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Closure rings

B.J. Gardner, Tim Stokes

Abstract. We consider rings equipped with a closure operation defined in terms of a
collection of commuting idempotents, generalising the idea of a topological closure oper-
ation defined on a ring of sets. We establish the basic properties of such rings, consider
examples and construction methods, and then concentrate on rings which have a closure
operation defined in terms of their lattice of central idempotents.

Keywords: closure ring, commuting idempotents, central idempotents, Baer ring

Classification: 16W99

1. Basic properties

The notion of a closure algebra as defined in [3] has been around for some
time in one form or another. They are Boolean algebras with identity on which a
closure operation is defined, satisfying the usual Kuratowski conditions: C(0) = 0,
aC(a) = a, C(C(a)) = C(a), and C(a∨b) = C(a)∨C(b) for all a, b. These objects
are also of significance in modal logic, where they provide the algebraic models
for the so-called S4 form of modal logic, probably the most important of the non-
classical modal logics. In fact we shall view all Boolean algebras as Boolean rings,
and call closure algebras so viewed Boolean closure rings.
We now generalise the notion of a closure ring. If R is a ring, we have the

adjoint operation ◦ given by a◦ b = a+ b−ab for all a, b ∈ R, which is associative,
has 0 as an identity, and is commutative if and only if R is. (In a Boolean ring,
this is exactly the join operation in the corresponding Boolean algebra.) We say
R is a closure ring if it has an additional unary operation C such that for all
a, b ∈ R:

1. C(0) = 0;
2. a ◦ C(a) = C(a);
3. C(C(a)) = C(a);
4. C(a) ◦ C(b) = C(b) ◦ C(a); and
5. C(a) ◦ C(b) = C(a ◦ b) ◦ C(b).

In this case C is a closure operation on R. Note that if R has an identity, C(1) = 1
is immediate from the second condition.
The above definition generalises the Boolean case: if R is Boolean, then letting

b = a ∨ c = a ◦ c where a, c ∈ R, we have that C(a) ∨ C(a ∨ c) = C(a ∨ c) so
C is order-preserving, so C(a ∨ b) ≥ C(a) ∨ C(b) ≥ C(a ∨ b), and we recover the
previously considered Boolean closure ring definition.
We say R is a strong closure ring if a ◦ b ◦ C(a) = b ◦ C(a).
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Lemma 1. The closure ring R is strong if and only if abC(a) = ab for all a, b ∈ R.

Proof: a◦ b◦C(a) = b◦C(a) expands out to a+ b+C(a)− bC(a)−ab−aC(a)+
abC(a) = b+ C(a)− bC(a), that is, ab = abC(a) upon use of the rule aC(a) = a
(equivalent to rule 2 above). �

Clearly if the closure ring R is commutative then it is strong. Every ring with
identity is a strong closure ring if one defines C(0) = 0 with C(a) = 1 otherwise.
If the closure ring R has an identity, then one may define I(a) = 1− C(1− a)

and obtain rules for I in terms of the multiplicative monoid of R analogous to
those for C in terms of the adjoint monoid. Indeed one may make I primitive in
such cases and recover the closure operation from it, in a sense generalising the
familiar equivalence between the open and closed set approaches to topology.
Let R be a closure ring. Define LR = {a ∈ R | C(a) = a} = {C(a) | a ∈ R}.

Proposition 2. LR is a submonoid of (R, ◦) which is a semilattice and, viewing
◦ as meet in LR, C(a) = max{α | α ∈ LR, a ◦α = α} = max{α | α ∈ LR, aα = a}
for all a ∈ R.

Proof: For all a ∈ R, C(a)◦C(a) = C(a)◦C(C(a)) = C(a); thus the elements of
LR are idempotent. Also ◦ is idempotent on LR by the fourth rule. Furthermore,
0 = C(0) ∈ LR, and for all α, β ∈ LR

α ◦ β = α ◦ α ◦ β

= α ◦ β ◦ α

= C(α) ◦ C(β) ◦ α

= C(α ◦ β) ◦ C(β) ◦ α

= α ◦ C(β) ◦ C(α ◦ β)

= α ◦ β ◦ C(α ◦ β)

= C(α ◦ β).

So LR is a submonoid which is a semilattice.
Further, for a ∈ R, a ◦ C(a) = C(a), and if a ◦ α = α for some α ∈ LR, then

C(a) ◦ α = C(a) ◦ C(α) = C(a ◦ α) ◦ C(α) = C(α) ◦ C(α) = α,

so α ≤ C(a). Hence C(a) = max{α ∈ LR | a ◦ α = α}. �

The converse works also.

Proposition 3. If R is a ring in which (LR, ◦) is a semilattice which is a sub-
monoid of (R, ◦) with ◦ viewed as meet in LR, and if C(a) = max{α ∈ LR |
aα = a} exists for all a ∈ R, then R together with C is a closure ring.

Proof: The only closure ring rule that is not immediate is the last one. Letting
α = C(a), β = C(b) and γ = C(a ◦ b), we have that

(a ◦ b) ◦ (α ◦ β) = a ◦ (b ◦ β) ◦ α = a ◦ β ◦ α = (a ◦ α) ◦ β = α ◦ β,
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so C(a) ◦ C(b) ≤ C(a ◦ b). Conversely,

a ◦ (γ ◦ β) = a ◦ β ◦ γ = a ◦ b ◦ β ◦ γ = (a ◦ b) ◦ γ ◦ β = γ ◦ β.

