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On the extensibility of closed filters in T1 spaces

and the existence of well orderable filter bases

Kyriakos Keremedis, Eleftherios Tachtsis

Abstract. We show that the statement CCFC = “the character of a maximal free filter
F of closed sets in a T1 space (X, T ) is not countable” is equivalent to the Countable
Multiple Choice Axiom CMC and, the axiom of choice AC is equivalent to the statement
CFE0 = “closed filters in a T0 space (X, T ) extend to maximal closed filters”. We also
show that AC is equivalent to each of the assertions:
“every closed filter F in a T1 space (X, T ) extends to a maximal closed filter with a
well orderable filter base”,
“for every set A 6= ∅, every filter F ⊆ P(A) extends to an ultrafilter with a well orderable
filter base” and
“every open filter F in a T1 space (X, T ) extends to a maximal open filter with a well
orderable filter base”.

Keywords: closed filters, bases for filters, characters of filters, ultrafilters

Classification: Primary 03E25

1. Definitions

Let (X, T ) be a topological space and E ⊆ P(X)\{∅}. A non empty collection
F ⊆ E is an E-filter iff

(i) if F1, F2 ∈ F then F1 ∩ F2 ∈ F ;

(ii) if F ∈ F , F ⊂ F ′ and F ′ ∈ E , then F ′ ∈ F .

In particular if E is the collection of all non empty closed sets then we say that F
is a closed filter. Likewise, if E is the collection of all non empty open sets then
we say that F is an open filter. If E = P(X)\{∅} then an E-filter is called simply
a filter on X i.e. a filter on X is an open (closed) filter of the space X carrying
the discrete topology. An E-filter F is free iff

⋂

F = ∅.
A non empty collection B ⊆ P(X)\{∅} is a filter base for some filter F iff for

every B1, B2 ∈ B there exists B3 ∈ B with B3 ⊆ B1 ∩ B2.
The character of a filter (open, closed, etc.,) F is the minimum cardinality (if

it exists) of a filter base B for F .
A family U of subsets of X is locally finite if every point of X has a neighbor-

hood meeting a finite number of elements of U .
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The Axiom of choice AC is the statement:

For every family A = {Ai : i ∈ k} of disjoint non empty sets there
exists a set C which consists of one and only one element from each

element of A.

The Axiom of multiple choice MC is the statement:

For every family A = {Ai : i ∈ k} of disjoint non empty sets there
exists a set F = {Fi : i ∈ k} of finite non empty sets such that Fi ⊆ Ai

for all i ∈ k.

CAC and CMC stand for AC and MC respectively restricted to countable sets.
The Boolean Prime Ideal Theorem BPI is the proposition:

Every Boolean algebra has a prime ideal.

For notation and terminology used but not defined here the reader is referred
to any standard text of General Topology such as [10].

2. Introduction and some preliminary results

If one goes carefully through the proof that AC implies Tychonoff’s compact-
ness theorem, see [10], he will realize that, in order to get that proof go through,
he only needs two facts:

1. in Tychonoff products of compact T1 spaces every closed filter extends to
a maximal closed filter, and

2. in Tychonoff products of compact T1 spaces the projections are closed
maps.

Motivated by (1) and (2), it is plausible to define, as the authors in [6] did, the
axiom of closed filter extensibility CFE by requiring:

• closed filters in a T1 space (X, T ) extend to maximal closed filters.

In [6] it has been proved that

Proposition 1. (i) AC iff CFE + CAC.
(ii) CFE implies but it is not equivalent to BPI.

There remains the question:

(A) Does CFE imply AC?

Since the statement CFE0 given by

closed filters in a T0 space (X, T ) extend to maximal closed filters

clearly implies CFE, one may expect that CFE0 implies AC. Indeed, we have:
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Theorem 2. CFE0 is equivalent to AC.

