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Topological dual of non-locally

convex Orlicz-Bochner spaces

Marian Nowak

Abstract. Let Lϕ(X) be an Orlicz-Bochner space defined by an Orlicz function ϕ taking
only finite values (not necessarily convex) over a σ-finite atomless measure space. It
is proved that the topological dual Lϕ(X)∗ of Lϕ(X) can be represented in the form:
Lϕ(X)∗ = Lϕ(X)∼n ⊕Lϕ(X)∼s , where Lϕ(X)∼n and Lϕ(X)∼s denote the order continuous
dual and the singular dual of Lϕ(X) respectively. The spaces Lϕ(X)∗, Lϕ(X)∼n and
Lϕ(X)∼s are examined by means of the H. Nakano’s theory of conjugate modulars.
(Studia Mathematica 31 (1968), 439–449). The well known results of the duality theory
of Orlicz spaces are extended to the vector-valued setting.

Keywords: vector-valued function spaces, Orlicz functions, Orlicz spaces, Orlicz-Bochner
spaces, topological dual, order dual, order continuous linear functionals, singular linear
functionals, modulars, conjugate modulars
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0. Introduction and preliminaries

For a given real Banach space (X, ‖ · ‖X) and an ideal E of L0 one can con-
sider X-valued function spaces E(X) defined as subspaces of the space L0(X) of
strongly measurable functions and consisting of all those f ∈ L0(X) for which

the scalar function f̃ = ‖f(·)‖X belongs to E. In case when (E, ‖ · ‖E) is a
complete F -normed function space, the space E(X) provided with the F -norm

‖f‖E(X) = ‖f̃‖E is usually called a Köthe-Bochner space. The most important

class of Köthe-Bochner spaces are Lebesgue-Bochner spaces Lp(X) (0 < p < ∞)
and their generalization, Orlicz-Bochner spaces Lϕ(X) (see [9], [16]). In 1938
S. Bochner and A.E. Taylor [4] showed that the topological dual of a Lebesgue-
Bochner space Lp(X) (1 < p < ∞) is identifiable with Lq(X∗) (p−1 + q−1 = 1)
if and only if X∗ satisfies the Radon-Nikodym property. A. Ionescu Tulcea and
C. Ionescu Tulcea [15] showed that the dual space of Lp(X) is identifiable with the
space Lq(X∗, X) consisting of weak∗-measurable functions. Next, A.V. Bukhvalov
[5], [6] extended this result to the class of Köthe-Bochner spaces (E(X), ‖·‖E(X)),

when (E, ‖ · ‖E) is a Banach function space with an order continuous norm ‖ · ‖E .
The integral representation of order continuous linear functionals on E(X) in
terms of the space E′(X∗, X) of weak∗-measurable functions (E′ = the Köthe
dual of E) was found by A.V. Bukhvalov [6].
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Let us recall that a linear functional F on E(X) is order continuous, whenever

for a sequence (fn) in E(X), f̃n
(o)
−→ 0 in E implies F (fn)→ 0. A.V. Bukhvalov

and G. Lozanowskii [8] showed that if (E, ‖ · ‖E) is a Banach function space, then
the topological dual E(X)∗ of a Köthe-Bochner space (E(X), ‖ · ‖E(X)) admits a

direct sum decomposition: E(X)∗ = E(X)∼n ⊕E(X)∼s , where E(X)∼n and E(X)∼s
denote the order continuous dual and the singular dual of E(X) respectively.
As far as we know the first results concerning the topological dual of non-locally

convex Orlicz-Bochner spaces Lϕ(X) are due to F. Hernandez [14], who studied

the spaces Lϕ(X), whenever lim
t→∞

ϕ(t)
t = 0 and a measure space is atomic. Duals

of Orlicz spaces of functions valued in locally convex spaces are studied in [12].
In this paper we examine the topological dual of Orlicz-Bochner spaces Lϕ(X)

defined by a finite valued Orlicz function ϕ (not necessarily convex) over a σ-finite
atomless measure space and provided with its complete F -norm topology Tϕ(X).
In [29] we showed that the Mackey topology τLϕ(X) of (L