So C(a ◦ b) ◦ C(b) ≤ C(a). Hence C(a) ◦ C(b) = C(a ◦ b). �

Viewing ◦ as meet is dual to the convention in the Boolean case where ◦ is
viewed as join and the order models set inclusion. Note that C is order-preserving
on LR: if α ≤ β then α ◦ β = α then

C(α) = C(α) ◦ C(α) = C(β ◦ α) ◦ C(α) = C(β) ◦ C(α),

so C(α) ≤ C(β).
For any closure ring R, LR is closed under multiplication.

Proposition 4. LR is a Brouwerian lattice in which α∨β = αβ and α∧β = α◦β
for all α, β ∈ LR.

Proof: Let α, β, γ ∈ LR. It is routine to verify that (αβ) ◦ γ = (α ◦ γ)(β ◦ γ).
Thus from the five defining properties of C and the order-preserving property,

C(αβ) = (αβ) ◦ C(αβ)

= (α ◦ C(αβ))(β ◦ C(αβ))

= (C(α) ◦ C(αβ))(C(β) ◦ C(αβ))

= C(α)C(β)

= αβ.

Thus LR is closed under ring multiplication. Moreover, because α2 = α and
αβ = βα for all α, β ∈ LR, LR is a semilattice with respect to the ring product;
indeed α ◦ β = α if and only if αβ = β for any such α, β, LR is a lattice with
meet the adjoint operation, join the ring product and top element 0. Finally, and
omitting a couple of easily checked steps,

C(β − αβ) = max{γ ∈ LR | (β − αβ) ◦ γ = γ}

= max{γ ∈ LR | (α ◦ γ)β = β}

= max{γ ∈ LR | α ◦ γ ◦ β = α ◦ γ}

= max{γ ∈ LR | α ◦ γ ≤ β},

the relative pseudo-complement of α with respect to β, so LR is Brouwerian. �

Recall that every ring with identity is a strong closure ring if one defines C(0) =
0 with C(a) = 1 otherwise. Because C(a) = 0 implies a = a ◦ 0 = a ◦ C(a) =
C(a) = 0, this condition is equivalent to saying that LR = {0, 1}. In the Boolean
case, such closure rings arise as models of so-called S5 modal logic.
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Lemma 5. The closure ring R is strong if and only if α ◦ a ◦ α = a ◦ α (that is,
αaα = αa) for all a ∈ R and α ∈ LR.

Proof: If R is strong then because C(α) = α for all α ∈ LR, it is immediate that
α ◦ a ◦α = a ◦α for all a ∈ R (and from Lemma 1 that αaα = αa). Conversely, if
for all a ∈ R and α ∈ LR in the closure ring R, α ◦ a ◦ α = a ◦ α (which expands
out to αaα = αa as is almost immediate), then a ◦ b ◦C(a) = a ◦C(a) ◦ b ◦C(a) =
C(a) ◦ b ◦ C(a) = b ◦ C(a) and so R is strong. �

Thus if LR is contained in the centre of R, then R is strong.
Let R be a ring with identity and let X be a topological space. Let A be

the ring of functions X → R with pointwise operations and let LA consist of
all characteristic functions of closed subsets of X . Then L is closed under the
adjoint operation (because the union of two closed sets is closed) and in fact L
is a semilattice. Under its natural order (viewed as a meet-semilattice), C(f) =
max{h | h ∈ L, f ◦ h = h} is defined for all f ∈ A and is the (characteristic
function of) the closure of the subset on which f is non-zero. (Again note that
the natural order on L is the opposite of set inclusion.) Clearly L in this example
is a subset of the centre of A, so A is a strong closure ring in which LA = L. This
idea can be generalised in the obvious way to Cartesian products indexed by a
topological space. (We see some non-strong examples shortly.)

Theorem 6. Let R be a ring having an additional unary operation C. Then

1. R is a closure ring if and only if, for all a, b, c ∈ R: C(0) = 0, C(a)◦C(b) =
C(b) ◦ C(a), a ◦ C(a) = C(a) and f(b) ◦ C(a) = f(b ◦ C(a)) ◦ C(a) for
every derived unary operation f on R not involving the adjoint operation
(equivalently, the ring multiplication);

2. R is a strong closure ring if and only if, for all a, b, c ∈ R, C(0) = 0,
C(a) ◦C(b) = C(b) ◦C(a) and f(a) ◦C(a) = f(0) ◦C(a) where f(x) is an
arbitrary derived unary operation on R.

Proof: First note that in any ring, (−a) ◦ b = −(a ◦ b) + 2b and (a + b) ◦ c =
a ◦ c+ b ◦ c − c.
Suppose R is a closure ring. We must show that f(b)◦C(a) = f(b◦C(a))◦C(a)

holds, where f(x) is a derived unary operation on R not involving the adjoint
operation. We do this by induction on the size of any expression representing f(x).
If f(x) = x, the result is immediate. Now suppose the identity holds for

g(x), h(x).
If f(x) = −g(x), then

f(b ◦ C(a)) ◦ C(a) = (−g(b ◦ C(a))) ◦ C(a)

= −(g(b ◦ C(a)) ◦ C(a)) + 2C(a)

= −(g(b) ◦ C(a)) + 2C(a)

= (−g(b)) ◦ C(a)

= f(b) ◦ C(a).
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If f(x) = g(x) + h(x), then

f(b ◦ C(a)) ◦ C(a) = (g(b ◦ C(a)) + h(b ◦ C(a))) ◦ C(a)

= g(b ◦ C(a)) ◦ C(a) + h(b ◦ C(a)) ◦ C(a)− C(a)

= g(b) ◦ C(a) + h(b) ◦ C(a)− C(a)

= (g(b) + h(b)) ◦ C(a)

= f(b) ◦ C(a).

