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Differentially trivial left Noetherian rings

O.D. Artemovych

Abstract. We characterize left Noetherian rings which have only trivial derivations.
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0. Let R be an associative ring with an identity element. A mapping D : R −→ R
is called a derivation of R if

D(x + y) = D(x) +D(y)

and
D(xy) = D(x)y + xD(y)

for all elements x and y in R. A ring having no non-zero derivations will be called
here differentially trivial ([1]). Every differentially trivial ring is commutative.
Note that the class of differentially trivial rings is contained in the class of

ideally differential rings, i.e. rings R in which every ideal is invariant with respect
to all derivations of R. The ideally differential rings were studied in [1–3].
In this paper we characterize differentially trivial Noetherian rings.
For convenience of the reader we recall some notation and terminology.
R+ will always denote the additive group of R, J (R) the Jacobson radical of R

and F(R) the periodic part of R+, Q(R) the field of quotients of a commutative
domain R, char(R) the characteristic of R, N il(R) the prime radical of R, Ann(x)
the annihilator of x in R, and DR(N) = {c ∈ R | c + N is a regular element of
R/N}.
Throughout the paper p is a prime and Zpt is the ring of integers modulo a

prime power pt.
Let us recall that a ring R is called local if the factor ring R/J (R) is a skew

field.
We will also use some other terminology from [4].

1. Let R be a commutative Noetherian ring and Ass(R) be the set of all prime
ideals M of R for which there is a nont-zero element x such that

M = Ann(x).
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By Corollary 2 of [5, Chapter II, § 2, n◦2]

Ass(R) ≤ Supp(R)

(see Definition 5 of [5, Chapter IV, § 1, n◦3]) and therefore by Corollary 1 of [5,
Chapter IV, § 1, n◦3] every minimal prime ideal of a commutative Noetherian ring
R with zero-divisors is an annihilator. The subring of R generated by the identity
element of R is called the prime subring of R. If the field of quotients Q(R) of
R is algebraic over its prime subfield we say that R is algebraic over its prime
subring.

Proposition 1 (see [6]). A (commutative) domain R is differentially trivial if
and only if at least one of the following two cases takes place:

(1) char(R) = 0 and R is algebraic over its prime subring;
(2) char(R) = q > 0 and R = {aq | a ∈ R}.

Lemma 2. Let Z be a prime subring of a commutative domain R. If R is
algebraic over Z then every non-zero prime ideal of R is maximal.

Proof: Put q = char(R). If q > 0 then Z is a finite field and, for every non-zero
u ∈ R, the transformation

φ : x −→ xu, x ∈ S,

is an injective endomorphism of the vector space SZ , S = Z[u]. Since R is
algebraic over Z, the space SZ is finite-dimensional, φ is an automorphism and u
is invertible in R. We have proved that R is a field in this case, and so we may
assume that q = 0 and Z = Z (the ring of integers). Now, let P be a non-zero
prime ideal of R and I an ideal of R such that P ⊆ I and P 6= I 6= R. Since R is
algebraic over Z, we have

P ∩ Z = pZ = I ∩ Z

for some prime number p of Z. Further, if u ∈ I \ P then there are n ≥ 1 and
a0, . . . , an ∈ Z such that

a0 + a1u+ . . .+ anun = 0,

a0 6= 0 6= an and the numbers ai are relatively prime (i = 0, . . . , n). Clearly,

a0 ∈ I ∩ Z = pZ,

p divides a0 and

a1u+ . . .+ anun = u(a1 + . . .+ anun−1) ∈ P.

Thus
a1 + . . .+ anun−1 ∈ P ⊆ I

and, again,
a1 ∈ I ∩ Z = pZ.

Proceeding similarly further, we show that p divides all numbers a0, . . . , an, a
contradiction. This means that P is a maximal ideal in R, as desired. �
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Proposition 3. Let R be a differentially trivial Noetherian domain of charac-
teristic q.

(i) If q = 0 then every non-zero prime ideal of R is maximal.
(ii) If q > 0 then R is a field.

