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DiPerna–Majda measures and uniform integrability

Martin Kruž́ık

Abstract. The purpose of this note is to discuss the relationship among Rosenthal’s
modulus of uniform integrability, Young measures and DiPerna-Majda measures. In
particular, we give an explicit characterization of this modulus and state a criterion of
the uniform integrability in terms of these measures. Further, we show applications to
Fatou’s lemma.

Keywords: bounded sequences, DiPerna-Majda measures, Fatou’s lemma, relative se-
quential weak compactness, uniform integrability, Young measures

Classification: 28A05, 28A20, 28A33, 40A30

1. Introduction

We will consider a problem of uniform integrability of bounded sequences in
L1(Ω;Rm) where Ω ⊂ R

n is a bounded domain. Let us recall that a bounded
sequence {uk}k∈N ⊂ L1(Ω;Rm) is said to be uniformly integrable if

(1) ∀ ε > 0 ∃K > 0 : sup
k∈N

∫

{x∈Ω; |uk(x)|>K}
|uk(x)| dx ≤ ε.

The uniform integrability is equivalent to the relative (sequential) weak L1-com-
pactness of the sequence in question via the Dunford-Pettis compactness criterion;
cf. e.g. [13, Section IV.8] or [30]. We refer e.g. to [9], [11], [13], [22] for other criteria
ensuring the relative weak compactness. Briefly, any bounded and uniformly inte-
grable sequence {uk}k∈N in L1(Ω;Rm) contains a subsequence converging weakly
in L1(Ω;Rm). The opposite implication is also valid: weakly converging sequences
in L1(Ω;Rm) are uniformly integrable. This additional requirement, namely the
uniform integrability, on bounded sequences in L1(Ω;Rm) to be relatively weakly
compact reflects the non-reflexiveness of L1(Ω;Rm).
Saadoune and Valadier [25] introduced the so-called Rosenthal modulus of uni-

form integrability η; cf. also [7], [19]. Taking a bounded sequence {uk}k∈N in
L1(Ω;Rm) then (“meas” stands for the Lebesgue measure on R

n)

η({uk}k∈N) = lim
ε→0+

[

sup
k∈N

{
∫

A
|uk(x)| dx; meas (A) ≤ ε, A ⊂ Ω

}]

.
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It is proved in [25] (see also [27]) that η({uk}k∈N) can be equivalently expressed
as

(2) η({uk}k∈N) = lim
K→∞

[

sup
k∈N

∫

{x∈Ω; |uk(x)|>K}
|uk(x)| dx

]

.

We remark that the sequence {uk}k∈N is uniformly integrable if and only if
η({uk}k∈N) = 0.
To understand better the meaning of Rosenthal’s modulus let us suppose that

{uk}k∈N in L1(Ω;Rm) is not uniformly integrable. This means that

(3) ∃ ε > 0 ∀K > 0 : sup
k∈N

∫

{x∈Ω; |uk(x)|>K}
|uk(x)| dx > ε.

Then η({uk}k∈N) is the supremum of all of these ε’s. This means that for Rosen-
thal’s modulus instead of ε the sharp inequality (3) changes to ≥. In fact, this
is the most convenient definition for our purposes and we are going to use it.
Let us just mention that we will sometimes speak about the uniform integrability
without saying explicitly that we mean that one in L1(Ω;Rm).
In what follows Lp(Ω;Rm), 1 ≤ p ≤ +∞ is the usual Lebesgue space of measur-

able functions Ω→ R
m that are integrable with their p-th power (for 1 ≤ p < +∞)

or essentially bounded on Ω (if p = +∞). If m = 1, we write only Lp(Ω) instead
of Lp(Ω;R1). For more information we refer e.g. to [13].
The aim of the note is twofold. Firstly, to show how modern mathematical

apparatus of Young measures and their generalizations fits in the classical topic
as the uniform integrability, secondly, to provide better understanding of these
generalizations. The plan of this paper is as follows. First, we briefly intro-
duce Young measures (see [4], [20], [26], [31], [32]) and their generalization called
DiPerna-Majda measures; cf. [12], [21]. Afterwards, we study the relation between
Rosenthal’s modulus and measures of DiPerna and Majda. In particular, we give
an explicit characterization of this modulus and show its intimate relationship
to the support of these measures. We also touch properties of DiPerna-Majda
measures which were analyzed in detail in [21]. This enables us to find a new
characterization of uniformly integrable sequences. Further, we apply our results
to the Fatou lemma getting thus simple and straightforward proofs of interesting
inequalities involving Young measures.

