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Multiple solutions of semilinear elliptic systems

Yang Jianfu

Abstract. We obtain in this paper a multiplicity result for strongly indefinite semilinear
elliptic systems in bounded domains as well as in R

N .

Keywords: indefinite, semilinear, elliptic system

Classification: 35J50, 35J55

1. Introduction

In this paper, we continue the study from [FY] of the semilinear elliptic systems

(±1.1) −∆u+ u = ±g(x, v),

(±1.2) −∆v + v = ±f(x, u),

in R
N . Our purpose is to establish a multiplicity result on the existence of so-

lutions of the system (±1.1)–(±1.2). Problem (+1.1)–(+1.2) has been studied in
[HV], [FF] and [FY] etc., where only one solution was obtained for systems in

bounded domains and systems with radial coefficients in R
N . There seem to be

no existence results for problems similar to (−1.1)–(−1.2). We shall show that
(±1.1)–(±1.2) possesses infinitely many solutions under the assumptions on the
functions f and g precised below.
The special difficulties involved in the system (±1.1)–(±1.2), first, a lack of

compactness due to the problem being considered in R
N , and second, the type of

growth of the functions f and g, require to work with fractional Sobolev spaces
instead of the usual H1(RN ). Third, since the functionals associated to the
problem are strongly indefinite, a modified multiplicity critical points theorem
will be used.
The way of regaining some sort of compactness here is based on working with

special type of function spaces, such as radial symmetry function spaces and
weighted function spaces. Although the compactness in these cases is retained for
the spaces, there is no compactness for the linear differential operator (−∆+ id

in R
N ). This contrasts with the class of −∆ in a bounded domain.

The work was supported by Science Programs of Nanchang University, NSFJ and 21 Century
Science Programs of Jiangxi Province, China.
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Let real constants p+ 1 ≥ α > p and q + 1 ≥ β > q with α, β > 2 and p, q > 1
satisfy {

2−
( 1

p+ 1
+
1

q + 1

)}
max

{p+ 1
α

,
q + 1

β

}
< 1 +

2

N
.

Our hypotheses on the functions f and g are as follows.

(H1) f, g : RN × R → R are continuous functions and odd in second variable.

(H2) There are nonnegative functions κ, ℓ ∈ L∞(RN ) and a constant C > 0
such that

|f(t, x)| ≤ Cκ(x)(1 + |t|p), |g(t, x)| ≤ Cℓ(x)(1 + |t|q), for all t,

where
1

p+ 1
+
1

q + 1
> 1−

2

N
for N ≥ 3

and

p, q ≤
N + 4

N − 4
if N ≥ 5.

(H3)

0 ≤ αF (x, t) ≤ tf(x, t), 0 ≤ βG(x, t) ≤ tg(x, t),

for all |t| ≥ 0, where F (x, t) =
∫ t
0 f(x, s) ds and G(x, t) =

∫ t
0 g(x, s) ds.

(H4) There are positive constants C and C1 such that

C1 ≥ lim
t→0

|f(x, t)|/|t|a ≥ Cκ(x), C1 ≥ lim
t→0

|g(x, t)|/|t|b ≥ Cℓ(x),

where α+ 1 ≥ a ≥ 1, β + 1 ≥ b ≥ 1.
Condition (H3) implies that both functions f and g are superlinear. Indeed,

integrating the inequalities in (H3) and using (H4) we get

(1.3) F (x, t) ≥ Cκ(x)|t|α, G(x, t) ≥ Cℓ(x)|t|β ,

and

(1.4) |f(x, t)| ≥ Cκ(x)|t|α−1, |g(x, t)| ≥ Cℓ(x)|t|β−1.

Let ω(κ) = {x ∈ R
N : κ(x) 6= 0} and ω(ℓ) = {x ∈ R

N : ℓ(x) 6= 0}.

(H5) meas{R
N \ ω(κ)} = 0 and meas{R

N \ ω(ℓ)} = 0.

Our main result is following.



Multiple solutions of semilinear elliptic systems 259

Theorem 1. Assume (H1)–(H5).

(i) If
lim

R→∞
ess sup
|x|≥R

κ(x) = 0, lim
R→∞

ess sup
|x|≥R

ℓ(x) = 0,

then problem (±1.1)–(±1.2) possesses infinitely many pairs of strong so-
lutions ±(u, v).

(ii) If f, g depend explicitly on r = |x|, the same conclusion as in (i) holds
true.