If f(x) = C(g(x)), then

f(b ◦ C(a)) ◦ C(a) = C(g(b ◦ C(a))) ◦ C(a)

= C(g(b ◦ C(a)) ◦ C(a)) ◦ C(a)

= C(g(b) ◦ C(a)) ◦ C(a)

= C(g(b)) ◦ C(a)

= f(b) ◦ C(a).

It follows that the identity holds for all possible f(x) of the required form.
Conversely, suppose that R is a ring having an additional unary operation C

for which, for all a, b, c ∈ R: C(0) = 0, C(a)◦C(b) = C(b)◦C(a), a◦C(a) = C(a)
and f(b) ◦ C(a) = f(b ◦ C(a)) ◦ C(a) where f(x) is a derived unary operation on
R not involving the adjoint operation. Then also C(C(a)) = C(a) ◦ C(C(a)) =
C(C(a)) ◦ C(a) = C(0 ◦ C(a)) ◦ C(a) = C(0) ◦ C(a) = 0 ◦ C(a) = C(a), and
C(a)◦C(b) = C(a◦C(b))◦C(b) = C(a◦(b◦C(b)))◦C(b) = C((a◦b)◦C(b))◦C(b) =
C(a ◦ b) ◦ C(b), so R is a closure ring.
The proof for the strong case follows similar lines, although the recursive step

in the proof of the identity scheme f(a) ◦ C(a) = f(0) ◦ C(a), where f(x) is an
arbitrary derived unary operation on R, requires consideration of a case of the
form f(x) = g(x) ◦ h(x) where the identity holds for g(x) and h(x). Then

(g(a) ◦ h(a)) ◦ C(a) = (g(a) ◦ C(a)) ◦ (h(a) ◦ C(a))

= (g(0) ◦ C(a)) ◦ (h(0) ◦ C(a))

= (g(0) ◦ h(0)) ◦ C(a)

= f(0) ◦ C(a).
�

Corollary 7. For the closure ring R and for all a, b ∈ R, f(a) ◦ C(a − b) =
f(b) ◦C(a− b), where f(x) is any derived unary operation on R not involving the
adjoint operation.

Proof: For such an f(x), f(a) ◦C(a− b) = f(b+(a− b)) ◦C(a− b) = f(b+0) ◦
C(a − b) by the previous theorem applied to g(x) = f(b+ x) with x = a − b. �
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2. Normal filters and closed ideals

Every closure ring R is a ring; consequently congruences of R respecting all
operations including C correspond to certain ideals of R. In the case of Boolean
closure rings, it is shown in [5] that these are exactly ideals closed under C, a fact
which we generalise below. Let us call an ideal J of the closure ring R closed if
C(i) ∈ J for all i ∈ J . Note that both R and {0} are closed ideals of R.
We begin with a useful result.

Lemma 8. If R is a closure ring, then for all a, b ∈ R,

• C(−a) = C(a),
• C(a+ b) ≥ C(a) ◦ C(b),
• C(ab) ≥ C(b), and
• if R is strong then C(ab) ≥ C(a).

Proof: Let a, b ∈ R. For α ∈ LR, aα = a if and only if (−a)α = −a, and the
first part follows from Proposition 2. Similarly, because

(a+ b)(C(a) ◦ C(b)) = (a+ b)(C(a) + C(b)− C(a)C(b)) = a+ b,

it follows that C(a+b) ≥ C(a)◦C(b), proving the second part. Further, (ab)C(b) =
a(bC(b)) = ab so C(b) ≤ C(ab), and if R is strong then (ab)C(a) = ab so C(a) ≤
C(ab), and the final two parts are proved. �

Theorem 9. The ring ideal J of the closure ring R induces a congruence re-
specting C if and only if J is closed.

Proof: Let J be an ideal of the closure ring R.
Suppose J is closed, with a and b congruent modulo J : thus a − b ∈ J , so

because J is closed, C(a − b) ∈ J . But by Corollary 7, C(a) ◦ C(a − b) =
C(b) ◦ C(a − b), from which it follows immediately that C(a) − C(b) = (C(a) −
C(b))C(a − b) ∈ J , so the ring congruence induced by J respects C also.
Conversely, if J respects C, then C(j) ∈ J for all j ∈ J since C(0) = 0. �

Let R be a closure ring, with F a filter of LR: thus for all α, β ∈ F , α ◦ β ∈ F
and if α ∈ F and β ≥ α for some β ∈ LR, then β ∈ F . Note that if C(a) ∈ F
then because C(ra) ≥ C(a), C(ra) ∈ F from Lemma 8; indeed if R is strong then
C(ar) ∈ F also. In general, we shall say a filter F of LR is normal if C(a) ∈ F for
some a ∈ R implies C(ar) ∈ F for all r ∈ R; thus all filters of LR are normal in
the strong case, by the final part of Lemma 8. Note that the collection of normal
filters of LR is closed under arbitrary intersections; hence it is a complete lattice.
For any closed ideal J of R, if C(a) ∈ J then a = aC(a) ∈ J also, and it follows

easily that J ∩LR is a normal filter of LR. Conversely, for any normal filter F of
LR, define JF = {a | C(a) ∈ F}.
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Lemma 10. JF is a closed ideal of R.