Proof: (i). Just combine Proposition 1(1) and Lemma 2.
(ii). Let P be a prime ideal of R. From Proposition 1(2) it follows that P q = P .

On the other hand, ⋂∞

n=1
Pn = {0}

by the Krull Theorem (see [7, Chapter IV, § 7, Theorem 12]). Thus P = {0} and
we conclude that R is a field. The proposition is proved. �

Remark 4. LetR be a differentially trivial Noetherian domain of characteristic 0.
With respect to Proposition 1(1), we may assume that

Z ⊆ R ⊆ Q(R) ⊆ A,

where A is the field of algebraic complex numbers. Now, it follows from Proposi-
tion 3(i) that the integral closure S of R in Q(R) is a Dedekind domain.

Lemma 5. Let R be a differentially trivial Noetherian ring such that R is not
a domain and let the additive group R+ be torsion-free. Then R is a subdirect
product of finitely many differentially trivial domains of characteristic 0.

Proof: If char(R/P ) = q > 0 for some P ∈ Ass(R) then there is an x ∈ R such
that x 6= 0, P = (0 : x) and

qxR = {0},

and, therefore, x ∈ F(R), a contradiction. Thus char(R/P ) = 0 for every P ∈
Ass(R).
If R/P is a field for every P ∈ Ass(R) then R is an Artinian ring by the

Akizuki Theorem (see [7, Chapter IV, § 2, Theorem 2]). Applying Corollary 2.12
of [6] we obtain that R is the ring direct sum of finitely many differentially trivial
fields of characteristic 0.
Suppose that the quotient ring R/P is not a field for some P ∈ Ass(R). If

Ass(R) = {P} then Pn = {0} for some integer n ≥ 1. Now, let M be a nil ideal
of R such that P/M is a minimal ideal of R/M . By Proposition 4.1.3(iii) of [4]

DR/M (0) = DR/M (P/M),

and, therefore,
a · P/M = P/M

for every a ∈ DR/M (P/M). Then, by Robson’s Theorem (see [4, Theorem 4.1.9])

R/M = S ⊕ A1 ⊕ . . . ⊕ Am
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is a ring direct sum of a semiprime ring S and finitely many local Artinian rings
A1, . . . , Am (m ∈ N). Since the factor ring R/M is differentially trivial, each
Ai is a field (i = 1, . . . , m) by Lemma 2.2 of [6], a contradiction. Consequently,
Ass(R) = {P1, . . . , Pn} for an integer n ≥ 2.
Assume that N = N il(R) 6= {0} and put S =

⋂n
i=1(R \Pi). If Pi ≤ Pj , where

i and j are distinct integers and 1 ≤ i, j ≤ n, and u ∈ Pj \ Pi then there exist
k ≥ 1 and a0, . . . , ak in the prime subring of R such that a0 /∈ Pi and

a0 + a1u+ · · ·+ akuk ∈ Pi

(use Proposition 1(1)). Then, however, a0 ∈ Pj , and this is a contradiction
with char(R/Pj) = 0. Consequently, all prime ideals P1, . . . , Pn are pair-wise
incomparable. By Proposition 10(ii) of [5, Chapter IV, § 2, n◦5] the total ring of
quotients A = S−1R is Artinian, and by Theorem 4.1.4 of [4] the factor ring R/N
is a Goldie ring.
Let M be a nil ideal of R such that N/M is a minimal ideal of R/M . By

Proposition 4.1.3(iii) of [4] we have

DR/M (0) = DR/M (N/M),

and, hence,
a · N/M = N/M

for every element a ∈ DR/M (0). Using Robson’s Theorem again, we conclude

that the factor ring R/M is a ring direct sum of a semiprime ring X and finitely
many local Artinian rings B1, . . . , Bl (l ∈ N).
Thus to complete the proof we show that a differentially trivial local Artinian

ring A = Bi of characteristic 0 is a field. Let π : A → A/J (A) be a canonical
epimorphism and K = A/J (A). By P we denote the prime subring of A. Since
char(A) = 0, P is a field. The family Γ of all subfields of A ordered by inclusion
has a maximal element M by Zorn’s Lemma. If β ∈ K is transcendental over
π(M) then every non-zero element of the polynomial ring M [β] is not contained
in J (A). Therefore M [β] is a field, a contradiction. Hence K is an algebraic
extension of π(M).