(iii) If p, q < N+2
N−2 , then the solutions (u, v) of (±1.1)–(±1.2) and (∇u,∇v)

have uniform limits zero at infinity.

The multiplicity result for the problem

(±1.5) −∆u = ±g(x, v) in Ω,

(±1.6)
−∆v = ±f(x, u) in Ω,

u = v = 0 on ∂Ω,

defined on a bounded domain Ω ⊂ R
N seems not to have appeared in the literature

either. In the same way we may obtain the following result.

Theorem 2. Under the hypotheses (H1)–(H5), problem (±1.5)–(±1.6) possesses
infinitely many strong solution pairs ±(u, v).

We recall in Section 2 the framework developed in [FY], and then prove The-
orem 1 in Section 3. Theorem 2 can be proved in the same way.

2. Abstract framework

Let H be a separable real Hilbert space with scalar product denoted by 〈, 〉
and corresponding norm by ‖ · ‖. Let T : D(T ) ⊂ H → H be a self-adjoint linear
operator semibounded from below. That is, there is a constant δ such that

(2.1) 〈Tu, u〉 ≥ δ‖u‖2 for u ∈ D(T ).

For simplicity, we may take δ = 1. So 0 /∈ σ(T ), where σ(T ) denotes the
spectrum of T . Let {E(λ) : λ ∈ R} denote the unique right continuous spectral
family associated with T . In view of (2.1) we have E(λ) = 0 for λ < 1.
It is well known that

D(T ) =
{
u ∈ H :

∫ ∞

1
λ2 d〈E(λ)u, u〉 <∞

}
;(2.2)

〈Tu, v〉 =

∫ ∞

1
λd〈E(λ)u, v〉 for u ∈ D(T ), v ∈ H ;(2.3)

〈Tu, v〉 ≤ λ‖u‖2 for u ∈ E(λ)H ;(2.4)

λ‖u‖2 ≤ 〈Tu, u〉 ≤ µ‖u‖2 for u ∈ E(µ)H ⊖ E(λ)H ;(2.5)

〈Tu, u〉 ≥ µ‖u‖2 for u ∈ [E(µ)H ]⊥ ∩D(T ).(2.6)
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Since T is a positive operator, it has a square root

T
1

2 =

∫ ∞

1
λ
1

2 dE(λ), T
1

2 : D(T
1

2 )→ H

with

D(T
1

2 ) =
{
u ∈ H :

∫ ∞

1
λd〈E(λ)u, u〉 <∞

}
.

We know that T
1

2 is self-adjoint, and from (2.1) we have

〈T
1

2 u, u〉 ≥ ‖u‖2 for u ∈ D(T
1

2 ).

For each positive real s, we can define

T
s
2 =

∫ ∞

1
λ

s
2 dE(λ).

We use the notation A = T
1

2 , As = T
s
2 and define the space Es as

(2.7) Es := D(As) =
{
u ∈ H :

∫ ∞

1
λs d〈E(λ)u, u〉 <∞

}
.

Each Es is a Hilbert space endowed with the graph norm

〈u, v〉Es = 〈u, v〉+ 〈Asu,Asv〉.

It follows from (2.1) that

(2.8) ‖Asu‖ ≥ ‖u‖ for all u ∈ Es,

and as a consequence, ‖u‖Es and ‖Asu‖ are equivalent norms in Es. So we write
in Es from now on that

(2.9) 〈u, v〉Es = 〈Asu,Asv〉 and ‖u‖Es = ‖Asu‖.

In view of (2.8), As : Es → H is an isomorphism. We denote by A−s the
inverse of As.
Now let s, t > 0 with s+ t = 2. We define the Hilbert space E = Es ×Et, with

inner product 〈, 〉 induced by inner products 〈, 〉Es , 〈, 〉Et in the usual way. Next
we define a bilinear form B : E × E → R by

B[(u, v), (φ, ψ)] = 〈Asu,Atψ〉+ 〈Asφ,Atv〉.
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B is continuous and symmetric. Hence B induces a self-adjoint bounded linear
operator L : E → E such that

B[z, η] = 〈Lz, η〉E for z, η ∈ E.

It is easy to see that

Lz = (A−sAtv,A−tAsu) for z = (u, v) ∈ E.