Proof: Suppose a, b ∈ JF . Then C(a), C(b) ∈ F , so C(a) ◦ C(b) ∈ F . Because
C(a + b) ≥ C(a) ◦ C(b) from the second part of Lemma 8, C(a + b) ∈ F and so
a + b ∈ JF . Also, C(a) = C(−a) from the first part of Lemma 8, so −a ∈ JF .
Finally, if r ∈ R, then C(ra) ≥ C(a) by the fourth part of Lemma 8, so C(ra) ∈ F
and ra ∈ JF ; also, C(ar) ∈ F by normality, so ar ∈ JF . So JF is an ideal of R,
which is closed, since if a ∈ JF then C(C(a)) = C(a) ∈ F so C(a) ∈ JF . �

Theorem 11. The lattice of normal filters of LR is isomorphic to the lattice of

closed ideals of R, under the correspondence

J ↔ J ∩ LR, F ↔ JF .

Proof: The correspondences are clearly order-preserving; we show they are mu-
tually inverse.
Suppose F is a normal filter of LR. If α ∈ F then C(α) = α ∈ F , so α ∈

JF ∩ LR. Conversely, if α ∈ JF ∩ LR then α = C(α) ∈ F . Thus JF ∩ LR = F .
On the other hand, suppose I is a closed ideal of R. If a ∈ JI∩LR

then C(a) ∈ I
so a ∈ I. Conversely, if a ∈ I then C(a) ∈ I ∩ LR and so a ∈ JI∩LR

. Thus
I = JI∩LR

. �

Theorem 12. Let R be a strong closure ring. Then R is simple if and only if
LR = {0, e} for some e ∈ R; in this case e is a right identity in R.

Proof: If R is strong and simple then the only filters in LR are {0} and LR itself
by the previous theorem, so LR = {0, e} for some e ∈ R. Now for a 6= 0, the fact
that a = aC(a) implies that C(a) = e, so ae = a; trivially 0e = 0.
Conversely, if LR = {0, e} for some e ∈ R then for non-zero a ∈ R, arguing

as above shows that C(a) = e, so for any non-zero closed ideal I of R and any
non-zero b ∈ I, C(a) = e = C(b) ∈ I, so a ∈ I. Thus I = R and R is simple. �

Any Cartesian product R of simple closure rings is such that the closure of an
element represents the “characteristic function” of where an element is non-zero,
with C(a) equal to zero where a is zero and e where it is non-zero, for any a ∈ R;
moreover the semilattice LR of all such “characteristic functions” is a Boolean
algebra, isomorphic to the power set of the index set. Conversely, we have the
following

Theorem 13. Let R be a strong closure ring for which LR is a Boolean algebra.

Then R is a subdirect product of simple closure rings.

Proof: Recall from Proposition 4 that in any closure ring R, (LR,∨,∧) is a
Brouwerian lattice in which ∨ is ring multiplication and ∧ is ◦. Suppose LR is
a Boolean algebra with bottom element e. Then the complement α′ of α ∈ LR
is the relative pseudo-complement of α with respect to e which, by the proof of
Proposition 4, is C(e − αe) = C(e − α) = C(α − e) by the first part of Lemma 8.
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Let F be an ultra-filter of LR; thus α ∈ F or α′ ∈ F for any α ∈ LR, and e /∈ F .
Now if a /∈ JF then C(a) /∈ F , so C(C(a)−e) = C(a)′ ∈ F , and so C(a)−e ∈ JF .
Thus LR/JF

= {0 + JF , e+ JF }, and R/JF is simple by Theorem 12.

Finally, let J =
⋂

{JF | F an ultrafilter of LR} = {a | C(a) ∈ F for all
ultrafilters F of LR}. Suppose a 6= 0. If C(a) = e and a ∈ J then LR = {e},
whence e = 0 and so R = {0}, a contradiction, so a /∈ J . If C(a) 6= e then because
C(a) 6= 0, {β | C(a)′ ≤ β} is a filter which extends to an ultrafilter G containing
C(a)′ and therefore not containing C(a), so a /∈ JG and a /∈ J . Thus J = {0}
and so R is a subdirect product of the R/JF . �

Next we consider an interesting family of examples. Let R be a ring with
identity 1 6= 0. Then in M2(R), let L = {0, e, f, 1}, where 0, 1 are as usual and

e =
(

1 0
0 0

)

, f =
(

0 0
0 1

)

. Then e2 = e, f2 = f and L is a subsemigroup of R

which is a semilattice with 1 < e, f < 0. Moreover if ae = a and af = a then
a = a1 = a(e + f) = 2a so a = 0. It follows easily that C(a) = max{α ∈ L |
a ◦ α = α} = max{α ∈ L | aα = a} exists for all a ∈ M2(R), which is therefore

a closure ring in which LM2(R) = L. Letting a = e and b =
(

1 1
0 0

)

, observe that

ab =
(

1 1
0 0

)

= b, but abC(a) = bC(a) = be = e, soM2(R) is not strong. Note that

if R is a simple ring then so is M2(R) which is therefore simple as a closure ring,
and hence subdirectly irreducible, although |L| > 2 and L is a Boolean algebra
(in which e′ = f).
Now consider the subring A of M2(R) consisting of lower triangular matrices

of the form
(

x 0
y z

)