ϕ(X), Tϕ(X)) coincides

with the supremum of the topology Tϕ(X)|Lϕ(X) (ϕ = the convex minorant

of ϕ) and the topology πϕ(X) of the Minkowski functional of the Orlicz class
Lϕ
0 (X). This result allows us to use the methods of the theory of locally convex
spaces to examine the topological dual Lϕ(X)∗ of (Lϕ(X), Tϕ(X)). In particular,
it is shown that Lϕ(X)∗ = Lϕ(X)∼n ⊕ Lϕ(X)∼s . Moreover, we make use of the
Nakano’s theory of conjugate modulars [23] to study the spaces Lϕ(X)∗, Lϕ(X)∼n
and Lϕ(X)∼s . We extend to the “vector valued setting” the well known results con-
cerning the dual of scalar Orlicz spaces (cf. [2], [10], [13], [19], [25], [32], [33], [34]).
For terminology concerning Riesz spaces we refer to [1], [17]. Throughout the

paper let (Ω,Σ, µ) be a σ-finite atomless measure space and let L0 stand for
the corresponding space of equivalence classes of all Σ-measurable real valued
functions defined and finite µ-a.e. Then L0 is a super Dedekind complete Riesz
space under the ordering u1 ≤ u2 whenever u1(ω) ≤ u2(ω) µ-a.e. For a subset A
of Ω let χA stand for its characteristic function. As usual, let N be the set of all
natural numbers. We will write Anցµ ∅, whenever (An) is a decreasing sequence
in Σ such that µ(An ∩ A)→ 0 for every A ∈ Σ with µ(A) < ∞.
Let (X, ‖ · ‖X) be a real Banach space, and let SX and BX denote the unit

sphere and the unit ball in X respectively. Let X∗ stand for the topological
dual of X . By L0(X) we will denote the linear space of equivalence classes of all
strongly Σ-measurable functions f : Ω→ X . For a function f ∈ L0(X) let us put

f̃(ω) = ‖f(ω)‖X for ω ∈ Ω.
Now we recall some terminology concerning Orlicz spaces and Orlicz-Bochner

spaces (see [2], [9], [16], [22], [26], [27], [29], [33], [35]).
By an Orlicz function we mean here a function ϕ: [0,∞)→ [0,∞) that is non-

decreasing, left continuous, continuous at 0 with ϕ(0) = 0. An Orlicz function ϕ
is said to be strict if ϕ is not identically equal to 0.
For an Orlicz function ϕ by ϕ we will denote its convex minorant, i.e., ϕ is

the largest convex Orlicz function that is smaller than ϕ on [0,∞). Clearly ϕ is
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strict iff lim inf
t→∞

ϕ(t)
t > 0.

Let ϕ be an Orlicz function. For each u ∈ L0 let

mϕ(u) =

∫

Ω
ϕ(|u(ω)|) dµ.

The Orlicz space defined by ϕ is an ideal of L0 defined by

Lϕ = {u ∈ L0 : mϕ(λu) < ∞ for some λ > 0}

and endowed with the complete semi-metrizable topology Tϕ of the Riesz pseudo-
norm |||u|||ϕ = inf{λ > 0: mϕ(u/λ) ≤ λ}. Tϕ is a Hausdorff topology iff ϕ is
strict. Moreover, if ϕ is a convex Orlicz function then Tϕ can be generated by

two Riesz seminorms: ‖u‖ϕ = infλ>0{λ
−1(1 + mϕ(λu))} and |||u|||ϕ = inf{λ >

0: mϕ(u/λ) ≤ 1}.
Let Eϕ = {u ∈ L0: mϕ(λu) < ∞ for all λ > 0}. Then Eϕ is ||| · |||ϕ-closed ideal

of Lϕ with supp Eϕ = Ω and Lϕ = Eϕ iff ϕ satisfies the suitable ∆2-condition

(in symbols ϕ ∈ ∆2) i.e., lim sup
ϕ(2t)
ϕ(t)

< ∞ as t → 0 and t → ∞, whenever

µ(Ω) =∞; resp. as t → ∞, whenever µ(Ω) < ∞.
For each f ∈ L0(X) let

Mϕ(f) = mϕ(f̃ ).

