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Vector integral equations with

discontinuous right-hand side

Filippo Cammaroto∗, Paolo Cubiotti

Abstract. We deal with the integral equation u(t) = f(
R

I
g(t, z)u(z) dz), with t ∈ I =

[0, 1], f : Rn → Rn and g : I×I → [0,+∞[. We prove an existence theorem for solutions
u ∈ L∞(I,Rn) where the function f is not assumed to be continuous, extending a result
previously obtained for the case n = 1.
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1. Introduction

Let I := [0, 1]. Consider the integral equation

(1) u(t) = f
(

∫

I
g(t, z)u(z) dz

)

for a.a. t ∈ I,

where f : R → R and g : I × I → [0,+∞[ are given functions. Recently, in the
paper [4], the authors proved an existence theorem for solutions of (1) in the space
L∞(I,R), where, unlike other recent results in the field (see [3], [5], [6], [7], to
which we also refer for motivations for studying equation (1)), the continuity of
f was not assumed. More precisely, f was assumed to be a.e. equal in a suitable
interval [0, σ] to a function f0 : [0, σ] → R such that the set {x ∈ [0, σ] : f0 is
discontinuous at x} has null 1-dimensional Lebesgue measure. Consequently, a
function f satisfying the assumptions of [4] can be discontinuous at each point of
its domain.
In this note we are interested in the study of equation (1) in the more gen-

eral case where f : Rn → Rn. We prove an existence result for solutions
u ∈ L∞(I,Rn) which, in the explicit case, extends the main result of [4]. In
particular, the above assumption on f is extended by assuming that there exist a
function f :

∏n
i=1[0, σi]→ R

n (with suitable positive σi) and subsets E1, . . . , En

of
∏n

i=1[0, σi] such that the projection of each Ei over the i-th axis has null
1-dimensional Lebesgue measure and

{x ∈
n

∏

i=1

[0, σi] : f is discontinuous at x}∪{x ∈
n

∏

i=1

[0, σi] : f(x) 6= f(x)} ⊆
n
⋃

i=1

Ei.

∗ Born on August 4, 1968. This clarification is needed because of a complete coincidence of
names within the same Department.
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We also prove by a counterexample that the set
⋃n

i=1Ei cannot be replaced by
an arbitrary set E ⊆

∏n
i=1[0, σi] with null n-dimensional Lebesgue measure.

2. Preliminaries

Let n ∈ N. We shall denote by mn the n-dimensional Lebesgue measure in the
space Rn. If x ∈ Rn, then xi shall denote the i-th component of x. Moreover,
we shall denote by pi : R

n → R the projection over the i-th axis, namely we put
pi(x) = xi.
If x, y ∈ Rn, we say that x < y (resp., x ≤ y) if and only if one has xi < yi

(resp., xi ≤ yi) for each i = 1, . . . n. If x, y ∈ Rn, with x ≤ y, we put

[x, y] :=

n
∏

i=1

[xi, yi],

]x, y[ :=

n
∏

i=1

]xi, yi[ (if x < y).

We shall denote by 0n the origin of the spaceR
n, which, in turn, will be considered

with its Euclidean norm ‖ · ‖n.
If x ∈ Rn, ε > 0, A ⊆ Rn, A 6= ∅, we put

B(x, ε) :=
{

y ∈ Rn : ‖x− y‖n < ε
}

,

d(x,A) := inf
v∈A

‖x− v‖n.

Moreover, we shall denote by coA the closed convex hull of A.
If p ∈ [1,+∞], we shall denote by Lp(I,Rn) the space of all (equivalence classes

of) measurable functions u : I → Rn such that
∫

I
‖u(t)‖p

n dt < +∞ if p < +∞,

ess sup
t∈I

‖u(t)‖n < +∞ if p = +∞,

with the usual norm

‖u‖Lp(I,Rn) :=

(
∫

I
‖u(t)‖p

n dt

)
1

p

if p < +∞,

‖u‖L∞(I,Rn) := ess sup
t∈I

‖u(t)‖n if p = +∞.