, x, y, z ∈ R. Clearly L′ = C(A) = {C(a) | a ∈ A} ⊆ A,

so A is a sub-closure ring of M2(R). Moreover, letting a =
(

x 0
y z

)

∈ A, ea =
(

1 0
0 0

) (

x 0
y z

)

=
(

x 0
0 0

)

so eae =
(

x 0
0 0

) (

1 0
0 0

)

=
(

x 0
0 0

)

= ea; of course 1a1 = a1

and 0a0 = a0. Thus αaα = aα for all a ∈ A and α ∈ L′, so A is strong. Hence
closed ideals of A correspond to filters of LA. But there is only one proper filter of

the chain LA = {1, e, 0}, namely F = {e, 0}. So JF =
(

R 0
R 0

)

is the unique proper

closed ideal of A which is therefore subdirectly irreducible, although non-simple
since |LA| > 2. This is consistent with Theorem 13 because L is not Boolean.
Note also that JF is strong (since A is) and is simple with right identity e by
Theorem 12.

3. Constructions

We now consider various ways of building closure rings out of simpler ones. Of
course, viewing the class of closure rings as a variety of rings with an additional
unary operation, three obvious ways to do this are by taking products, subobjects
and homomorphic images within this variety. As we have seen, factoring a closed
ideal out of a closure ring gives a quotient closure ring structure. Given a closure
ring, taking a subring closed under the closure operation again yields a closure
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ring. More relevantly here, any Cartesian product of closure rings is a closure ring
if one defines the closure operation component-wise (like the other operations).
Of more interest is to try to define a closure operation on the ring of matrices

over a closure ring, or on the ring of polynomials in arbitrarily many (perhaps
non-commuting) indeterminates over a closure ring. Both things can be done in
a natural manner.
For finitely many elements a1, a2, . . . , ak of the ring R, denote by Π◦i ai the

element a1 ◦ a2 ◦ · · · ◦ ak of R. We extend to multiple subscripts in the obvious
way. For a1, a2, . . . , an ∈ R, let diag(a1, a2, . . . , an) be the matrix inMn(R) with
a1, a2, . . . , an down the main diagonal and zeros elsewhere.

Theorem 14. If C is a closure operation on the ring R, then so is C on
Mn(R) defined by setting C(A) = diag(αA, αA, . . . , αA) where A = (aij) and
α = Π◦k,lC(aij). Moreover Mn(R) is strong if and only if R is strong.

Proof: Suppose C is a closure operation on R and extend to Mn(R) as in the
theorem statement.
First note that for all a1, a2, . . . , an ∈ R and all i = 1, 2, . . . , n, ai◦(Π

◦
i C(ai)) =

(ai ◦ C(ai)) ◦ C(a1) ◦ C(a2 ◦ · · · ◦ an) = C(a1) ◦ C(a2) ◦ · · · ◦ C(an) = (Π
◦
i C(ai)).

Let L = {diag(α, α, . . . , α) | α ∈ LR} ⊆ Mn(R). Then L is a submonoid of
(Mn(R), ◦), isomorphic to LR in (R, ◦). For A = (aij) ∈ Mn(R), define αA ∈ LR
and C(A) as in the theorem statement. Then AC(A) = (aijαA) = (aij + αA −
aij ◦ αA) = (aij + αA − αA) = (aij) = A. Moreover, letting A · diag(α) = A for
some α ∈ LR, we have aijα = aij + α − aij ◦ α = aij , so aij ◦ α = α, so

C(aij) ◦ α = C(aij) ◦ C(α) = C(aij ◦ α) ◦ C(α) = C(α) ◦ C(α) = C(α) = α.

So α◦αA = α◦(Π◦ijC(aij)) = Π
◦
ij(α◦C(aij)) = Π

◦
ijα = α, so C(A)diag(α, α, . . . ,

α) = diag(αAα, αAα, . . . , αAα) = diag(αA, αA, . . . , αA) = C(A), so C(A) =
max{β ∈ L | Aβ = β}, which is therefore a closure operation onMn(R) for which
LMn(R) = L by Proposition 3.

If R is strong then αaα = αa for all α ∈ LR and a ∈ R by Lemma 5, so
diag(α, α, . . . , α)A · diag(α, α, . . . , α) = (αaijα) = (αaij) = diag(α, α, . . . , α)A
for all α ∈ LR and A ∈ Mn(R), so Mn(R) is strong. Conversely if Mn(R) is
strong then so must the copy of R consisting of all matrices of the form diag(a),
a ∈ R. �

Note that the closure operation on Mn(R) extends the original closure opera-
tion on the usual copy of R in Mn(R), {diag(a, a, . . . , a) | a ∈ R}.
If R has an identity, it is well-known that ideals of R correspond to ideals of

Mn(R) under the lattice isomorphism I ↔ Mn(I). Indeed closed ideals corre-
spond under the same mapping. For if I is closed then for A = (aij) ∈ Mn(I),
C(A) = Π◦ijC(aij)In ∈ Mn(I) since Π

◦
ijC(aij) ∈ I. Conversely, ifMn(I) is closed,

then because I = {a | aIn ∈ Mn(I)}, and because given aIn ∈ Mn(I) we have
C(a)In = C(aIn) ∈ Mn(I), it follows that C(a) ∈ I.
There is a similar result to Theorem 14 for polynomial rings.
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Theorem 15. Let S be a set of indeterminates (commuting or otherwise). If R
has closure operation C, then R[S] has closure operation C obtained by setting
C(p) = Π◦{C(a) | a a coefficient in p} for all p ∈ R[S].

