a ≤ c and let a∨(b∧c) ∈ I. Note that a ≤ c implies a∧(b∨c) = a.
Consequently, I ∋ a ∨ (b ∧ c) = (b ∧ c) ∨ [a ∧ (b ∨ c)]. Since I is rectangular,

I ∋ med(a, b, c). However, med(a, b, c) ≥ (a ∨ b) ∧ c. Thus (a ∨ b) ∧ c ∈ I and I is
modular by (2.1). �

Theorem 2.8. Let I be a rectangular ideal of a lattice L. Then I is pentagonal
and even.

Proof: 1. Let i ∈ I and b ∧ c ∈ I. Then (b ∧ c) ∨ [i ∧ (b ∨ c)] ∈ I and, by
the definition of a rectangular ideal, we have (b ∨ c) ∧ (b ∨ i) ∧ (i ∨ c) ∈ I. Put
A := i∨ (b∧ c), B := b∨ c and C := (b∨ i)∧ (i∨ c) so that A ∈ I and B ∧C ∈ I.
Clearly, A ≤ C and A ∨ (B ∧ C) ∈ I. By Lemma 2.7, (2.1) and A ∨ B ≥ C we
can see that I ∋ (A ∨ B) ∧ C = (b ∨ i) ∧ (i ∨ c). It follows that I is pentagonal.

2. Now suppose that a∧ (b∨ c) and b∧ (a∨ c) belong to I. A fortiori, a∧ c ∈ I
and b ∧ (a ∨ c) ∈ I. By the definition of a rectangular ideal we therefore have

med(a, b, c) ∈ I and we conclude that I is even. �

Remark 2.9. The ideal (0] of the lattice L6 shown in Figure 3 is even and
pentagonal. It is not rectangular, since (a∧c)∨[b∧(a∨c)] = 0 and med(a, b, c) = d.
It follows that the class Re is a proper subclass of the class Pe ∩E.
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An ideal I of L is said to be medial, if the implication

med(a, b, c) ∈ I ⇒ med(a, b, c) ∈ I

is true for any a, b, c ∈ L. The class of medial ideals will be denoted byMe.

Theorem 2.10. In any lattice,

(i) every medial ideal is rectangular;
(ii) every semiprime ideal is medial.

Proof: (i) Note that med(a, b, c) ≤ (a∧ c)∨ [b∧ (a∨ c)] holds for any a, b, c ∈ L.

(ii) Let I ∈ Sp and suppose that med(a, b, c) ∈ I. Now, med(a, b, c) =

= med(a, b, c) in any distributive lattice. By [1, Lemma 2.1], we can see that

(med(a, b, c),med(a, b, c)) ∈ Ĉ(L) where Ĉ(L) denotes the smallest congruence of

L such that L/Ĉ(L) is distributive (see [2]).

We claim that med(a, b, c) ∈ I. Were this false, we would have an allele p/i
such that i ∈ I and p /∈ I. Consequently, by [1, Main Theorem], the ideal I is not
semiprime, and a contradiction ensues. �

Remark 2.11. The ideal (0] of the lattice M5 given in Figure 4 is rectangular.
It is not medial, since med(a, b, c) = 0 and med(a, b, c) = 1.
Note that the ideal (0] in the lattice L7 represented in Figure 2 is medial.

However, it is not semiprime, since (a ∧ b) ∨ (a ∧ c) = 0 and a ∧ (b ∨ c) = a.
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Figure 4

The theorems and the remarks mentioned above lead to a complete description
of all inclusion relations between the studied classes of ideals, as indicated in
Figure 5.
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The following result can be viewed as alternative characterizations of distribu-
tivity.

Theorem 2.12. For any lattice L, the following are equivalent:

(i) the lattice L is distributive;
(ii) any ideal of L is medial;
(iii) any ideal of L is rectangular;
(iv) any ideal of L is pentagonal.

Proof: Using the preceding theorems, one can easily see that (i)⇒ (ii)⇒ (iii)⇒
⇒ (iv).
Assume that L satisfies (iv). First note that there is no sublattice of L isomor-

phic to the lattice N5 of Figure 6. Indeed, were this false, let I = (a]. Clearly
a ∨ (b ∧ c) ∈ I and, by assumption, I ∋ (a ∨ b) ∧ (a ∨ c) = c, a contradiction.
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Figure 6
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We are now reduced to proving that there is no sublattice M5 (see Figure 4)
in L. If this were false, then let I = (a] and, similarly as above, we would have a
contradiction. Thus L is distributive. �
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