Young measures. The Young measures [31] represent a modern mathematical
tool to hold certain “limit” information about oscillations in nonlinear problems
arising in optimal control theory, variational calculus, partial differential equa-
tions, game theory, etc.; more details about Young measures can be found, e.g.,
in [4], [6], [10], [15], [20], [21], [23], [24], [28], [29], [30]. The Young measures on
a domain Ω ⊂ R

n are weakly measurable mappings x 7→ νx : Ω→ rca (Rm) with
values in probability measures; “rca” denotes the set of regular countably additive
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set functions on the Borel σ-algebra on R
m (cf. [13]) with a bounded total varia-

tion and the adjective “weakly measurable” means that, for any v ∈ C0(R
m), the

mapping Ω→ R : x 7→ 〈νx, v〉 =
∫

Rm v(λ)νx(dλ) is measurable in the usual sense.
Let us remind that, by the Riesz theorem, rca (Rm), normed by the total varia-
tion, is a Banach space which is isometrically isomorphic with C0(R

m)∗, where
C0(R

m) stands for the space of all continuous functions R
m → R vanishing at

infinity. Let us denote the set of all Young measures by Y(Ω;Rm). It is known
that Y(Ω;Rm) is a convex subset of L∞

w (Ω; rca (R
m)) ∼= L1(Ω;C0(R

m))∗, where
the subscript “w” indicates the property “weakly measurable”. A classical result
[10], [28], [31] is that, for every sequence {uk}k∈N bounded in L∞(Ω;Rm), there
exists its subsequence (denoted by the same indices for notational simplicity) and
a Young measure ν = {νx}x∈Ω ∈ Y(Ω;Rm) such that

(4) ∀ v ∈ C0(R
m) : lim

k→∞
v ◦ uk = vν weakly* in L∞(Ω),

where [v ◦ uk](x) = v(uk(x)) and

(5) vν(x) =

∫

Rm

v(λ)νx(dλ).

Let us denote by Y∞(Ω;Rm) the set of all Young measures which are created
by this way, i.e. by taking all bounded sequences in L∞(Ω;Rm). Note that (4)
actually holds for any v : Rm → R continuous.
A generalization of this result was formulated by Maria Schonbek [26] (cf. also

[4], for p = 1 especially [20] and [24] where further generalization in this direction
has been performed) for the case 1 ≤ p < +∞: for every sequence {uk}k∈N

bounded in Lp(Ω;Rm) there exists its subsequence (denoted by the same indices)
and a Young measure ν = {νx}x∈Ω ∈ Y(Ω;Rm) such that

(6) ∀ v ∈ Cp(R
m) : lim

k→∞
v ◦ uk = vν weakly in L1(Ω),

where
Cp(R

m) = {v ∈ C(Rm); v(λ) = o(|λ|p) for |λ| → ∞}.

We denote by Yp(Ω;Rm) the set of all Young measures which are created by this
way, i.e. by taking all bounded sequences in Lp(Ω;Rm). The reader can find in
[20] that Yp(Ω;Rm) = {ν ∈ Y(Ω;Rm);

∫

Ω

∫

Rm |λ|pνx(dλ) dx < +∞}. We call a
sequence {uk}k∈N satisfying (6) a generating sequence of ν ∈ Yp(Ω;Rm).

