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On a generalization of QI-rings

J. Jirásko

Abstract. In this paper rings for which every s-torsion quasi-injective module is weakly
s-divisible for a hereditary preradical s are characterized in terms of the properties of the
corresponding lattice of the (hereditary) preradicals. In case of a stable torsion theory
these rings coincide with TQI-rings investigated by J. Ahsan and E. Enochs in [1]. Our
aim was to generalize some results concerning QI-rings obtained by J.S. Golan and
S.R. López-Permouth in [12]. A characterization of the QI-property in the category
σ[M ] then follows as a consequence.
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In what follows, R stands for an associative ring with a unit element andR-Mod
denotes the category of all unitary left R-modules.
First of all we recall some basic definitions from the theory of preradicals (for

details see L. Bican, T. Kepka, P. Němec [5] and J.S. Golan [11]).
A preradical r for R-Mod is any subfunctor of the identity functor, i.e. r assigns

to each moduleM its submodule r(M) in such a way that every homomorphism of
M into N induces a homomorphism of r(M) into r(N) by restriction. A preradical
r is said to be
-idempotent if r(r(M)) = r(M) for every module M ,
-a radical if r(M/r(M)) = 0 for every module M ,
-hereditary if r(N) = N ∩ r(M) for every submodule N of a module M ,
-stable if r(M) is a direct summand in M for every injective module M .

A module M is r-torsion if r(M) = M and r-torsionfree if r(M) = 0. We shall
denote by Tr (Fr) the class of all r-torsion (r-torsionfree) modules. If r and
s are preradicals then r ◦ s is the preradical defined by (r ◦ s)(M) = r(s(M)),
M ∈ R-Mod and r ≤ s means r(M) ⊆ s(M) for every M ∈ R-Mod. The
idempotent core r of a preradical r is defined by r(M) =

∑

K, where K runs
through all r-torsion submodules K of M . The injective hull of a module M will
be denoted by E(M). The hereditary closure h(r) of a preradical r is defined
by h(r)(M) = M ∩ r(E(M)) for every module M . If A is a non-empty class
of modules then the idempotent preradical pA is defined by pA(M) =

∑

Im f ,
f ∈ HomR(A, M), A ∈ A for every M ∈ R-Mod. The identity functor will be
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denoted by id. Finally, σ[M ] denotes the category of all modules subgenerated
by a module M .
IfM is a module then a module Q is calledM -injective if every homomorphism

from a submodule ofM into Q can be extended to a homomorphism fromM into
Q. If s is a preradical then a module Q is called weakly s-divisible if it is M -
injective for everyM ∈ Ts. Since Ts = Ts we will assume without loss of generality
throughout the whole text that s is an idempotent preradical. It is easy to see
that a module Q is weakly s-divisible if and only if s(E(Q)) ⊆ Q (see [5]) and
that a module Q is M -injective if and only if it is weakly p{M}-divisible (see [4]).

Further, Es(Q) = Q+ s(E(Q)) is the weakly s-divisible hull of a module Q.
If M is a module then a module Q is called M -tight if every homomorphic

image of M which is embeddable in E(Q) is also embeddable in Q (see [2]). Now
we can define a tight module with respect to a preradical.

Definition 1. A module Q is said to be s-tight if it isM -tight for everyM ∈ Ts.

As it is easy to see a module Q is s-tight if and only if s(E(Q)) can be embedded
in Q and consequently every weakly s-divisible module is s-tight. The converse
is true in case of quasi-injective modules.

Lemma 1. Let Q be a quasi-injective module. Then Q is s-tight if and only if
it is weakly s-divisible.

Proof: If Q is s-tight then there is a monomorphism f : s(E(Q)) → Q. Let us
consider the following diagram:

s(E(Q))
f

−−−−→ Q

i





y

E(Q)

,

where i is the inclusion map. Then there is a homomorphism g : Q → E(Q)
such that fg = i. Now Qg ⊆ Q since Q is quasi-injective and consequently
s(E(Q)) = Im i ⊆ Qg ⊆ Q. Hence Q is weakly s-divisible. �

The following notion of generalized stability of preradicals plays an important
role in our characterization of generalized QI-rings.

Definition 2. A preradical r is said to be s-stable if r(M) is a direct summand
in M for every weakly s-divisible s-torsion module M .