Proof: An easy application of Zorn’s Lemma, shows that AC implies CFE0.
To see the converse let A = {Ai : i ∈ k} be a disjoint family of infinite sets.
Topologize Xi = Ai ∪ {∞i} by declaring basic neighborhoods of points x ∈ Xi to
be all cofinite supersets of {x,∞i}. Let X be the Tychonoff product of the Xi’s.
CFE0 implies that X has a maximal closed filter G and one more application of
CFE0 to X with the discrete topology extends G to an ultrafilter F . We show
first that

⋂

{F : F ∈ F} 6= ∅ (and consequently
⋂

G 6= ∅). To this end it suffices
to find, in view of the proof of the Tychonoff’s compactness theorem given in [10],

c ∈ X , with c(i) ∈ Bi =
⋂

{πi(F ) : F ∈ F} for all i ∈ k. As Xi is compact
and {πi(F ) : F ∈ F} is a filter of Xi, it follows that Bi 6= ∅. Without loss of
generality we may assume that Bi 6= Xi for all i ∈ k. If Bi = Xi choose ci =∞i

({∞i} = Xi). Put B = {Bi : i ∈ k}. Since CFE0 clearly implies the axiom of
choice restricted to families of finite sets, see [5], it follows that B has a choice
function c as required.

G being a closed ultrafilter implies that c cannot be the element c(i) =∞i for
all i ∈ k for the only closed set including c is X itself. In order to complete the
proof of the theorem it suffices to show:

Claim. ci 6=∞i for all i ∈ k.

Proof of the claim: Indeed, if ci =∞i for some i ∈ k then letting

Y =
∏

i∈k

Yi, Yi =

{

{ci} if ci 6=∞i

Xi if ci =∞i

carry the subspace topology, we see that Y ∈ G (G is a closed ultrafilter and Y is
a closed subset of X meeting each member of G). Now, the only closed subset of
Y including c is Y itself. Thus Y ⊆

⋂

G and we have reached a contradiction. (If
ci∗ =∞i∗ then we pick a finite non empty subset K of Ai∗ and let

H =
∏

i∈k

Hi, Hi =











{ci} if ci 6=∞i

Xi if ci =∞i and i 6= i∗

K if i = i∗
.

It follows that H /∈ G is a closed set included in every member of G, contradicting
the fact that G is a maximal closed filter.) Thus, c is a choice function finishing
the proof of the claim and of the theorem. �

If X is a countable set, say X = ω, and F is a maximal free filter on ω then one
can verify, in the Zermelo-Fraenkel set theory without the axiom of choice, ZF-AC
for abbreviation, that F cannot have a countable filter base. More generally, if X
is any infinite set and F is a maximal free filter on X then one can easily verify in
ZF-AC that F cannot have a well ordered nested filter base B = {Bi : i ∈ ℵ}. (If
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Ci = Bi\Bi+1, i ∈ ℵ and S ⊆ ℵ a set of size ℵ whose complement has also size ℵ
then G =

⋃

{Ci : i ∈ S} meets, but does not include, all members of B. As B is a
filter base and the filter F is maximal, it follows that G ∈ F . Hence, G includes
a member of B and this is a contradiction). So, there remains the question what
happens if X carries some topology other than the discrete one and the members
of the filter are maximal with respect to some property, say closedness. That is:

(B) Can maximal closed filters have a countable filter base?

The research in this paper is motivated by questions (A) and (B). We show in
Sections 3 and 4 that the answer to (B) depends on AC and the answer to (A) is
related to (B).
Let CCFC, CCFC2 and COFC stand for the statements

• no maximal closed free filter in a T1 space has countable character,
• no maximal closed free filter in a T2 space has countable character,
• no maximal open free filter in a T2 space has countable character

respectively.

Proposition 3. In CCFC the T1 separation axiom cannot be replaced by the T0
axiom.

Proof: T = {∅, ω, [0, n) : n ∈ ω} is a T0 topology on ω and F = {[n,∞) : n ∈ ω}
is a countable free closed ultrafilter of (ω, T ). �

Proposition 4. In COFC the requirement that the space X be T2 cannot be
dropped out.

Proof: Let A = {Ai : i ∈ ω} be a disjoint family of non empty sets. Topologize
X =

⋃

A by declaring basic neighborhoods of points x ∈ X to be all sets of the
form Vxn = {x} ∪ (

⋃

{Ai : i ≥ n}). It can be readily verified that X is a first
countable T1 space having a countable filter base B = {

⋃

{Ai : i ≥ n} : n ∈ ω}
for the open ultrafilter F of all non empty open sets independently of AC. �

Remark 1. If each member of A is finite then X is a compact space. It follows
that if no infinite subset of A has a choice function then X is not separable.