Proof: Now R is a subring of R[S] in the usual way, and so the lattice LR
associated with C on R is also embedded in R[S]. Moreover, for p ∈ R[S] and
α ∈ LR, p ◦ α = α if and only if pα = p if and only if aα = a for all coefficients a
of p, if and only if a◦α = α for all coefficients a appearing in p. Arguing as in the
previous proof, defining C(p) = Π◦{C(a) | a is a coefficient in p} for all p ∈ R[S]
makes C a closure operation on R[S]. �

4. Central closure rings

LetR be a ring. The set of central idempotents E(R) = {e ∈ R | e2 = e, er = re
for all r ∈ R} is a submonoid of (R, ◦), and is closed under ring multiplication
as well. If R has identity 1 then 1 ∈ E(R) and it is well known that E(R)
is a Boolean algebra under ring multiplication and the adjoint operation, with
e′ = 1 − e. (Note that we view the ring product as join, the opposite of what is
usually done.) In general, E(R) is a Brouwerian lattice with top element 0. We
next consider closure rings for which LR = E(R), or in other words, rings for
which max{α ∈ E(R) | aα = a} exists for all a ∈ R. Let us call such a ring a
central closure ring; trivially such closure rings are strong.
If E(R) = {0, 1} for some ring R, then R is a central closure ring, with C(0) = 0

and C(a) = 1 otherwise.
The class of central closure rings is closed under the constructions discussed

in the previous section (forming Cartesian products of closure rings, and forming
matrix and polynomial rings over a given closure ring), and indeed the closure
operations defined on the constructed rings are exactly those defined in terms
of its central idempotents. To show this we need a preliminary result of some
independent interest.

Proposition 16. Let A be a ring, (0 : A) = {r ∈ A | ra = ar = 0 for all a ∈ A}
the two-sided annihilator of A. The centre Z(Mn(A)) of the n×n matrix ring A
is {(aij) | aij ∈ (0 : A) whenever i 6= j, aii ∈ Z(A) for all i, aii − ajj ∈ (0 : A) for
all i, j}.

Proof: We use the notation [x]ij to mean the matrix with (i, j) entry equal to
x and all others zero.
Let (aij) =

∑

[aij ]ij be in Z(Mn(A)). For every x ∈ A and every k, l, we have
∑

j

[xalj ]kj = [x]kl(aij) = (aij)[x]kl =
∑

i

[aikx]il.

If j 6= l then xalj = 0 and if i 6= k then aikx = 0. Since k, l and x are arbitrary,
we conclude that all off-diagonal entries if (aij) are in (0 : A). Now (0 :Mn(A)) ⊆
Z(Mn(A)) so

∑

i6=j [aij ]ij (being clearly in (0 :Mn(A))) is in Z(Mn(A)), whence
∑n

i=1[aii]ii ∈ Z(Mn(A)).
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Again, for x ∈ A and any k,

[akkx]kk =

n
∑

i=1

[aii]ii[x]kk = [x]kk

n
∑

i=1

[aii] = [xakk]kk,

so akkx = xakk and akk ∈ Z(A).
For every x ∈ A and every k, l, we have

∑n
i=1[aii]ii[x]kl = [x]kl

∑n
i=1[aii]ii =

[xall]kl so akkx = xall. But akk and all are central, so (akk − all)x = 0 =
x(akk − all), that is, akk − all ∈ (0 : A) for all k, l.
Conversely, if (aij) satisfies all the stated conditions, then for every (bij) ∈

Mn(A), the (r, s) entry of (aij)(bij) is
∑n

j=1 arjbjs = arrbrs (since off-diagonal

entries are in (0 : A)), and the (r, s) entry of (bij)(aij) is

n
∑

j=1

brjajs = brsass since off-diagonal entries are in (0 : A)

= assbrs since diagonal entries are central

= arrbrs since ass − arr ∈ (0 : A).

The result follows. �

Corollary 17. If (0 : A) = 0 then Z(Mn(A)) consists of the matrices of the form
diag(a, a, . . . , a), a ∈ Z(A).

Corollary 18. A matrix is in E(Mn(A)) if and only if it equals diag(e, e, . . . , e)
for some e ∈ E(A).

Proof: Any matrix of the stated form is obviously in E(Mn(A)). Conversely,
every matrix in E(Mn(A)) is also in Z(Mn(A)) and so must be as described in
Proposition 16: it has the form diag(a11, a22, . . . , ann)+α, where each aii ∈ Z(A)
and α ∈ (0 :Mn(A)) has all diagonal entries zero. So

diag(a11, a22, . . . , ann) + α = (diag(a11, a22, . . . , ann) + α)2

= diag(a11, a22, . . . , ann)
2 + terms containing α

= diag(a11, a22, . . . , ann)
2

= diag(a211, a
2
22, . . . , a2nn),

so α = 0 and each aii is idempotent (as well as central) and hence in E(A). Now
for all i, j, we have aii − ajj ∈ (0 : A), so

0 = (aii − ajj)ajj = aiiajj − a2jj = aiiajj − ajj

whence
ajj = aiiajj = ajjaii = aii

since aii, ajj ∈ Z(A). So the matrix equals diag(e, e, . . . , e) where e = aii for
each i. �
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Proposition 19. • If {Rλ | λ ∈ Λ} is a set of central closure rings, then
R = ΠΛRλ is a central closure ring, and viewed as a Cartesian product in the

variety of closure rings, the product closure operation is that determined by E(R).
• If R is a central closure ring, then so is Mn(R) for any n > 0, and the
resulting operation is exactly that defined in Theorem 14 in terms of the
closure operation on R associated with E(R).