Proposition 1. Let r be a preradical. Then

(i) if r is s-stable then Tr◦s = Tr ∩Ts is closed under weakly s-divisible hulls;
(ii) if r ◦s is idempotent (e.g. if r is idempotent and s is hereditary) and Tr◦s

is closed under weakly s-divisible hulls then r is s-stable;
(iii) if r ◦ s is stable then r is s-stable. The converse is true if s is stable;
(iv) if r is hereditary and s-stable then r(M/r(M)) = 0 for every s-torsion

module M .
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Proof: (i). If T ∈ Tr◦s then Es(T ) = s(E(T )) and r(s(E(T ))) ⊕ A = s(E(T ))
for some module A since r is s-stable. Now T ⊆ r(s(E(T ))) and T ∩A = 0 yields
A = 0. Thus Es(T ) = s(E(T )) ∈ Tr.

(ii). Let Q be a s-torsion weakly s-divisible module. Then r(Q) ∈ Tr◦s and con-
sequently Es(r(Q)) = s(E(r(Q))) ∈ Tr◦s. Now Es(r(Q)) is a direct summand
in Q since Q is s-torsion and weakly s-divisible. But Es(r(Q)) ⊆ (r ◦ s)(Q) =
r(Q) ⊆ Es(r(Q)) which yields Es(r(Q)) = r(Q) and consequently r is s-stable.

(iii). If r ◦ s is stable and Q is a weakly s-divisible s-torsion module then Q =
s(E(Q)). Now r(Q) = (r ◦ s)(E(Q)) is a direct summand in E(Q) and therefore
r(Q) is also a direct summand in Q.
On the other hand, if s is stable, r is s-stable and Q is injective then s(Q) is
weakly s-divisible s-torsion. Hence (r ◦ s)(Q) is a direct summand in s(Q) and
consequently also in Q since s is stable.

(iv). If M is s-torsion then we can consider the following short exact sequence:

0→ (r ◦ s)(E(M))/r(M)→ s(E(M))/r(M)→ s(E(M))/(r ◦ s)(E(M))→ 0.

Now s(E(M)) is weakly s-divisible s-torsion and therefore (r ◦ s)(E(M)) is a
direct summand in s(E(M)). From it follows that s(E(M))/(r ◦ s)(E(M)) is
r-torsionfree. Hence r(s(E(M))/r(M)) ⊆ (r ◦ s)(E(M))/r(M) and consequently
r(M/r(M)) = M/r(M) ∩ r(s(E(M))/r(M)) ⊆ (M ∩ (r ◦ s)(E(M)))/r(M) =
r(M)/r(M) = 0, r being hereditary. �

Corollary 1. LetM be a module. An idempotent preradical r is h(p{M})-stable

if and only if Tr ∩ σ[M ] is closed under M -injective hulls.

Proposition 2. Let r and s be hereditary preradicals. Then the following con-
ditions are equivalent:

(i) every M ∈ Ts\Tr contains a nonzero r-torsionfree submodule;
(ii) Tr ∩ Ts is closed under weakly s-divisible hulls;
(iii) if A ⊆ B ⊆ C such that C/A ∈ Ts and B/A ∈ Tr then there is D ⊆ C

with D ∩ B = A and C/D ∈ Tr;

(iv) if I ⊆ K are left ideals with K/I = r(R/I), where R/I ∈ Ts then there is

a left ideal L with L ∩ K = I and R/L ∈ Tr ;

(v) if I ⊆ K 6= R are left ideals with K/I = r(R/I) and R/I ∈ Ts then there

is a left ideal L 6= I with L ∩ K = I;
(vi) r is s-stable;
(vii) ¬(∃M)(M ∈ Ts & r(M) $ ′M);
(viii) weakly s-divisible hulls of cyclic s-torsion modules split in r.

Proof: (i) implies (ii). Let N ∈ Tr ∩ Ts. If Es(N) = s(E(N)) /∈ Tr then there is
0 6= K ⊆ s(E(N)) with r(K) = 0. Hence K ∩ N ∈ Tr ∩ Fr = 0 and consequently
K = 0 since N ⊆ ′s(E(N)), a contradiction.

(ii) implies (iii). By Zorn’s lemma there is a submodule D of C maximal with
respect to the property D∩B = A. Then (B+D)/D ∼= B/(B∩D) = B/A ∈ Tr ∩
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Ts. From the maximality of D follows that (B +D)/D ⊆ ′C/D. Now C/D ∈ Ts

and therefore C/D ⊆ s(E((B +D)/D)). Further, s(E((B +D)/D)) ∈ Tr ∩ Ts by
assumption and consequently C/D ∈ Tr , r being hereditary.

(iii) implies (iv). Obvious.

(iv) implies (v). Obviously, if L = I then K = R, a contradiction.