Let f(Y ) = Y n + α1Y
n−1 + . . .+ αn ∈ π(M)[Y ] be a minimal polynomial of

η ∈ K over π(M). By ai we denote the inverse image of αi in M (i = 1, . . . , n).
Since f(Y ) have no multiple roots, by Hensel’s Lemma (see e.g. [8, Chapter 10,
Exercises 9 and 10]) the polynomial

f(Y ) = Y n + a1Y
n−1 + . . .+ an ∈ M [Y ]

has a unique root z such that
π(z) = η.
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This means that the ring M [z] is isomorphic to the ring π(M)[η] which is a field.
The maximality of M yields that η ∈ π(M). Hence π(M) = K and

A = J (A) +M.

Thus for every element a of A there are unique elements j ∈ J (A) and m ∈ M
such that

(1) a = j +m.

It is well known that J (A) is a nilpotent ideal with index of nilpotency, say, t ≥ 2.

Furthermore, Ann(J (A)) 6= J (A)t−2 if t > 2. The map σ : A → A given by

σ(a) = bj,

where b is a fixed element of J (A)t−2 \ (AnnJ (A)) if t > 2, and

σ(a) = j

if t = 2 with j as in (1), determines a non-zero derivation σ of A, a contradiction.
Hence J (Bi) = J (A) = {0} (i = 1, . . . , l), a contradiction. This means that

n⋂

s=1

Ps = N il(R) = {0}.

By Proposition 10 of [9, § 2.1], R is a subdirect product of differentially trivial
rings R/Ps (s = 1, . . . , n). The lemma is proved. �

Lemma 6. Let R be a differentially trivial Noetherian ring such that R is not a
domain and let the additive group R+ be torsion. Then

R ∼=

n∑

i=1

⊕

Zpi
ki
(ki ∈ N).

Proof: By Proposition 3(ii) every non-zero prime ideal of R is maximal. Conse-
quently, R is an Artinian ring (see e.g. [7, Chapter IV, § 2]) and the result follows
from Corollary 2.12 of [6]. �

Lemma 7. If R is a differentially trivial semiprime Noetherian ring with the
mixed additive group R+ then

R = A ⊕ B

is the ring direct sum of a differentially trivial ring A of characteristic 0 and a
differentially trivial ring B of finite characteristic.

Proof: Let Ass(R) = {P1, . . . , Pn}. From N il(R) = {0} it follows that n ≥ 2.
Moreover, there are ideals P, Q ∈ Ass(R) such that char(R/P ) = p for some
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prime p and char(R/Q) = 0. Let π be the set of all primes p such that there is
an ideal P ∈ Ass(R) with char(R/P ) = p.

We will show that F(R)+ is a π-group. For doing this, suppose by contrary

that F(R)+ contains some non-zero element a of order q and q /∈ π. Then

a · qR = {0}

and, consequently, qR ≤
⋃n

i=1Pi, a contradiction. Since R is a Noetherian ring,

the set π is finite and, further, F(R)+ is a group of exponent p0 =
∏

p∈πp. If Fp

is the Sylow p-subgroup of F(R)+ (p ∈ π) then

F(R)+ = Fp ⊕ (F(R) ∩ pR)

is a group direct sum, where F(R) ∩ pR is a p′-subgroup. Since the factor ring
R/pR is differentially trivial and (Fp + pR)/pR ∼= Fp, in view of Proposition 3(ii)
and Lemma 6 the ideal F(R) is a differentially trivial ring with the identity
element e. Thus eR ≤ F(R) and