The space
Lϕ(X) = {f ∈ L0(X) : f̃ ∈ Lϕ}

is called an Orlicz-Bochner space and can be endowed with a complete semimetriz-

able topology Tϕ(X) of the F -pseudonorm |||f |||Lϕ(X) = |||f̃|||ϕ for f ∈ Lϕ(X).

If ϕ is a convex Orlicz function then Tϕ(X) can be generated by two norms

‖f‖Lϕ(X) = ‖f̃‖ϕ and |||f |||Lϕ(X) = |||f̃ |||ϕ.

Now we recall some terminology concerning the solid structure and the duality
theory of vector valued function spaces (see [27]).

A subset H of Lϕ(X) is said to be solid if f̃1 ≤ f̃2 with f1 ∈ Lϕ(X) and
f2 ∈ H imply f1 ∈ H . A linear subspace B of Lϕ(X) is called an ideal if B is a
solid subset of Lϕ(X). In particular, Eϕ(X) is an ideal of Lϕ(X).
A pseudonorm ρ on Lϕ(X) is said to be solid if ρ(f1) ≤ ρ(f2) whenever f1, f2 ∈

Lϕ(X) with f̃1 ≤ f̃2. Clearly ||| · |||Lϕ(X) is a solid F -norm on Lϕ(X).

For a linear functional F on Lϕ(X) let us set

|F |(f) = sup{|F (h)| : h ∈ E(X), h̃ ≤ f̃} for all f ∈ E(X).

The linear space

Lϕ(X)∼ = {F ∈ Lϕ(X)# : |F |(f) < ∞ for all f ∈ E(X)}
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is called the order dual of Lϕ(X). (Here Lϕ(X)# denotes the algebraic dual of
Lϕ(X).) One can show that

(0.1) Lϕ(X)∗ = Lϕ(X)∼,

where Lϕ(X)∗ stands for the topological dual of (Lϕ(X), Tϕ(X)) (see [8]).
For F1, F2 ∈ Lϕ(X)∼ we will write |F1| ≤ |F2| whenever |F1|(f) ≤ |F2|(f) for

all f ∈ Lϕ(X).
A linear subspace I of Lϕ(X)∼ is said to be an ideal of Lϕ(X)∼ whenever

|F1| < |F2|, F1 ∈ Lϕ(X)∼, F2 ∈ I imply F1 ∈ I.

1. Conjugate modulars

From now on in this paper we will assume that ϕ is a strict Orlicz function.
The functional Mϕ restricted to Lϕ(X) is a semimodular (see [21], [22]).

Due to H. Nakano [23] the conjugate Mϕ of the semimodularMϕ can be defined

on Lϕ(X)# by

Mϕ(F ) = sup{|F (f)| − Mϕ(f) : f ∈ Lϕ(X)}.

A functional F ∈ Lϕ(X)# is said to be bounded for Mϕ if there exists a number
γ > 0 such that |F (f)| ≤ γ(Mϕ(f) + 1) for all f ∈ Lϕ(X). The collection of all

F ∈ Lϕ(X)# that are bounded for Mϕ will be denoted by Lϕ(X). Following [23,
§5] one can define the polar PMϕ

of Mϕ by

PMϕ
(F ) = sup{|F (f)| : f ∈ Lϕ(X), Mϕ(f) ≤ 1}

for F ∈ Lϕ(X)#. It is known that PMϕ
is a norm on Lϕ(X) (see [23, §5]).

Theorem 1.1. For each F ∈ Lϕ(X)∗ we have PMϕ
(F ) < ∞ and |F (f)| ≤

PMϕ
(F )(Mϕ(f) + 1) for all f ∈ Lϕ(X).

Proof: Following [31] we can easily show that PMϕ
(F ) < ∞ for all F ∈ Lϕ(X)∗.