DiPerna-Majda measures. Sometimes nonlinear problems may exhibit, beside
the rapid-oscillation phenomena, also concentration effects which were previously
neglected because the Lp-Young measures admits only test functions with the
growth strictly lower than p. DiPerna and Majda ([12]) developed a tool to handle
both oscillation and concentration effects simultaneously. Let us take a complete
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(i.e. containing constants and separating points from closed subsets) separable
(i.e. containing a countable subset which is dense with respect to the supremum
norm) ring R of continuous bounded functions R

m → R. It is known (cf. [14,
§ 3.12.21]) that there is a one-to-one correspondence R 7→ βRR

m between such
rings and metrizable compactifications of Rm; by a compactification we mean here
a compact set, denoted by βRR

m into which R
m is embedded homeomorphically

and densely. We will not distinguish between R
m and its image in βRR

m. If we
take, for example, the smallest complete ring containing only continuous functions
possessing limits for |λ| → ∞, then the corresponding compactification is the one
point (Alexandroff) compactification, i.e., βRR

m = R
m∪{∞}. See [12], [16], [24]

for other examples.
DiPerna and Majda showed that, having a bounded sequence {uk}k∈N in

Lp(Ω;Rm) with 1 ≤ p < +∞ and Ω an open domain in R
n, there exists its subse-

quence (denoted by the same indices), a positive Radon measure σ ∈ rca (Ω̄), and
a Young measure ν̂ ∈ Y(Ω̄, σ;βRR

m) (i.e. we consider here the closure Ω̄ of Ω en-
dowed with the Radon measure σ instead of the Lebesgue measure as previously)
such that

(7) ∀ g ∈ C(Ω̄) ∀ v0 ∈ R : lim
k→∞

∫

Ω
g(x)v(uk(x)) dx =

=

∫

Ω̄

∫

βRRm

g(x)v0(λ)ν̂x(dλ)σ(dx),

where v(λ) = v0(λ)(1 + |λ|p). In particular, putting v0 = 1 ∈ R we can see that

lim
k→∞

(1 + |uk|
p) = σ weakly* in rca (Ω̄).

Let us again denote by DMp
R(Ω;R

m) the set of all pairs (σ, ν̂) ∈ rca (Ω̄) ×

Y(Ω̄, σ;βRR
m) created by this way, i.e. DM

p
R(Ω;R

m) contains just such (σ, ν̂)
for which there exists a sequence {uk}k∈N such that (7) holds; note that, tak-
ing v0 = 1, we can see that such a sequence must be inevitably bounded in
Lp(Ω;Rm). Also here the sequence appearing in (7) is called the generating se-
quence of (σ, ν̂) ∈ DMp

R(Ω;R
m). We refer to [21] for properties and the full

explicit description of DM
p
R(Ω;R

m).
The next paragraph shows how DiPerna-Majda measures are related to non-

uniformly integrable sequences.

Remarks on concentrations. Let p = 1, n = m = 1, Ω = (0, 1) and βRR =
R ∪ {∞} for a moment. There are two basic types of non-uniformly integrable
bounded sequences in L1(Ω) generating a DiPerna-Majda measure.

Example 1.

uk(x) =

{

k if x ∈
(

1
2 −

1
k , 12 +

1
k

)

0 otherwise.
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Example 2.

vk(x) =

{

k if x ∈
(

l
k − 1

2k2
, l

k +
1
2k2

)

∩ (0, 1), l ∈ N

0 otherwise.

Similar examples to these have been already used in [24]; cf. also [5]. It can
be shown (see [24]) that {uk}k∈N generates a DiPerna-Majda measure (σ

1, ν̂1) ∈
DM1

R(Ω;R) such that σ1(dx) = dx+ 2δ0.5 and ν̂1x = δ0, x 6= 0.5 and ν̂11/2 = δ∞.

The sequence {vk}k∈N generates (σ
2, ν̂2) ∈ DM1

R(Ω;R) where σ2(dx) = 2dx

and ν̂2x = 0.5δ0 + 0.5δ∞ for x ∈ (0, 1); cf. [24].

The sequence {uk} concentrates around the point x = 0.5 meanwhile {vk} ex-
hibits a “continuous” concentration smeared out uniformly throughout the whole
Ω. In [21] it is shown that these two different situations are reflected in the prop-
erties of σ1 and σ2. The measure σ1 is not absolutely continuous with respect to
the Lebesgue measure but σ2 is.