We can then prove that L has two eigenvalues −1 and 1, whose corresponding
eigenspaces are

E− = {(u,−A−tAsu) : u ∈ Es} for λ = −1,(2.10)

E+ = {(u,A−tAsu) : u ∈ Es} for λ = +1.(2.11)

We also have that
E = E+ ⊕ E−

and
B[z+, z−] = 0 for z+ ∈ E+ and z− ∈ E−.

We consider

(2.12) Q(z) =
1

2
B[z, z] = 〈Asu,Atv〉

for z = (u, v) ∈ E. It follows then that

1

2
‖z‖2E = Q(z

+)−Q(z−),

where z = z+ + z−, z+ ∈ E+, z− ∈ E−. Particularly,

(2.13) Q(z) =
1

2
‖z‖2E for z ∈ E+ and Q(z) = −

1

2
‖z‖2E for z ∈ E−.

If z = (u, v) ∈ E+ , i.e. v = A−tAsu, we have by (2.13) and the definition of the
norm on E that

(2.14) Q(z) =
1

2
‖z‖2E =

1

2
‖(u,A−tAsu)‖2E = ‖Asu‖2.

Similarly

(2.15) Q(z) = ‖Atv‖2 = ‖v‖2Et

for z ∈ E+.
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3. Multiplicity results

In this section, we shall prove (i) and (ii) of Theorem 1, respectively. First
we consider the case (i) of Theorem 1. In the framework of Section 2, we take

H = L2(RN ) and T = −∆+ id, with domain D(T ) = H2(RN ). For 0 ≤ s ≤ 2,

the space Es, which is the domain D(T
s
2 ), is precisely the space obtained by

interpolation between H2(RN ) and L2(RN ), namely

[H2(RN ), L2(RN )]1− s
2

.

In this case Es is the usual fractional Sobolev space Hs(RN ). Denoting by A =

(−∆+ id)
s
2 , we have for all 0 ≤ s ≤ 2

D(As) = Hs(RN ) = [H2(RN ), L2(RN )]1− s
2

.

Let κ be a nonnegative function. We denote by Lγ(κ,RN ) the weighted function

spaces with norms ‖w‖Lγ(κ,RN ) = (
∫
RN κ(x)|w|γ)1/γ .

According to the properties of interpolation space, we have the following em-
bedding theorem, see [AD], [PL].

Theorem 3.1. Let s > 0. Then the inclusion of Hs(RN ) into Lγ(κ,RN ) is

continuous if 2 ≤ γ ≤ 2N/(N − 2s) and κ ∈ L∞(RN ). The inclusion is compact
if 2 < γ < 2N/(N − 2s) and κ satisfies the condition (i) of Theorem 1.

Now if we choose s, t > 0, s+ t = 2, such that

(3.1)

(
1−

1

p+ 1

)
max

(p+ 1
α

,
q + 1

β

)
<
1

2
+

s

N
,

(
1−

1

q + 1

)
max

(p+ 1
α

,
q + 1

β

)
<
1

2
+

t

N
,

then the inclusions Hs(RN ) →֒ Lp+1(κ,RN ) and Ht(RN ) →֒ Lq+1(ℓ,RN ) are
compact, where κ and ℓ are as in Theorem 1.
Let E = Hs(RN ) ×Ht(RN ) and the bilinear form B : E × E → R be defined

by

B[(u, v), (φ, ψ)] =

∫

RN
AsuAtψ +AsφAtv,

for z = (u, v) ∈ E and η = (φ, ψ) ∈ E. We have the corresponding quadratic
form

Q(z) =

∫

RN
AsuAtv, z = (u, v) ∈ E.

We consider the functional Φ± : E → R
N , defined by

(3.2) Φ±(z) = ±

∫

RN
AsuAtv −

∫

RN
F (x, u)−

∫

RN
G(x, v).
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The critical points of Φ± satisfy the equations

±

∫

RN
AsuAtψ −

∫

RN
g(x, v)ψ = 0 for all ψ ∈ Ht(RN ),(3.3)

±

∫

RN
AsφAtv −

∫

RN
f(x, u)φ = 0 for all φ ∈ Hs(RN ).(3.4)

Equations (3.3)–(3.4) are the weak formulation of problem (±1.1)–(±1.2), and
their weak solutions are actually strong solutions of (±1.1)–(±1.2), see [FF].
We shall use the generalized critical point theorem of Benci [B] in a version

due to [He] to find critical points of Φ±. For completeness, we state the result
from [He] here.