(vi) is equivalent to (ii). It follows immediately from Proposition 1(i) and (ii).

(v) implies (ii). Let T ∈ Tr ∩ Ts. If Es(T ) = s(E(T )) /∈ Tr then there is
x ∈ s(E(T ))\r(s(E(T ))). Put I = (0 : x)l and K = {t ∈ R; tx ∈ r(s(E(T )))}.
Then K 6= R, K/I = r(R/I) and R/I ∈ Ts. Now by (v) there is a left ideal L of
R such that L 6= I and L ∩ K = I. Let a ∈ L\I. Then 0 6= ax ∈ s(E(T )) and
consequently there is b ∈ R such that 0 6= bax ∈ r(s(E(T ))) by the essentiality of
r(s(E(T ))) in s(E(T )). Hence ba ∈ K ∩ L = I, a contradiction.

(iii) implies (vii). Let us suppose on the contrary that there is a module M ∈ Ts

such that r(M) $ ′M . Then by (iii) there is a module D ⊆ M with D∩r(M) = 0
and M/D ∈ Tr, a contradiction.

(vii) implies (i). Let M ∈ Ts\Tr. Then ¬(r(M) $ ′M) by assumption. Thus
there is 0 6= N ⊆ M with 0 = r(M) ∩ N = r(N).

(vi) implies (viii). Obvious.

(viii) implies (v). Let I ⊆ K 6= R be left ideals of R with K/I = r(R/I) and
R/I ∈ Ts. By assumption s(E(R/I)) = r(s(E(R/I))) ⊕ A for some module A.
Put L/I = A∩(R/I). Obviously, A∩(K/I) ⊆ A∩r(s(E(R/I))) = 0 and therefore
L ∩ K = I. Now, if L = I then A ∩ R/I = 0. Hence A = 0 from the essentiality
of R/I in s(E(R/I)). Thus R/I ∈ Tr since s(E(R/I)) ∈ Tr, a contradiction. �

Definition 3. A ring R is said to be a left s-QI-ring if every s-torsion quasi-
injective module is weakly s-divisible.

Obviously, if s ≤ t are two preradicals then every left t-QI-ring is a left s-QI-
ring.

Theorem 1. Let r and s be hereditary preradicals. Then the following conditions
are equivalent:

(i) every r ◦ s-torsion quasi-injective module is weakly s-divisible;
(ii) every r ◦ s-torsion quasi-injective module is s-tight;
(iii) every preradical t ≤ r is s-stable;
(iv) every hereditary preradical t ≤ r is s-stable.

Proof: (i) is equivalent to (ii). It follows immediately from Lemma 1.

(i) implies (iii). Let t ≤ r. If Q is a weakly s-divisible s-torsion module then
Q = s(E(Q)) and t(Q) = (t◦s)(E(Q)) is r◦s-torsion and quasi-injective. Now t(Q)
is weakly s-divisible by assumption and consequently t(Q) is a direct summand
in Q.

(iii) implies (iv). Obvious.
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(iv) implies (i). If Q is r ◦ s-torsion and quasi-injective then Q = p{Q}(E(Q)) =

h(p{Q})(s(E(Q))) and h(p{Q}) ≤ r. Hence h(p{Q})(s(E(Q))) is a direct summand

in s(E(Q)) since h(p{Q}) is s-stable. Thus Q = h(p{Q})(s(E(Q))) = s(E(Q)) and

Q is weakly s-divisible. �

Corollary 2. Let s be a hereditary preradical. Then the following conditions
are equivalent for a ring R:

(i) R is a left s-QI-ring;
(ii) every s-torsion quasi-injective module is s-tight;
(iii) every preradical is s-stable;
(iv) every hereditary preradical is s-stable.

Proof: It follows immediately from the Theorem 1 if we put r = id. �

Corollary 3. Let s be a stable hereditary radical. Then the following conditions
are equivalent:

(i) every s-torsion quasi-injective module is injective;
(ii) r ◦ s is stable for every preradical r;
(iii) r ◦ s is stable for every hereditary preradical r.

Proof: It follows immediately from the Corollary 2, Proposition 1(iii) and the
fact that if s is stable and Q is s-torsion and weakly s-divisible then Q is injective.

�

Corollary 4. The following conditions are equivalent for a module M :

(i) every quasi-injective module from σ[M ] is M -injective;
(ii) every preradical is h(p{M})-stable;

(iii) every hereditary preradical is h(p{M})-stable.

Proof: It follows immediately from the Corollary 2. �
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