Taking now (σ, ν̂) ∈ DMp
R(Ω;R

m) (for simplicity βRR
m = R

m ∪ {∞}) gene-

rated by some {wk}k∈N and having E ⊂ Ω̄, σ-measurable, with the characteristic
function χE then it follows from [21, Theorem 2] that the following three basic
situations can take place:

(i) {χEwk}k∈N is uniformly integrable if and only if ν̂x(∞) = 0 for σ-almost all
x ∈ E,

(ii) {χEwk}k∈N exhibits a “point” concentration at x ∈ E if and only if ν̂x(∞) = 1
and σ({x}) > 0, (see Example 1),

(iii) {χEwk}k∈N shows a “continuous” concentration on E if and only if 0 <
ν̂x(∞) < 1 for σ-almost all σ2(dx) = 2dx and ν̂2x = 0.5δ0 + 0.5δ∞ for x ∈ (0, 1);
cf. [24].

If (i), or (iii) is valid then the restriction of σ on E is absolutely continuous
with respect to the Lebesgue measure.

Recently Roub́ıček (see [20], [24]) proved the following result.

Proposition 1. Let {uk}k∈N ⊂ Lp(Ω;Rm) be a generating sequence of (σ, ν̂) ∈
DMp

R(Ω;R
m). Then {|uk|

p}k∈N is uniformly integrable if and only if

(8)

∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx) = 0.

In particular, taking p = 1 we have that {uk}k∈N is uniformly integrable if and
only if (8) is valid.
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2. DiPerna-Majda measures and the Rosenthal modulus

Let us start with the following lemma.

Lemma 1. Let {uk}k∈N ⊂ L1(Ω) be bounded. Then η({|uk|}k∈N) = η({1 +
|uk|}k∈N).

Proof: This is easy. �

Now we show that if (σ, ν̂) ∈ DM
p
R(Ω;R

m) then
∫

Ω̄

∫

βRRm\Rm ν̂x(dλ)σ(dx)

does not depend on the particular compactification of R
m, i.e., on βRR

m. In
other words, we show that it is only related to the generating sequence.

Proposition 2. Let R and R′ be two separable complete and closed rings of

continuous bounded functions R
m → R and let {uk}k∈N ⊂ Lp(Ω;Rm), 1 ≤ p <

+∞ generate (σ, ν̂) ∈ DM
p
R(Ω;R

m) and also (σ′, ν̂′) ∈ DM
p
R′(Ω;R

m). Then
∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx) =

∫

Ω̄

∫

β
R′R

m\Rm

ν̂′x(dλ)σ
′(dx).

Proof: Let us take g = 1 and v0 = 1 in (7). Then we have

(9) lim
k→∞

∫

Ω
(1 + |uk(x)|

p) dx =

=

∫

Ω̄

∫

Rm

ν̂x(dλ)σ(dx) +

∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx).

On the other hand, we can write Lebesgue’s decomposition of σ(dx) = dσ(x)dx+
σs(dx), where dσ ∈ L1(Ω) is the density of the absolutely continuous part of σ
with respect to the Lebesgue measure and σs is the singular part of σ. It follows
from [21, Theorem 2] that σs({x ∈ Ω̄;

∫

Rm ν̂x(dλ) > 0}) = 0. Therefore, we have
∫

Ω̄

∫

Rm

ν̂x(dλ)σ(dx) =

∫

Ω̄

∫

Rm

ν̂x(dλ)dσ(x)dx =

∫

Ω

∫

Rm

ν̂x(dλ)dσ(x)dx.

The second equality is due to the fact that we assume the Lebesgue measure of
∂Ω = Ω̄ \ Ω being zero.
Finally, it follows from [20, Formulae (13-15)] and [21, Theorem 1] that {uk}k∈N

generates a Young measure ν ∈ Yp(Ω;Rm) given for almost all x ∈ Ω by

νx(dλ) = dσ(x)
ν̂x(dλ)

1 + |λ|p
.

Eventually, we can write (9) as

lim
k→∞

∫

Ω
(1 + |uk(x)|

p) dx =

=

∫

Ω

∫

Rm

(1 + |λ|p)νx(dλ) dx+

∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx).
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The same procedure can be done also for (σ′, ν̂′) and we obtain

lim
k→∞

∫

Ω
(1 + |uk(x)|

p) dx =

=

∫

Ω

∫

Rm

(1 + |λ|p)νx(dλ) dx+

∫

Ω̄

∫

β
R′R

m\Rm

ν̂′x(dλ)σ
′(dx).