Theorem ([He]). Let E be a real Hilbert space, and let Φ ∈ C1(E,R) be a
functional with the following properties:

(i) Φ has the form

(3.5) Φ(z) =
1

2
(Lz, z) + Ψ(z) for all z ∈ E,

where L is an invertible bounded self-adjoint linear operator in E and
where Ψ ∈ C1(E,R) is such that Ψ(0) = 0 and the gradient ∇Ψ : E → E
is a compact operator;

(ii) Φ is even, i.e. Φ(−z) = Φ(z) ∀ z ∈ E;
(iii) Φ satisfies the Palais-Smale condition.

Furthermore, let
E = E+ ⊕ E−

be an orthogonal splitting into L-invariant subspaces E+, E− such that

±(Lz, z) ≥ 0 ∀ z ∈ E±. Then:

(a) suppose that there is anm-dimensional linear subspace Em of E
+ (m ∈ N)

such that for the spaces

V := E+, W := E− ⊕ Em,

we have

(iv) ∃ ρ0 > 0 such that inf{Φ(z) : z ∈ V, ‖z‖ = ρ} > 0 ∀ ρ ∈ (0, ρ0];
(v) ∃ c∞ ∈ R such that Φ(z) ≤ c∞ ∀ z ∈W .

Then there exist at least m pairs (zj ,−zj) of critical points of Φ such that
0 < Φ(zj) ≤ c∞ (j = 1, . . . ,m).

(b) A similar result holds when Em ⊂ E− and we take V = E−, W =
E+ ⊕ Em.

It is known from Section 2 that the operator L induced by the bilinear form
B is an invertible bounded self-adjoint linear operator satisfying ±〈Lz, z〉 ≥ 0
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∀ z ∈ E±. Now we introduce some finite dimensional subspaces of E. Let (ej),

j = 1, 2, . . . , be a complete orthogonal system in Hs(RN ). Let Hn denote the

finite dimensional subspaces of Hs(RN ) generated by (ej), j = 1, . . . , n. Since

As : Hs(RN )→ L2(RN ) and At : Ht(RN )→ L2(RN ) are isomorphisms, we know

that êj = A−tAsej , j = 1, 2, . . . , is a complete orthogonal system in H
t(RN ).

Let Ĥn denote the finite dimensional subspace of H
t(RN ) generated by (êj),

j = 1, . . . , n. For each n ∈ N, we introduce the following subspaces of E+ and
E−:

E+n = subspace of E
+ generated by (ej , êj), j = 1, . . . , n,

E−
n = subspace of E

− generated by (ej ,−êj), j = 1, . . . , n.

Lemma 3.2. Let the assumptions of Theorem 1 hold, then the functional Φ±

defined in (3.2) satisfies conditions (ii), (iv) and (v) of Theorem [HE].

Proof: Condition (ii) is an immediate consequence of the definition of Φ± and
assumptions of functions f and g. For condition (iv), we use (2.14) and assump-
tions (H2) and (H4) to deduce that for z ∈ V := E±

Φ±(z) ≥
1

2
‖z‖2E − C

∫
|u|p+1 − C

∫
|u|a+1 − C

∫
|v|q+1 − C

∫
|v|b+1.

Using Theorem 3.1 we get

Φ±(z) ≥
1

2
‖z‖2E − C‖z‖a+1

E − C‖z‖b+1
E

for small ‖z‖. And since a, b > 1 we conclude that Φ±(z) > 0 for z ∈ E± with
‖z‖ small.
Next, let us prove condition (v). Let n ∈ N be fixed and let z ∈W = E±

n ⊕E∓,
write z = (u, v) and z = z+ + z−. We have by assumption (H5) and (1.3)

(3.6)

Φ±(z) = ±[Q(z+) +Q(z−)]−

∫
F (x, u)−

∫
G(x, v)

≤ −
1

2
‖z∓‖2E +

1

2
‖z±‖2E − C

∫
κ(x)|u|α − C

∫
ℓ(x)|v|β .