We shall denote by B(I,Rn) the set of all u ∈ L∞(I,Rn) for which there exists
some function v : I → Rn such that u(t) = v(t) a.e. in I and also

m1({t ∈ I : v is discontinuous at t}) = 0.

Moreover, we shall put Lp(I) := Lp(I,R). As usual, we denote by C0(I,Rn) the
space of all continuous functions v : I → Rn.
For the definitions and basic facts about multifunctions, we refer to [2], [11].

Finally, we put I0 := ]0, 1[ .
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3. The result

The following is our result.

Theorem 1. Let α, β, σ ∈ Rn, with 0n < α < β and 0n < σ. Let f : [0n, σ] →
Rn and g : I × I → [0,+∞[ be given functions. Assume that:
(i) for each i = 1, . . . , n, one has

αi < ess inf
x∈[0n,σ]

fi(x) ≤ ess sup
x∈[0n,σ]

fi(x) < βi ;

(ii) there exist sets E1, . . . , En ⊆ [0n, σ], with m1(pi(Ei)) = 0 for all i =
1, . . . , n, and a function f : [0n, σ] → Rn such that for each x ∈ [0n, σ] \
(
⋃n

i=1 Ei) one has f(x) = f(x) and f is continuous at x;
(iii) for each t ∈ I, the function g(t, · ) is measurable.
Moreover, assume that there exist φ0 ∈ Lj(I), with j > 1 and

0 < ‖φ0‖L1(I) ≤ min
1≤i≤n

σi

βi
,

and φ1 ∈ L1(I) such that:
(iv) for a.a. z ∈ I, the function g(· , z) is continuous in I, differentiable in I0 and

g(t, z) ≤ φ0(z), 0 <
∂g

∂t
(t, z) ≤ φ1(z) for all t ∈ I0.

Then there exists u ∈ B(I,Rn) such that

(2) u(t) = f
(

∫

I
g(t, z)u(z) dz

)

for a.a. t ∈ I.

Before proving Theorem 1, we need the following preliminary result.

Lemma 1. Let σ, γ, δ ∈ Rn, with 0n < σ and δ < γ, and let f : [0n, σ]→ Rn be

such that for each i = 1, . . . , n one has

δi < ess inf
x∈[0n,σ]

fi(x) ≤ ess sup
x∈[0n,σ]

fi(x) < γi .

Assume that there exists a function f : [0n, σ] → R
n and a set E ⊆ [0n, σ], with

mn(E) = 0, such that

(3) f(x) = f(x) for all x ∈ [0n, σ] \ E

and

(4)
{

x ∈ [0n, σ] : f is discontinuous at x
}

⊆ E.

Then there exists f̂ : [0n, σ]→ Rn such that

(i) f̂([0n, σ]) ⊆ [δ, γ];

(ii) f̂(x) = f(x) for all x ∈ [0n, σ] \ E; and

(iii)
{

x ∈ [0n, σ] : f̂ is discontinuous at x
}

⊆ E.
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Proof: For each i ∈ {1, . . . , n}, put

Ai :=
{

x ∈ [0n, σ] : f i(x) ≤ δi
}

, Bi :=
{

x ∈ [0n, σ] : f i(x) ≥ γi

}

.

Let

T :=

n
⋃

i=1

(Ai ∪Bi).

If T = ∅, our claim follows by taking f̂ = f . Assume T 6= ∅. We claim that
T ⊆ E. Arguing by contradiction, assume that there exists x∗ ∈ T \ E, and let
i∗ ∈ {1, . . . , n} be such that x∗ ∈ Ai∗ ∪ Bi∗ . Assume x

∗ ∈ Ai∗ (if x
∗ ∈ Bi∗ , the

argument is analogous). Therefore, one has

(5) f i∗(x
∗) ≤ δi∗ < ess inf

x∈[0n,σ]
fi∗(x).

By (4), the function f is continuous at x∗. Therefore, taking into account (5),
there exists µ ∈ Rn, with 0n < µ, such that

f i∗(u) < ess inf
x∈[0n,σ]

fi∗(x) for all u ∈ U := [0n, σ] ∩ [x
∗ − µ, x∗ + µ],

which contradicts (3) since mn(U) > 0. Such a contradiction implies T ⊆ E, as

claimed. Now, let f̂ : [0n, σ]→ Rn be defined by

(6) f̂(x) =

{

δ if x ∈ T

f(x) if x ∈ [0n, σ] \ T.