The subtraction of the last equality from the last but one gives the assertion of
the proposition. �

We will need the following auxiliary and easy lemma.

Lemma 2. Let {uk}k∈N ⊂ Lp(Ω;Rm) be bounded and generate ν ∈ Yp(Ω;Rm).
Then also any subsequence of {uk}k∈N generates the same ν ∈ Yp(Ω;Rm).

Proof: The proof is quite the same as Step 5 in the proof of [24, Proposi-
tion 3.2.9].

�

Remark 1. (i) Proposition 2 and Lemma 2 lead us to the following conclusion.
If {uk}k∈N ⊂ Lp(Ω;Rm) is bounded, generates a Young measure ν ∈ Yp(Ω;Rm)
and, moreover, there exists limk→∞

∫

Ω |uk(x)|
p dx, then

lim
k→∞

∫

Ω
|uk(x)|

p dx =

=

∫

Ω

∫

Rm

|λ|pνx(dλ) dx+

∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx) = σ(Ω̄)–meas (Ω),

where (σ, ν̂) ∈ DM
p
R(Ω;R

m) is an arbitrary DiPerna-Majda measure gene-
rated by some subsequence of {uk}k∈N. Indeed, for such subsequence, say
{ukl

}l∈N, the last equality obviously holds and also limk→∞

∫

Ω |uk(x)|
p dx =

liml→∞

∫

Ω |ukl
(x)|p dx.

(ii) Following the same proof as that of the previous lemma we can show that once
{uk}k∈N ⊂ Lp(Ω;Rm), 1 ≤ p < +∞ is bounded and generates a Young measure
ν ∈ Yp(Ω;Rm) than this sequence generates also ν̃ ∈ Y1(Ω;Rm) and ν = ν̃.

The next proposition characterizes η.

Proposition 3. Let {uk}k∈N ⊂ Lp(Ω;Rm), 1 ≤ p < +∞ generate (σ, ν̂) ∈
DM

p
R(Ω;R

m). Then

η({|uk|
p}k∈N) =

∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx).

Proof: The main idea is basically taken from Roub́ıček’s proof of Proposition 1.
Utilizing Lemma 1 it is sufficient to look for Rosenthal’s modulus of {1+|uk|

p}k∈N.
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If {|uk|
p}k∈N is uniformly integrable the assertion follows from Proposition 1. Let

us suppose that {|uk|
p}k∈N ⊂ L1(Ω) is not uniformly integrable. First, let us

abbreviate

T =

∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx).

Further, we define for any ̺ ≥ 0 the function v
̺
0 : R

m → R

v̺
0(λ) =











0 if |λ| ≤ ̺

|λ| − ̺ if ̺ ≤ |λ| ≤ ̺+ 1

1 if |λ| ≥ ̺+ 1.

Note that always v̺
0 ∈ R. We can estimate for any ̺ > 0

T =

∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx) ≤

∫

Ω̄

∫

βRRm

v
̺
0(λ)ν̂x(dλ)σ(dx)

= lim
k→∞

∫

Ω
v̺
0(uk(x))(1 + |uk(x)|

p) dx

≤ sup
k∈N

∫

{x∈Ω; |uk(x)|≥̺}
(1 + |uk(x)|

p) dx.

This gives us that η({uk}k∈N) ≥ T .

To finish the proof we have to show that T is the supremum of all of T̃ ’s
satisfying

(10) ∀K > 0 : sup
k∈N

∫

{x∈Ω; |uk(x)|≥K}
(1 + |uk(x)|

p) dx > T̃ .

This will be done if for any δ > 0 we find K(δ) > 0 that
supk∈N

∫

{x∈Ω; |uk(x)|≥K(δ)}(1 + |uk(x)|
p) dx < T + δ.

Let us define B̺ = {λ ∈ R
m; |λ| ≤ ̺}. We have from the Lebesgue dominated

convergence theorem

lim
̺→∞

∫

Ω̄

∫

βRRm\B̺

ν̂x(dλ)σ(dx) =

∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx) = T.

For any δ > 0 we can find ̺ > 0 sufficiently large that
∫

Ω̄

∫

βRRm\B̺

ν̂x(dλ)σ(dx) < T +
δ

4
.