Let z+ = (u+, v+) ∈ E+ and z− = (u−, v−) ∈ E−. Then we have v+ =
A−tAsu+ and v− = −A−tAsu−. Furthermore, we may write u∓ = γu± + û,
where û is orthogonal to u± in L2(κ,RN ). We also have v∓ = τv± + v̂, where v̂

is orthogonal to v± in L2(ℓ,RN ). It is easy to see that either γ or τ is positive.
Suppose γ > 0. Then we have

(1 + γ)

∫
κ(x)|u±|2 =

∫
κ(x)[(1 + γ)u± + û]u± ≤ ‖u‖Lα(κ,RN )‖u

±‖Lα′(κ,RN ).
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Using the fact that the norms in E±
n are equivalent we obtain

(1 + γ)‖u±‖Lα(κ,RN ) ≤ C‖u‖Lα(κ,RN )

with constant C > 0 independent of u. So from (3.6) and (2.14) we obtain

(3.7)
Φ±(z) ≤ −

1

2
‖z∓‖2E +

1

2
‖z±‖2E − C‖u±‖α

Lα(κ,RN )

= −
1

2
‖z∓‖2E + ‖u±‖2Es − C‖u±‖α

Lα(κ,RN ).

The same arguments can be applied if τ > 0. So the result follows from (3.7).
�

Lemma 3.3. Let the assumptions of Theorem 1 hold. Then the functional Φ±

satisfies the (PS) condition.

Proof: Let (zn) = (un, vn) ∈ E be a sequence such that

|Φ±(zn)| ≤ c = const,(3.8)

|〈∇Φ±(zn), η〉| ≤ εn‖η‖E , with εn → 0 and η ∈ E.(3.9)

Taking η = zn in (3.9), we obtain from (3.8) and (3.9) that

c+ εn‖zn‖E ≥ −

∫
F (x, un)−

∫
G(x, vn) +

1

2

∫
f(x, un) +

1

2

∫
g(x, vn)vn.

Now it follows from (H3) that

c+ εn‖zn‖E ≥
(α
2
− 1

)∫
F (x, un) +

(β
2
− 1

)∫
G(x, vn),

and then, in view of (1.3),

(3.10) C + εn‖zn‖E ≥ C
(∫

κ(x)|un|
α +

∫
λ(x)|vn|

β
)
.

Next, we estimate ‖un‖Hs and ‖vn‖Ht . It follows from (H2) and (H4) that, given
ε > 0, there is a cε > 0

(3.11) |f(x, u)| ≤ κ(ε|u|+ cε|u|
p) for all u.

From (3.9) with ψ = 0 we have

∣∣∣
∫
AsφAtvn

∣∣∣ ≤
∣∣∣
∫
f(x, un)φ

∣∣∣+ εn‖φ‖Hs for all φ ∈ Hs.
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Using (3.11) and Hölder’s inequality, we obtain

(3.12)
∣∣∣
∫
AsφAtvn

∣∣∣ ≤

≤ ε‖un‖L2(κ,RN )‖φ‖L2 + cε‖un‖
p
Lα(κ,RN )

‖φ‖ α

Lα−p
+ εn‖φ‖Hs .

Since 2 ≤ α/(α− p) ≤ 2N/(N − 2s), we get from (3.12)

∣∣∣
∫
AsφAtvn

∣∣∣ ≤
[
ε‖un‖Hs + cε‖un‖

p
Lα(κ,RN )

+ C
]
‖φ‖Hs , ∀φ ∈ Hs,

which implies that

(3.13) ‖vn‖Ht ≤ ε‖un‖Hs + Cε‖un‖
p
Lα(κ,RN )

+ C.

Similarly, we prove that

(3.14) ‖un‖Hs ≤ ε‖vn‖Ht + Cε‖vn‖
q
Lβ(ℓ,RN )

+ C.

Adding (3.13) and (3.14) we conclude that

(3.15) ‖un‖Hs + ‖vn‖Ht ≤ C
[
‖un‖

p
Lα(κ,RN )

+ ‖vn‖
q
Lβ(ℓ,RN )

+ 1
]
.

Using (3.10), (3.15) and (H5) we obtain

‖un‖
α
Lα(κ,RN ) + ‖vn‖

β
Lβ(ℓ,RN )

≤ C
[
‖un‖

p
Lα(κ,RN )

+ ‖vn‖
q
Lβ(ℓ,RN )

]
+ C.

Since α > p and β > q, we conclude that both ‖un‖Lα(κ,RN ) and ‖vn‖Lβ(ℓ,RN ) are

bounded, and consequently ‖un‖Hs , ‖vn‖Ht are also bounded in terms of (3.15).
Last, we show that (zn) contains a strongly convergent subsequence. It follows

from Theorem 3.1 that (zn) contains a subsequence, denoted again by (zn) =
((un, vn)), such that

un ⇀ u in Hs, vn ⇀ v in Ht,(3.16)

un → u in Lγ(κ,RN ), 2 < γ < 2N/(N − 2s),(3.17)

vn → v in Lγ(ℓ,RN ), 2 < γ < 2N/(N − 2t).(3.18)

It follows then from (3.9) and (3.16) that

(3.19)

∫
[AsuAtψ+AsφAtv] = lim

∫
[φf(x, un)+ψg(x, vn)] for all (φ, ψ) ∈ E.
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Now we claim that

(3.20) lim

∫
φf(x, un) =

∫
φf(x, u), and lim

∫
ψg(x, vn) =

∫
ψg(x, v).