R = eR ⊕ (1− e)R

is a ring direct sum. If eR 6= F(R) and f ∈ F(R) \ eR then

f = eu+ (1− e)v

for some elements u, v ∈ R, and thus

f = e · f = eu,

a contradiction. Hence eR = F(R) and (1 − e)R is a differentially trivial ring of
characteristic 0. The lemma is proved. �

Theorem 8. Let R be a Noetherian ring. Then R is differentially trivial if and
only if it is of one of the following types:

1) R is a differentially trivial Noetherian domain (i.e. R is algebraic over its
prime subring if char(R) = 0, and R = {ap | a ∈ R} if char(R) = p);

2) R is a subdirect product of finitely many differentially trivial Noetherian
domains of characteristic 0;

3) R ∼=
∑n

i=1
⊕

Zpi
ki
;

4) R = F ⊕ S is a ring direct sum, where S is a ring of type 2) and F is a
ring of type 3).

Proof: (⇒). Let R be a differentially trivial Noetherian ring. If R is a domain
then by Proposition 1 it is a ring of type 1).
Suppose that R is not a domain. If the additive group R+ is torsion-free

(periodic, respectively) then R is a ring of type 2) by Lemma 5 (of type 3) by
Lemma 6, respectively).
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Assume that the additive group R+ is mixed. As a consequence of Lemma 5

N il(R) ≤ F(R).

If Ass(R) = {P} then char(R/P ) = 0 and

P = N il(R) = F(R).

Let a be a non-zero element of F(R)+ of finite order p. Then

a · pR = {0}

and in view of Corollary 2 of [5, Chapter IV, § 1, n◦3] pR ≤ P , a contradiction.
Hence Ass(R) = {P1, . . . , Pn} for an integer n ≥ 2. Since the group R+ is
nonperiodic, char(R/Q) = 0 for some ideal Q ∈ Ass(R). If char(R/Pi) = 0 for
all i (i = 1, . . . , n) then

F(R) = N il(R)

and for every non-zero element a of F(R) of order p we have

a · pR = {0}.

By Corollary 2 of [5, Chapter IV, § 1, n◦3]

pR ≤ Ps

for some integer s (1 ≤ s ≤ n), a contradiction. Thus R has an idealM ∈ Ass(R)
such that char(R/M) = p.
Now it is clear that

c · N il(R) = N il(R)

for every element c ∈ DR(0). From Theorem 2.2.15 of [4] it follows that R/N il(R)
is a Goldie ring. Then by Proposition 4.1.3(ii) of [4] we obtain

DR(0) = DR(N il(R)).

Using Robson’s Theorem (see [4, Theorem 4.1.9]), one sees that R is the ring
direct sum of a semiprime ring S and finitely many local Artinian ringsA1, . . . , Ak
(k ∈ N). In view of Corollary 2.12 of [6], Ai is either a differentially trivial field
or isomorphic to some Zpk . Finally, we can apply Lemma 7.

(⇐). It is obvious that R of type 1), 2) or 4) is differentially trivial. We
will show that R of type 3) is differentially trivial. Since R is a subdirect prod-
uct of finitely many differentially trivial domains R1, . . . , Rn of characteristic 0,
Proposition 10 of [9, § 2.1] yields that there are the ideals P1, . . . , Pn of R such
that ⋂n

i=1
Pi = {0} and Ri = R/Pi (i = 1, . . . , n).
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By Theorem 2.2.15 of [4] R is a Goldie ring. Then by Theorem 2.3.6 of [4]
S = DR(0) is an Ore set and S−1R is an Artinian ring. N il(R) = {0} yields that
J (S−1R) = {0} and, consequently,

S−1R = B1 ⊕ . . . ⊕ Bn

is the ring direct sum of fields B1, . . . , Bn such that Q(R/Pi) ∼= Bi (i = 1, . . . , n).
Clearly, every derivation of R can be extended to a derivation of S−1R. Since
the ring S−1R is differentially trivial we conclude that R is as desired. �
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