On the other hand, there is k̺ > 0 that for any k > k̺

∣

∣

∣

∣

∫

Ω̄

∫

βRRm

v
̺
0(λ)ν̂x(dλ)σ(dx) −

∫

Ω
v
̺
0(uk(x))(1 + |uk(x)|

p) dx

∣

∣

∣

∣

<
δ

4
.
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As v̺
0 = 0 on B̺ we have also

∫

Ω̄

∫

βRRm

v̺
0(λ)ν̂x(dλ)σ(dx) =

∫

Ω̄

∫

βRRm\B̺

v̺
0(λ)ν̂x(dλ)σ(dx).

Altogether we obtain that
∫

Ω v̺
0(uk(x))(1+ |uk(x)|

p) dx < T +δ/2 for any k > k̺.
Thus, for any k > k̺ also
∫

{x∈Ω; |uk(x)|≥̺+1}
(1 + |uk(x)|

p) dx ≤

∫

Ω
v
̺
0(uk(x))(1 + |uk(x)|

p) dx < T +
δ

2

and finally,

sup
k>k̺

∫

{x∈Ω; |uk(x)|≥̺+1}
(1 + |uk(x)|

p) dx < T +
3δ

4
.

We end up the proof recalling that the finite set {1 + |uk|, k = 1, . . . , k̺} is
obviously uniformly integrable, hence, we can take ˜̺> 0 such that
supk∈{1,... ,k̺}

∫

{x∈Ω; |uk(x)|≥ ˜̺}
(1 + |uk(x)|

p) dx ≤ δ/4. Eventually, we get

sup
k∈N

∫

{x∈Ω; |uk(x)|≥max(̺+1, ˜̺)}
(1 + |uk(x)|

p) dx

≤ sup
k∈{1,... ,k̺}

∫

{x∈Ω; |uk(x)|≥max(̺+1, ˜̺)}
(1 + |uk(x)|

p) dx

+ sup
k>k̺

∫

{x∈Ω; |uk(x)|≥max(̺+1, ˜̺)}
(1 + |uk(x)|

p) dx

< T +
δ

4
+
3δ

4
= T + δ.

As δ > 0 has been arbitrary we see that T = sup{T̃ ; T̃ satisfies (10)} and thus
T = η({|uk|

p}k∈N). The proposition is proved. �

Remark 2. If {uk}k∈N ⊂ Lp(Ω;Rm) generates except a Young measure ν ∈
Yp(Ω;Rm) also some DiPerna-Majda measure, we can write

lim
k→∞

∫

Ω
|uk(x)|

p dx =

∫

Ω

∫

Rm

|λ|pνx(dλ) dx+ η({|uk|
p}k∈N).

Now we give a criterion of the uniform integrability.

Proposition 4. Let R be a separable complete and closed ring of continuous
functions R

m → R. Let {uk}k∈N ⊂ Lp(Ω;Rm), 1 ≤ p < +∞ be bounded. Then

(11) S := sup
(σ,ν̂)∈U

∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx) = η({|uk|
p}k∈N),
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where U is a set of all (σ, ν̂) ∈ DMp
R(Ω;R

m) that are generated by some subse-
quence of {uk}k∈N.

Proof: Indeed, we have η({|uk|
p}k∈N) ≥ S. If η({|uk|

p}k∈N) > S, then we
would be able to extract a subsequence from {uk}k∈N which generates (σ, ν̂) ∈
DM

p
R(Ω;R

m) and for which
∫

Ω̄

∫

βRRm\Rm ν̂x(dλ)σ(dx) > S contrary to the de-

finition of S.
�

Corollary 1. Under the assumptions of the above proposition the sequence

{|uk|
p}k∈N is uniformly integrable if and only if S = 0.

Proof: It follows from the previous proposition or, alternatively, from Proposi-
tion 1.

�

In particular, if βRR
m is just the one point Alexandroff compactification of

R
m, i.e., if βRR

m \ R
m = {∞}, then (11) reduces to

∀ (σ, ν̂) ∈ U ν̂x(∞) = 0 for σ-almost all x ∈ Ω̄.