Now let Mϕ(f) < ∞ and let Mϕ(f) = n + r, where n ∈ N, 0 ≤ r < 1. Since
the measure space (Ω,Σ, µ) is assumed to be atomless we can choose a finite
partition {A1, . . . , An, A} of Ω such that Mϕ(χAi

f) = 1 for i = 1, 2, . . . , n and
Mϕ(χAf) = r. Hence for f ∈ Lϕ(X) we have f = (

∑n
i=1 χAi

f) + χAf and
|F (f)| ≤

∑n
i=1 |F (χAi

f)|+ |F (χAf)| ≤ PMϕ
(F )(n+ 1) ≤ PMϕ

(F )(Mϕ(f) + 1).
�

Theorem 1.2. The following identities hold:

(∗) Lϕ(X)∗ = Lϕ(X) = {F ∈ Lϕ(X)# :Mϕ(λF ) < ∞ for some λ > 0}.

Moreover, Mϕ restricted to Lϕ(X)∗ is a convex semimodular and

(∗∗) Mϕ(F ) = sup{|F |(f)− Mϕ(f) : f ∈ Lϕ(X), Mϕ(f) < ∞}.
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Hence Mϕ(F1) ≤ Mϕ(F2) if |F1| ≤ |F2|.

Proof: Arguing as in the proof of [26, Theorem 3.1] we obtain the identities (∗).
Clearly Mϕ is a convex semimodular on Lϕ(X)∗. Now, let f ∈ Lϕ(X). Then

for each h ∈ Lϕ(X) with h̃ ≤ f̃ we have |F (h)| ≤ Mϕ(F ) +Mϕ(f), so |F |(f) ≤

Mϕ(F )+Mϕ(f). It follows that the identity (∗∗) holds, and the proof is complete.
�

By means of the convex semimodularMϕ one can define on Lϕ(X)∗ two norms
according to the general definitions (see [23, §6]):

‖F‖
Mϕ
= inf

λ>0
{λ−1(1 +Mϕ(λf))} and |||F |||

Mϕ
= inf{λ > 0 :Mϕ(F/λ) ≤ 1}

and in view of [30, 1.51] we have:

|||F |||
Mϕ

≤ ‖F‖
Mϕ

≤ 2|||F |||
Mϕ

and |||F |||
Mϕ

≤ 1 iff Mϕ(F ) ≤ 1.

Theorem 1.3. Let F ∈ Lϕ(X)∗. Then

PMϕ
(F ) = sup{|F |(f) : f ∈ Lϕ(X), Mϕ(f) ≤ 1},(∗)

|||F |||
Mϕ

≤ PMϕ
(F ) ≤ ‖F‖

Mϕ
.(∗∗)

Moreover, Lϕ(X)∗ provided with P
Mϕ
(resp. ‖·‖

Mϕ
, ||| · |||

Mϕ
) is a Banach space.

Proof: Let Mϕ(f) ≤ 1. Then for each h ∈ Lϕ(X) with h̃ ≤ f̃ we have |F (h)| ≤
PMϕ

(F ). Hence |F |(f) ≤ PMϕ
(F ), and it follows that (∗) holds. To prove that

(∗∗) holds it is enough to repeat the argument from the proof of [26, Theorem 3.2].
To show that (Lϕ(X)∗, PMϕ

) is a Banach space assume that (Fn) is PMϕ
-Cauchy

sequence in Lϕ(X)∗, and let ε > 0 be given. Then PMϕ
(Fn − Fm) ≤ ε for

n, m ≥ n0 for some n0 ∈ N. For each f ∈ Lϕ(X) take λ > 0 such that Mϕ(λf) <
∞. By Theorem 1.1 |Fn(λf) − Fm(λf)| ≤ PMϕ

(Fn − Fm)(Mϕ(λf) + 1), so

|Fn(f)−Fm(f)| ≤
ε
λ
(Mϕ(λf)+1). Putting F (f) = limFn(f) for each f ∈ Lϕ(X),

one can easily observe that F is a bounded for Mϕ linear functional on Lϕ(X),
so by Theorem 1.2, F ∈ Lϕ(X)∗. Moreover, let Mϕ(f) ≤ 1 and let n ≥ n0
be given. Then for each m ≥ n0 we have |Fn(f) − F (f)| ≤ |Fn(f) − Fm(f)| +
|Fm(f)−F (f)| ≤ ε(Mϕ(f)+1)+ |Fm(f)−F (f)|, so |Fn(f)−F (f)| ≤ 2ε. Hence
PMϕ

(Fn − F ) ≤ 2ε. It follows that PMϕ
(Fn − F )→ 0, as desired. �

2. Order continuous linear functionals on Orlicz-Bochner spaces

Throughout this section we will assume that lim inf
t→∞

ϕ(t)
t > 0.