Furthermore, as each sequence in X has a finite range, we see that even though X
is first countable, the closure operator cannot be described sequentially. (W ⊆ X
is closed iff whenever (wn)n∈ω ⊆ W converges to w then w ∈ W ).

Proposition 5. COFC can be proved in ZF-AC.

Proof: Let (X, T ) be a T2 space and F a free maximal filter of open sets having
a countable filter base B = {Bn : n ∈ ω}. Without loss of generality we may
assume that B is strictly descending. Put b =

⋂

B̄, B̄ = {B̄n : n ∈ ω}. Then any
open set O meeting b is in F . Hence, b can have at most one point. (If x, y ∈ b
then since X is a T2 space it follows that there exist open disjoint sets Ox and
Oy including x and y. Then both Ox, Oy are in F and this is a contradiction.)
For every n ∈ ω, put On = Bn\B̄n+1.
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Claim. There exists m ∈ ω such that ∀n ≥ m, On = ∅.

Proof of the claim: If not then there exists an infinite subset S ⊆ ω such that
Os 6= ∅ for all s ∈ S. Without loss of generality we may assume that S = ω. Put
O =

⋃

{O2n : n ∈ ω}. Clearly O is an open set meeting but not including each
Bn. Hence O ∈ F and consequently Bn∗ ⊆ O for some n∗ ∈ ω. This contradiction
establishes the claim.

By the claim we conclude that B̄m = B̄n for all n ≥ m. Thus, B̄m ⊆ b and we
have arrived at a contradiction. �

Remark 2. Since COFC is provable in ZF-AC it follows that CCFC2 is of interest

only in case where some member of the filter is a closed nowhere dense set.

In what follows we shall make use of the following results.

Proposition 6 ([8]). CMC iff PCMC ( = for every countable family B of disjoint
infinite sets, some infinite subfamily B̄ of B has a multiple choice).

Proof: Mimic the proof of Lemma 1 (iv) given in [4]. �

Lemma 7 (Levy’s Lemma [9]). MC iff every set can be written as a well ordered
union of disjoint finite sets.

Below we give a list of the statements (all provable in ZF0+ AC) that will be
studied in the paper.
(1) Every closed filter F in a T1 space (X, T ) has a well orderable filter base.
(2) Every open filter F in a T1 space (X, T ) has a well orderable filter base.
(3) Every open filter F in a dense-in-itself T1 space (X, T ) has a well orderable
filter base.
(4) Every open ultrafilter F in a T1 space (X, T ) has a well orderable filter base.
(5) For every set A 6= ∅, every filter F ⊆ P(A) has a well orderable filter base.
(6) Every closed filter F in a dense-in-itself T1 space (X, T ) has a well orderable
filter base.
(7) Every closed filter F in a dense-in-itself T2 space (X, T ) has a well orderable
filter base.
(8) If (X, T ) is a T2 topological space and B is a lattice of closed sets then every
maximal B-filter F has a well orderable filter base.
(9) Every closed filter F in a T1 space (X, T ) extends to a maximal closed filter
with a well orderable filter base.
(10) For every set A 6= ∅, every filter F ⊆ P(A) extends to an ultrafilter with a
well orderable filter base.
(11) Every open filter F in a T1 space (X, T ) extends to a maximal open filter
with a well orderable filter base.
(12) Every closed filter F in a T1 space (X, T ) has a well orderable base and is
included in a maximal closed filter G.
(13) Every closed ultrafilter F in a T1 space (X, T ) has a well orderable filter
base.
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(14) For every set A 6= ∅, every ultrafilter F ⊆ P(A) has a well orderable filter
base.

3. Existence of well ordered filter bases

We begin this section with a list of equivalent forms of MC.

Theorem 8. The following are equivalent: MC.

(1) Every closed filter F in a T1 space (X, T ) has a well orderable filter base.
(2) Every open filter F in a T1 space (X, T ) has a well orderable filter base.
(3) Every open filter F in a dense-in-itself T1 space (X, T ) has a well orderable
filter base.