• If R is a central closure ring, then so is R[S] for any set of indetermi-
nates S, and the resulting closure operation is exactly that defined in
Theorem 15 in terms of the closure operation on R associated with E(R).

Proof: Suppose {Rλ | λ ∈ Λ} is a set of central closure rings and R = ΠΛRλ.
Now E(R) = {(αλ)Λ | αλ ∈ E(Rλ)}. For (aλ) ∈ ΠΛRλ, note that

(aλ)Λ ◦ (C(aλ))Λ = (aλ ◦ C(aλ))Λ = C(aλ)Λ,

and moreover for any (αλ)Λ ∈ E(R), if (aλ)Λ ◦ (αλ)Λ = (αλ)Λ, then aλ ◦ αλ =
αλ for all λ ∈ Λ, so by definition, αλ ◦ C(aλ) = αλ for all such λ. Hence
(αλ)Λ ◦C((aλ)Λ) = (C(αλ))Λ ◦ (C(aλ))Λ = (C(αλ) ◦C(aλ))Λ = (C(αλ ◦ aλ))Λ =
(C(αλ))Λ = (αλ)Λ, so (C(aλ))Λ = C((aλ)Λ), where the latter is defined in terms
of E(R).
For the second part, suppose R is a central closure ring. Then LR = E(R),

E(Mn(R)) = {diag(e, e, . . . , e) | e ∈ E(R)} by Corollary 18, and the result now
follows as in the proof of Theorem 14.
For the third part, again note that if R is a central closure ring and S is a set

of indeterminates, then E(R[S]) = E(R), since all idempotents of R[S] are in R
and the centre of R is contained in the centre of R[S]. Again, the result follows
as in the proof of Theorem 15. �

An example of a ring which is not a central closure ring is as follows. Let
R = CS(R) be the ring of convergent real sequences, a subring of the ring of all

real sequences RN . This is a commutative ring with identity, and E(R) consists
of those sequences all of whose entries are 0 or 1 and which become constant. Let
θ = (0, 12 , 0,

1
3 , 0,

1
4 , . . . ). Any e ∈ E(R) for which θe = θ is ultimately 1, as it

cannot be ultimately zero. But θen = θ if en = (0, 1, 0, 1, 0, 1, . . . , 1, 1, 1, 1, 1, . . . ),
where en contains exactly n zero entries. Note that en ◦ en+1 = en so e1, e2, . . .
is an infinite ascending chain in E(R) having no upper bound in E(R), so C(θ) =
max{e | e ∈ E(R), θe = θ} does not exist. Letting Ln consist of all elements
of E(R) which are zero after the n’th term, it is clear that Ln is a sublattice of
E(R) which is itself a Boolean algebra, and that there exists a closure operationCn

defined relative to Ln for each n. Note also that RN itself is a central closure ring
since E(R) = {0, 1} by Proposition 19; thus a subring (with the same identity) of

a central closure ring is not in general a central closure ring itself. Also, R(N) is
a subring of CS(R) which is therefore a subdirect product, so the class of central
closure rings is not closed under subdirect products.
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A strongly regular ring R is a regular ring (one for which for all a ∈ R there
exists b ∈ R such that aba = a) satisfying the following equivalent (for regular
rings) conditions:

1. there are no non-zero nilpotent elements;
2. all idempotent elements are central;
3. for all a ∈ R there exists b ∈ R for which a2b = a.

Thus a commutative ring is strongly regular if and only if it is regular. The class
of strongly regular rings contains all division rings and is closed under direct sums,
direct products and homomorphic images, whence also under filtered products.

Proposition 20. Every strongly regular ring is a central closure ring.

Proof: Let R be strongly regular, a ∈ R. Then there exists b ∈ R such that
aba = a, so (ab)2 = (aba)b = ab so ab ∈ E(R) and a(ab) = (ab)a = a. If ae = a
for some e ∈ E(R), then eab = aeb = ab so C(A) exists relative to E(R) and
is ab. �

For the remainder of the section we consider only rings with identity. For R
such a ring and a ∈ R, define (a : 0) = {r ∈ R | ar = 0}, the right annihilator of
a in R. For X ⊆ R, define (X : 0) = {r ∈ R | xr = 0 for all x ∈ X}, the right
annihilator of X in R.

Proposition 21. For any ring with identity R, F (a) = (a : 0) ∩ E(R) is a filter
of E(R), and R is a central closure ring if and only if each such filter is principal.

Proof: If e, f ∈ F (a) then ae = af = 0 so a(e ◦ f) = ae + af − aef = 0, and
if also g ∈ E(R), then a(eg) = (ae)g = 0, so F (a) is a filter. Moreover F (a) is
principal if and only if there is a smallest e ∈ E(R) for which ae = 0; that is,
there is a largest f = e′ = 1− e ∈ E(R) for which af = a(1− e) = a. �

Thus if the Boolean algebra E(R) is Noetherian as a Boolean ring (for instance,
if R is finite), then all ideals are principal (since finitely many generators can be
replaced by their meet), which implies that all filters are principal as well by
duality, and so R is a central closure ring.