Actually for R > 0 we have

(3.21)

I1 =

∫

BR

|φ[f(x, un)− f(x, u)]|

≤ ‖φ‖
Lθ′
1 (BR)

‖f(x, un)− f(x, u)‖Lθ1 (BR)

≤ ‖φ‖Hs‖f(x, un)− f(x, u)‖Lθ1 (BR)
,

where 1/θ1 + 1/θ
′
1 = 1, 1 < θ1 < γ/p. It is easy to verify that for each R > 0

(3.22) ‖f(x, un)− f(x, u)‖Lθ1(BR)
→ 0.

Next we deduce from (H2) and (H4) that

I2 :=
∣∣∣
∫

Bc
R

φ[f(x, un)− f(x, u)]
∣∣∣ ≤ c

∫

Bc
R

κ(x)|φ| [|un|
a + |u|a + |un|

p + |u|p] ,

where Bc
R := R

N \BR. Using Hölder’s inequality we have

I2 ≤ c‖φ‖
Lθ′
2(Bc

R
)

{
‖un‖

a
Laθ2(κ,Bc

R
)
+ ‖u‖a

Laθ2(κ,Bc
R
)

}

+ c‖φ‖
Lθ′
3 (Bc

R
)

{
‖un‖

p
Lpθ3(κ,Bc

R
)
+ ‖u‖

p
Lpθ3(Bc

R
)

}
.

One can choose θ2, θ3 in such a way that 2 ≤ θ′2, θ
′
2 ≤ 2N/(N − 2s) and 2 <

aθ2, pθ3 < 2N/(N − 2s). Then

(3.23)
I2 ≤ ‖φ‖Hs(RN )

{
‖un − u‖a

Laθ2(κ,RN ) + ‖u‖a
Laθ2(κ,Bc

R
)

+ ‖un − u‖
p
Lpθ3(κ,RN )

+ ‖u‖
p
Lpθ3(κ,Bc

R
)

}
.

On the other hand, by (3.9) we obtain

(3.24)
∣∣∣ ±

∫
AsφAtvn −

∫
φf(x, un)

∣∣∣ ≤ εn‖φ‖Hs , φ ∈ Es.

Therefore, using (3.21), (3.23) and (3.24) we obtain

(3.25)

|
∫
AsφAt(vn − v)|

‖φ‖Hs
≤ C

{
‖f(x, un)− f(x, u)‖Lθ1 (BR)

+ ‖un − u‖a
Laθ2(κ,RN )

+ ‖u‖a
Laθ2(κ,Bc

R
)

+ ‖un − u‖
p
Lpθ3(κ,RN )

+ ‖u‖
p
Lpθ3(κ,Bc

R
)

}
, φ ∈ Es.

Since the supremum of the left hand side of (3.25) is ‖vn − v‖Ht , we conclude
that vn → v strongly in Et. In a similar way, we may prove that un → u strongly
in Et. Thus the proof is completed. �
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Remark 3.4. Taking in Section 2 H = L2γ(R
N ) the space of radially symmetric

L2-functions in R
N and T = −∆ + id with domain D(T ) = H2γ(R

N ) the space

of radially symmetric functions in L2 having second derivatives in L2, we get the
following imbedding theorem due to [FY].

Theorem ([FY]). Let s > 0. Then, the restriction to Hs
γ(R

N ) of the Sobolev

imbedding of W s,2(RN ) into Lγ(RN ) is continuous if 2 ≤ γ ≤ 2N/(N − 2s), and
it is compact if 2 < γ < 2N/(N − 2s).
Therefore, the same argument allow us to establish consequences of Lemmas 3.2

and 3.3 for the case when f and g depend explicitly on r = |x|.

Proof of Theorem 1: (i) is an immediate consequence of Lemma 3.2, Lem-
ma 3.3 and Theorem [He]. (ii) follows by Remark 3.4 and the same approach.
(iii) is a result of Theorem 2.1 of [FY]. �
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