(4) Every open ultrafilter F in a T1 space (X, T ) has a well orderable filter base.
(5) For every set A 6= ∅, every filter F ⊆ P(A) has a well orderable filter base.
(6) Every closed filter F in a dense-in-itself T1 space (X, T ) has a well orderable
filter base.

(7) Every closed filter F in a dense-in-itself T2 space (X, T ) has a well orderable
filter base.

(8) If (X, T ) is a T2 topological space and B is a lattice of closed sets then every
maximal B-filter F has a well orderable filter base.

Proof: MC → (1), (2), (3), (4), (5), (6), (7) and (8). We prove MC → (1). All
the other implications can be proved similarly. Fix (X, T ) and F as in (1). By
Levy’s Lemma, there exists a disjoint family G = {Gn : n ∈ k}, k a cardinal, of
finite sets covering F . Clearly, B = {Bn =

⋂

Gn : n ∈ k} is a well ordered base
for F . (As G covers F it follows that each member of F includes a member of G.
Furthermore, as F is a filter, we see that B ⊆ F and consequently B is a base.)

(2) → MC, (5) → MC. Fix A = {Ai : i ∈ k} a disjoint family of infinite
sets. Put X =

⋃

A and let F = {f ⊆ X : |Ai\f | < ω for all i ∈ k}. Clearly,
F is a filter of X and an open filter of X taken with the discrete topology.
Let B = {Bn : n ∈ µ} be a well ordered base for F . For every i ∈ k we let
ni = min{n ∈ µ : |Ai\Bn| 6= 0}. It is straightforward to verify that D = {Di =
Ai\Bni

: i ∈ k} is a multiple choice for A finishing the proof of (2) → MC and
(5) → MC.

(3)→ MC, (4)→ MC. Fix A as in (2)→ MC and put on X =
⋃

A the cofinite
topology T . Let F = T \{∅}. Clearly, F is an open ultrafilter of the dense-in-
itself T1 space (X, T ). Let B = {Bn : n ∈ µ} be a well ordered base for F . It is
straightforward to see that the set D as defined in (2) → MC is a multiple choice
for A as required.

(6) → MC. Fix A an infinite set. It suffices, in view of Levy’s Lemma to show
that A can be covered by a well ordered family of finite sets. Put X = [A]<ω (i.e.
the set of all finite subsets of A) and let T be the topology on X in which basic
neighborhoods of points x ∈ X are all sets of the form

B(x, z) = {x} ∪ {y ∈ X : y ∩ z = ∅}, z ∈ X, x ⊆ z.
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Claim 1. (X, T ) is a T1 space. Indeed, fix x, y ∈ X , x 6= y. We consider the
following cases.
(a) If x ∩ y = ∅ or if x\y 6= ∅ and y\x 6= ∅, then B(x, x ∪ y) and B(y, x ∪ y) are
neighborhoods of x and y avoiding y and x respectively.
(b) If x ⊆ y then B(x, y) and B(y, y) are neighborhoods of x and y avoiding y
and x respectively.
(c) If y ⊆ x then case (b) applies.

For every x ∈ X , put

(3.1) Gx = {y ∈ X : x ⊆ y}.

Claim 2. Gx is closed in (X, T ). Fix z /∈ Gx then B(z, x∪ z) is a neighborhood
of z avoiding Gx. Hence Gx is closed as required.

Let F be the closed (necessarily free) filter which is generated by the collection
G = {Gx : x ∈ X}. Let D = {Di : i ∈ k} be a well ordered filter base for F .
Without loss of generality we may assume that each Di is included in a Gx.
For every i ∈ k, we let zi =

⋃

Zi, Zi = {x ∈ X : Di ⊆ Gx}.

Claim 3. |zi| < ω. It suffices to show that |Zi| < ω. Assume on the contrary
that Zi is infinite. Clearly zi is an infinite set and any member of Di =

⋂

{Gx :
Di ⊆ Gx} includes zi. Thus, Di = ∅. On the other hand, as Di ⊆ Di we have
Di 6= ∅. This contradiction establishes Claim 3.