Corollary 22. Let R be a ring with identity. If for all a ∈ R, (a : 0) is generated
as a right ideal by a central idempotent, then R is a central closure ring.

Proof: If (a : 0) = eaR for some ea ∈ E(R), then (a : 0) ∩ E(R) = eaE(R)
which is therefore principal in E(R). �

A ring R with identity is called a Baer ring if for any X ⊆ R, (X : 0) = eR for
some idempotent e. So by the previous corollary, every commutative Baer ring is
a central closure ring. Indeed Kaplansky ([2, Theorem 9, p. 9]) has proved that
all Baer rings are central closure rings. (An important example of a Baer ring is
the ring R of all linear transformations of a vector space of arbitrary dimension
([1, Proposition 1, p. 179]), but because E(R) = {0, 1}, this is not interesting.)
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Picavet [4] calls a commutative ring R with identity a weak Baer ring if for
every a ∈ R, (a : 0) = eR for some (necessarily central) idempotent e. So for com-
mutative rings, every Baer ring is a weak Baer ring, and by the previous corollary,
every weak Baer ring is a central closure ring. Neither of these implications is
reversible.
Let R be the subring of the ring of all real sequences RN consisting of all

ultimately constant sequences. (The argument works with any integral domain
in place of R.) If a = (ai) ∈ R, let ea = (ui) where ui = 1 if ai = 0 and
is zero otherwise; thus ea is ultimately zero and so is in R. Clearly aea = 0.
If also ab = 0 for some b = (bi) ∈ R, then bi = 0 whenever ai 6= 0 and so
bi = 0 = biui for such i. If ai = 0 then biui = bi1 = bi, so b(= be) = eb ∈ eR.
Hence (a : 0) ⊆ eR, and the reverse inclusion is clear, so (a : 0) = eR. It
follows that R is a weak Baer ring. Now consider S = {e2, e4, e6, . . . } where
e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, 0, . . . ), . . . . If c = (ci) ∈ (S : 0) then for all i we
have 0 = e2c = (0, c2, 0, 0, . . . ), so c2 = 0 and in the same way, c2i = 0 for all
i. But c ∈ R so c is ultimately zero, and there exists l such that ci = 0 for all
i > l. Suppose c is idempotent with (S : 0) = cR. Then ci = 1 for finitely many
i and is zero elsewhere, so cR cannot contain all of e3, e5, e7, . . . , all of which are
in (S : 0). So (S : 0) is not generated by an idempotent and R is not a Baer ring.
Note that R is a unital subring of R′ = CS(R), E(R) = E(R′) and R is a central
closure ring while R′ is not.
Not all commutative central closure rings are weak Baer rings. If R = Z0 ∗ Z

denotes the zero ring on Z with the identity adjoined (that is, R = {(m, n) |
m, n ∈ Z}, with (m, n) + (k, l) = (m+ k, n+ l) and (m, n)(k, l) = (ml+ nk, nl)),
then E(R) = {0, 1} so R is a central closure ring. However, (1, 0)(1, 0) = (0, 0) so
0R = {0} ⊂ ((1, 0) : 0) ⊂ R = 1R, where the inclusions are strict, so ((1, 0) : 0) is
not generated by an idempotent and R is not a weak Baer ring.
Recall that if E(R) = {0, 1} for some ring R, then R is a central closure ring,

with C(0) = 0 and C(a) = 1 otherwise; moreover R is simple as a closure ring.
Conversely, if a central closure ring is simple as a closure ring then E(R) = LR =
{0, e} where e is a right identity and hence an identity for R. So a central closure
ring is simple as a closure ring if and only if R has an identity and E(R) is simple
as a Boolean algebra; in such cases we say R is a simple central closure ring.
A central closure ring R with identity is a strong closure ring and E(R) is

a Boolean algebra, so Theorem 13 applies. The question arises as to whether
the simple closure rings in the subdirect product representation of R are simple
central closure rings.

Theorem 23. Every commutative central closure ring with identity is embed-

dable in a subdirect product of simple central closure rings.

Proof: Suppose R is a central closure ring. For F an ultrafilter of the Boolean
algebra E(R), if e+ JF is idempotent in R/JF for some e ∈ R, then e2− e ∈ JF ,
so α = C(e2−e) ∈ F . Now (e2−e)α = e2−e, so (e2−e)(1−α) = 0, so e2β = eβ,
β = 1− α ∈ E(R). Thus (eβ)2 = eβeβ = e2β = eβ. Hence in R/JF , eβ + JF =
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C(eβ)+JF = C(eβ+JF ) ∈ LR/JF
= {0+JF , 1+JF} by the proof of Theorem 13

and by Theorem 12. So either eβ ∈ JF or eβ − 1 ∈ JF . Now α ∈ F ⊆ JF , and if
eβ−1 ∈ JF then e−1 = (eβ−1)−e(β−1) = (eβ−1)+eα ∈ JF , while if eβ ∈ JF
then e = eβ − e(β − 1) = eβ + eα ∈ JF . Thus E(R/JF ) = {0 + JF , 1 + JF }. �

This theoremmay generalise to the non-commutative case: we know of no coun-
terexample. From Proposition 20 and the theorem, we can recover the well-known
fact that every commutative regular ring is a subdirect product of (strongly) reg-
ular rings having only 0 and 1 as idempotents, that is, fields.
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