3. Applications to Fatou’s lemma

Proposition 5 (see [19], [25]). Let {uk}k∈N ⊂ Lp(Ω;Rm), 1 ≤ p < +∞ be

bounded and such that there exists limk→∞

∫

Ω |uk(x)|
p dx. Then

(12)

∫

Ω
lim inf
k→∞

|uk(x)|
p dx ≤ lim

k→∞

∫

Ω
|uk(x)|

p dx − η({|uk|
p}k∈N).

Taking our characterization of the Rosenthal modulus into the play we can
come up with the following assertions.

Corollary 2. Under the assumptions of Proposition 5, (12) is equivalent to

∫

Ω
lim inf
k→∞

|uk(x)|
p dx ≤ lim

k→∞

∫

Ω
|uk(x)|

p dx− sup
(σ,ν̂)∈U

∫

Ω̄

∫

βRRm\Rm

ν̂x(dλ)σ(dx),

where U ⊂ DM
p
R(Ω;R

m) contains all of DiPerna-Majda measures generated by
some subsequence of {uk}k∈N.

Proof: It follows immediately from Propositions 4 and 5. �

Proposition 6. Let {uk}k∈N ⊂ Lp(Ω;Rm), 1 ≤ p < +∞ be bounded and

generate a Young measure ν ∈ Yp(Ω;Rm). Then

∫

Ω
lim inf
k→∞

|uk(x)|
p dx ≤

∫

Ω

∫

Rm

|λ|pνx(dλ) dx ≤ lim inf
k→∞

∫

Ω
|uk(x)|

p dx.
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Proof: The second inequality is standard and can be found e.g. in [20], [29].
Let us prove the first one. Let {ukl

}l∈N be such subsequence of {uk}k∈N that
generates except the Young measure ν also some DiPerna-Majda measure. This
means due to Remark 2 that

lim
l→∞

∫

Ω
|ukl
(x)|p dx =

∫

Ω

∫

Rm

|λ|pνx(dλ) dx+ η({|ukl
|p}l∈N),

where η({|ukl
|p}l∈N) is given by Proposition 3. Applying now Proposition 5 to

this subsequence we have
∫

Ω
lim inf
l→∞

|ukl
(x)|p dx ≤

∫

Ω

∫

Rm

|λ|pνx(dλ) dx

and because
∫

Ω lim infk→∞ |uk(x)|
p dx ≤

∫

Ω lim inf l→∞ |ukl
(x)|p dx we obtain the

assertion. �

Corollary 3. Let {uk}k∈N ⊂ Lp(Ω;Rm), 1 ≤ p < +∞ be bounded. Then
∫

Ω
lim inf
k→∞

|uk(x)|
p dx ≤ inf

ν∈U

∫

Ω

∫

Rm

|λ|pνx(dλ) dx ≤ lim inf
k→∞

∫

Ω
|uk(x)|

p dx,

where U ⊂ Yp(Ω;Rm) contains all of Young measures generated by some subse-
quence of {uk}k∈N.

Proof: Let {vk}k∈N be a subsequence of {uk}k∈N that generates ν ∈ Yp(Ω;Rm).
According to the Proposition 6

∫

Ω
lim inf
k→∞

|vk(x)|
p dx ≤

∫

Ω

∫

Rm

|λ|pνx(dλ) dx,

which gives
∫

Ω
lim inf
k→∞

|uk(x)|
p dx ≤

∫

Ω

∫

Rm

|λ|pνx(dλ) dx.

The first inequality follows straightforwardly.
Now let {wk}k∈N be such subsequence of {uk}k∈N that

limk→∞

∫

Ω |wk(x)|
p dx = lim infk→∞

∫

Ω |uk(x)|
p dx and that it generates ν̃ ∈

Yp(Ω;Rm). Then due to the previous proposition
∫

Ω

∫

Rm

|λ|pν̃x(dλ) dx ≤ lim inf
k→∞

∫

Ω
|uk(x)|

p dx

from which we have the second inequality. �
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[21] Kruž́ık M., T. Roub́ıček T., On the measures of DiPerna and Majda, Mathematica Bohe-

mica 122 (1997), 383–399.
[22] Piccinini L., Valadier M., Uniform Integrability and Young measures, J. Math. Anal. Appl.

195 (1995), 428–439.
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