Put Z = {zi : i ∈ k}. Clearly Z is a well ordered cover of A consisting of finite
sets. Since we can always disjointify Z, Levy’s Lemma follows and the proof of
(6) → MC is complete.

(1) → (7). This is straightforward.

(7) → MC. Fix A be an infinite set and let X = [A]<ω . N. Brunner ([3])
has shown that the collection B of all sets of the form B(y, z) = {x ∈ X : y ⊆
x ∧ x ∩ z = ∅}, y, z ∈ X , y ∩ z = ∅ generates a dense in-itself T2 topology on X .
Now, the sets Gx given in (3.1) are closed in X . (If z ∈ X , z /∈ Gx, then B(z, x\z)
is a neighborhood of z avoiding Gx.) We can finish the proof of (7) → MC as in
(6) → MC.

(8) → MC. Let A, (X, T ) and G = {Gx : x ∈ X} be as in (7) → MC. It is
easy to see that B = {

⋃

Q : Q ∈ [G]<ω} is a lattice of closed sets which is also a
B-filter. Thus B is a maximal B-filter and by the hypothesis it has a well orderable
filter base D. Continue as in the proof of (6) → MC to write A as a well ordered
union of finite sets finishing the proof of (8) → MC and of the theorem. �

In the next corollary we give a list of equivalents of AC. We would like to stress
out the resemblance of (9) and (12).

Corollary 9. The following are equivalent: AC.

(9) Every closed filter F in a T1 space (X, T ) extends to a maximal closed filter
with a well orderable filter base ( = CFE + (13)).
(10) For every set A 6= ∅, every filter F ⊆ P(A) extends to an ultrafilter with a
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well orderable filter base ( = BPI + (14)).
(11) Every open filter F in a T1 space (X, T ) extends to a maximal open filter
with a well orderable filter base ( = every open filter F in a T1 space extends to
a maximal open filter + (4)) ( = BPI + (4)).
(12) Every closed filter F in a T1 space (X, T ) has a well orderable base and is
included in a maximal closed filter G ( = (1) + CFE).

Proof: AC → (9), (11), (12), (9) → (10) and (11) → (10). These are straight-
forward.
(12) → AC. This follows from Proposition 1 and Theorem 8.
In order to complete the proof of the theorem it suffices to show that (10)→AC.

Clearly, (10) implies BPI which in turn implies ACfin, the axiom of choice for
families of finite sets. In order to complete the proof, it suffices to show that (10)
also implies MC. The proof of (6)→ MC of Theorem 8 goes through even in case
D is a base for some ultrafilter H extending the filter F . Thus, (10) implies MC,
finishing the proof of the corollary. �

4. Maximal closed filters in T1 spaces do not have countable

characters

In this section we give an equivalent form of CMC.

Theorem 10. CMC iff CCFC (i.e. no maximal closed free filter in a T1 space
has countable character).

Proof: CMC→ CCFC. Assume that B = {Bn : n ∈ ω} is a countable filter base
for a free filter G of closed sets in the T1 space (X, T ). Without loss of generality
we may assume that B is strictly descending. Put An = Bn\Bn+1 for all n ∈ ω
and A = {An : n ∈ ω}. Let F = {Fn : n ∈ ω} satisfy CMC for A. Then F is
a locally finite family of closed sets in X . Indeed let x ∈ X . We consider the
following two cases:

(i) x /∈
⋃

F . Since G is a free filter there exists an n ∈ ω such that x /∈ Bn. Then
W = (Bn)

c\(F0 ∪ · · · ∪ Fn−1) is a neighborhood of x which avoids every element
of F .

(ii) x ∈ Fn for some n ∈ ω. ThenW = (Bn+1)
c\(F0∪· · ·∪Fn−1) is a neighborhood

of x which meets only one element of F , namely Fn.

Thus F is locally finite and consequently the family H = {F2n : n ∈ ω} is
also locally finite. It is a well known fact (see [10]) that the union of a locally
finite family of closed sets is a closed set, consequently, c =

⋃

H is a closed set
meeting each but not including properly any member of B. Thus, the closed filter
generated by {c} ∪ G extends properly G meaning that G is not an ultrafilter.