By the definition of T we immediately get f̂([0n, σ]) ⊆ [δ, γ]. To prove conclusions
(ii) and (iii), let x ∈ [0n, σ]\E be fixed. Since T ⊆ E, we have x ∈ [0n, σ]\T , hence

by (3) and (6) we get f̂(x) = f(x) = f(x). Now we prove that f̂ is continuous
at x. Since x /∈ T , we have

δi < f i(x) < γi for all i = 1, . . . , n.

Since by (4) the function f is continuous at x, there exists a neighborhood V of
x in [0n, σ] such that

δi < f i(x) < γi for all i = 1, . . . , n and all x ∈ V.

Therefore, V ∩ T = ∅ and thus f̂(x) = f(x) for all x ∈ V . Consequently, the

continuity of f at x implies the continuity of f̂ at x. The proof is complete. �

Proof of Theorem 1: We can assume j < +∞. Put E :=
⋃n

i=1 Ei. By (ii) we

get mn(E) = 0. By Lemma 1, there exists a function f̂ : [0n, σ]→ Rn such that

αi ≤ f̂i(x) ≤ βi for all x ∈ [0n, σ], and all i = 1, . . . , n,(7)

f̂(x) = f(x) for all x ∈ [0n, σ] \E,(8)
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and

(9)
{

x ∈ [0n, σ] : f̂ is discontinuous at x
}

⊆ E.

Let ψ : Rn → Rn be defined by

(10) ψ(x) =

{

f̂(x) if x ∈ [0n, σ]

β otherwise.

Of course, one has

(11) ψ(Rn) ⊆ [α, β].

Now we want to apply Theorem 1 of [13] by taking T = I, X = Y = Rn,
p = s = +∞, q = j′ (the conjugate exponent of j), V = L∞(I,Rn), Ψ(u) = u,
r = ‖β‖n, ϕ(λ) ≡ +∞,

Φ(u)(t) =

∫

I
g(t, z)u(z) dz,

and F : Rn → 2R
n
as the multifunction defined by

F (x) =
⋂

ε>0

⋂

mn(N)=0

co ψ(B(x, ε) \N).

To this aim, observe what follows.

(a) Φ(L∞(I,Rn)) ⊆ C0(I,Rn). This follows easily from our assumptions and
Lebesgue’s dominated convergence theorem.

(b) If {vk} is a sequence in L∞(I,Rn) and v ∈ L∞(I,Rn), with {vk} weakly

convergent to v in Lj′(I,Rn), then the sequence {Φ(vk)} converges to Φ(v)
strongly in L1(I,Rn). This follows by Theorem 2 at p. 359 of [10], observing
that g is measurable in I × I by the classical Scorza Dragoni’s theorem (see [14]
or also [9]).

(c) The multifunction F has closed graph and nonempty convex values (see
Proposition 1 at p. 102 of [1]). Moreover, by (11) we have

(12) F (x) ⊆ [α, β] for all x ∈ Rn.

Consequently, one has
sup

x∈Rn

d(0n, F (x)) ≤ ‖β‖n.

Therefore, all the assumptions of Theorem 1 of [13] are satisfied. Thus, there
exist a function û ∈ L∞(I,Rn) and a set K ⊆ I, with m1(K) = 0, such that

(13) û(t) ∈ F (Φ(û)(t)) for all t ∈ I \K.
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By (12), this implies

(14) û(t) ∈ [α, β] for all t ∈ I \K.

Therefore, for each i = 1, . . . , n and each t ∈ I one gets

0 ≤
[

Φ(û)(t)
]

i
=

∫

I
g(t, z) ûi(z) dz ≤ βi ‖φ0‖L1(I) ≤ βi

σi

βi
= σi,

hence Φ(û)(I) ⊆ [0n, σ]. For each fixed i = 1, . . . , n, let hi : I → [0, σi] be defined
by

hi(t) :=
[

Φ(û)(t)
]

i
.