CCFC → CMC. In view of Proposition 6 it suffices to show that CCFC →
PCMC. Fix B = {Bn : n ∈ ω} a family of disjoint infinite sets. Topologize
X =

⋃

B by declaring basic neighborhoods of points x ∈ X , x ∈ Bn to be all
supersets of {x} whose complements in Xn =

⋃

{Bm : m ≤ n} are finite. Clearly,
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(1) X is a T1 space,

(2) if a set U 6= X is closed in X, then for all n ∈ ω, |U ∩ Bn| < ω or Bn ⊆ U ,

(3) A = {Ai =
⋃

{Bn : n ≥ i} : i ∈ ω} is a descending family of closed (nowhere
dense-except A0) sets with empty intersection.

Let F be the closed filter (necessarily free) which is generated by A. As A is
countable, it follows from CCFC that F is not maximal. Thus, there exists a non
empty closed set Q meeting non trivially but not including any member of A.
Hence, there is a set B̄ = {Bni

: i ∈ ω} ⊆ B such that Fi = Q ∩ Bni
6= ∅. Since

Q 6= X , we see that Fi is finite and consequently F = {Fi : i ∈ ω} is a multiple
choice for B̄ finishing the proof of the theorem. �

5. Independence results

Lemma 11. MC (and consequently (1) through (8)) implies (14) but the converse
is not true.

Proof: By Theorem 8, we have that MC implies (14). On the other hand,
A. Blass has shown in [1] that there exists a ZF model (M,∈) without free
ultrafilters. Thus, inM (14) holds but AC, and consequently MC, fails. �

Lemma 12. (i) MC does not imply CFE.
(ii) CAC does not imply CFE.
(iii) CMC does not imply (14).
(iv) CAC does not imply (14).
(v) CAC does not imply (13).
(vi) Neither (14) nor (13) imply CAC.

Proof: (i) By Proposition 1, CFE + CMC ↔ AC. Now, in model N2 (the
Second Fraenkel Model) in [5] MC and consequently CMC holds but AC fails.
Therefore CFE fails in N2.

(ii) By Proposition 1, CFE + CAC ↔ AC. There are both Cohen models and
permutational models (M,∈) where CAC holds but AC fails. See, for example
Solovay’s model, ModelM5(ℵ) in [5]. Thus, inM5(ℵ) CAC holds but CFE fails.

(iii) It is known, see model N38 in [5], that CMC+BPI does not imply AC.
(N38 is a permutational model satisfying CMC, BPI and the negation of AC.)
On the other hand, in view of Corollary 9, (14) + BPI does imply AC. Thus (14)
fails in N38.

(iv) CAC holds in N38 but as we have seen in (iii), (14) fails.

(v) Clearly, (13) implies (14). On the other hand CAC, in view of (iv), holds
in N38 but (14) fails. Hence (13) fails also in N38.

(vi) In the Second Fraenkel Model, Model N2 in [5], MC and consequently (13)
and (14) hold but CAC fails. �
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Lemma 13. (i) BPI does not imply neither (14) nor (13).
(ii) None of (13) and (14) implies BPI.

Proof: (i) The statements BPI+(14) and BPI+(13) are, in view of Corollary 9,
equivalent to AC. Now, in Cohen’s original model, ModelM1 in [5], BPI is true
but AC is false. Thus, inM1, BPI is true but (14) and (13) are false.

(ii) As seen in (vi) of Lemma 12, (13) and (14) are true in model N2. On the
other hand, BPI is false in N2 (BPI is equivalent to Form 14J ( = the product of
compact T2 spaces is compact) in [5] and there exists a family in N2 of compact
T2 spaces such that their Tychonoff product is not compact).
In Blass’ model, in [1], (14) is true whereas BPI is false (see [12]). �

6. Summary

AC=CFE0=(9)=

(10)=(11)=(12)
→

MC=(1)=(2)=(3)

(4)=(5)=(6)=(7)=(8)

ց

BPI
↓

↓

(14)
↑(↓?)
(13)

CFE (→?) CAC
→

CMC
l

PCMC
l

CCFC

Questions. (i) Does CFE imply CMC?
(ii) Is CCFC2 provable in ZF-AC?
(iii) Does (13) imply MC?
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