Taking into account (14) and assumption (iv), it is easily seen that the function
hi is strictly increasing. Moreover, by assumptions (iii), (iv) and Lemma 2.2 at
p. 226 of [12], we have

d

dt
hi(t) =

∫

I

∂g

∂t
(t, z) ûi(z) dz > 0 for all t ∈ I0.

By Theorem 2 of [15] (taking into account (a)), each function h−1i is absolutely
continuous. For each i = 1, . . . , n, put

Si := h
−1
i

[

(pi(Ei) ∪ {0, σi}) ∩ hi(I)
]

.

By assumption (ii) and Theorem 18.25 of [8], we get m1(Si) = 0. Now, let

S := (

n
⋃

i=1

Si) ∪K.

Of course, m1(S) = 0. Let t
∗ ∈ I \ S be fixed. Since t∗ /∈ K, by (13) we have

(15) û(t∗) ∈ F (Φ(û)(t∗)).

Moreover, one has

(16) Φ(û)(t∗) ∈ ]0n, σ[ \E.

To see this, observe that for each i = 1, . . . , n, since t∗ /∈ Si, we have hi(t
∗) /∈

pi(Ei) ∪ {0, σi}. In particular, the last fact implies that Φ(û)(t
∗) /∈ Ei for all

i = 1, . . . , n. Therefore, (16) follows. Now, observe that by (10) we have f̂ = ψ in

]0n, σ[ . Since by (9) and (16) the function f̂ is continuous at the point Φ(û)(t
∗), it

follows that ψ is continuous at the same point Φ(û)(t∗). Hence, by Proposition 1
at p. 102 of [1], and taking into account (8), we get

F (Φ(û)(t∗)) = {ψ(Φ(û)(t∗))} = {f̂(Φ(û)(t∗))} = {f(Φ(û)(t∗))},
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hence by (15) we have
û(t∗) = f(Φ(û)(t∗)).

As t∗ was any point in I \ S, the function û satisfies equation (2). Moreover, if

v : I → Rn is defined by v(t) = f̂(Φ(û)(t)), it follows easily from above that
v(t) = û(t) for all t ∈ I \ S, and also

{t ∈ I : v is discontinuous at t} ⊆ S.

Hence we have û ∈ B(I,Rn), as claimed. This completes the proof. �

The next example shows that Theorem 1 is no longer true if in assumption (ii)
the sets E1, . . . , En are replaced by an arbitrary set E ⊆ [0n, σ] with mn(E) = 0.

Example. Let n = 2, α1 = α2 =
1
2 , β1 = β2 = 3, σ1 = σ2 = 4, g(t, z) = t,

φ0(t) ≡ 1, φ1(t) ≡ 1, and

(17) f(u, v) =

{

(1, 1) if u 6= v

(2, 1) if u = v.

It is immediate to check that all the assumptions of Theorem 1 are satisfied, with
the exception of assumption (ii). Moreover, f is almost everywhere equal to the
constant (1, 1) in [02, σ] (or also, observe thatm2({(u, v) ∈ R

2 : f is discontinuous
at (u, v)}) = 0). Now, assume that there exists a solution u ∈ L1(I,R2) to the
equation (2). By (17) we have

u1(t) ∈ {1, 2} and u2(t) = 1 for a.a. t ∈ I,

and thus

(18) u(t) = f
(

t ‖u1‖L1(I), t
)

for a.a. t ∈ I.

If we suppose ‖u1‖L1(I) = 1, by (17) and (18) we get u1(t) = 2 for a.a. t ∈ I,

a contradiction. If, on the contrary, we suppose ‖u1‖L1(I) > 1, by (17) and (18)

we get u1(t) = 1 for a.a. t ∈ I, another contradiction. Consequently, there is no
solution u ∈ L1(I,R2) to problem (2).

Remark. The example at p. 245 of [4] shows that Theorem 1 is no longer true if

in assumption (iv) we assume 0 ≤ ∂g
∂t (t, z) ≤ φ1(z).
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