Let us recall that the Köthe dual (Lϕ)′ of Lϕ is equal to Lϕ∗

(see [20], [25,
Theorem 3.2]), where ϕ∗ denotes the Young function conjugate to ϕ in the sense
of Young, i.e., ϕ∗(s) = sup{ts − ϕ(t): t ≥ 0} for s ≥ 0.

It is known that if lim inf
t→∞

ϕ(t)
t = ∞ (resp. lim inf

t→∞

ϕ(t)
t = a, 0 < a < ∞) then

ϕ∗ takes only finite values (resp. ϕ∗(s) < ∞ for 0 ≤ s < a, ϕ∗(s) =∞ for s > a)
(see [25, Lemmas 2.2 and 2.3], [28]).
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Definition 2.1 (see [6]). A linear functional F on Lϕ(X) is said to be order

continuous whenever f̃σ
(o)
−→ 0 in Lϕ implies F (fσ) → 0. In view of the super

Dedekind completeness of Lϕ(X) one can restrict ourselves to usual sequences
(fn) (see [27, Theorem 2.2.]). The set consisting of all order continuous linear
functionals on Lϕ(X) will be denoted by Lϕ(X)∼n . It is known that Lϕ(X)∼n is
an ideal of Lϕ(X)∼ (see [27, Theorem 2.2]).

To describe the space Lϕ(X)∼n we recall terminology concerning spaces of
weak∗-measurable functions (see [6], [27]).
Let L0(X∗, X) stand for the linear space of weak∗-equivalence classes of all

weak∗-measurable functions g: Ω → X∗. One can define the so-called abstract
norm ϑ : L0(X∗, X)→ L0 by

ϑ(g) = sup{|gx| : x ∈ BX}

where gx(ω) = g(ω)(x) for ω ∈ Ω. Let

Lϕ∗

(X∗, X) = {g ∈ L0(X∗, X) : ϑ(g) ∈ Lϕ∗

}.

Then Lϕ∗

(X∗) = Lϕ∗

(X∗, X) ∩ L0(X∗) and ϑ(g) = g̃ for g ∈ Lϕ∗

(X∗). It

is known that Lϕ∗

(X∗, X) = Lϕ∗

(X∗) whenever X∗ has the Radon-Nikodym

property with respect to µ (see [7, Theorem 3.5]). Lϕ∗

(X∗, X) can be provided
with two norms:

‖g‖Lϕ∗(X∗,X) = ‖ϑ(g)‖ϕ∗ , |||g|||Lϕ∗ (X∗,X) = |||ϑ(g)|||ϕ∗ .

We shall need the following technical lemma.

Lemma 2.1 (cf. [6, Theorem 1.1]). Let f ∈ Lϕ(X) and g ∈ Lϕ∗

(X∗, X). Then

sup

{∣∣∣
∫

Ω
〈h(ω), g(ω)〉 dµ

∣∣∣ : h ∈ Lϕ(X), h̃ ≤ f̃

}
=

∫

Ω
f̃(ω)ϑ(g)(ω) dµ.

The following important result describes order continuous linear functionals on
Lϕ(X) in terms of the space Lϕ∗

(X∗, X) (see [6, Theorem 4.1]).

Theorem 2.2. For a linear functional F on Lϕ(X) the following statements are
equivalent:

(i) F is order continuous;
(ii) F is modular continuous (i.e. Mϕ(fn)→ 0 implies F (fn)→ 0);

(iii) there exists a unique g ∈ Lϕ∗

(X∗, X) such that

F (f) = Fg(f) =

∫

Ω
〈f(ω), g(ω)〉 dµ for all f ∈ Lϕ(X).
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Moreover, for g ∈ Lϕ∗

(X∗, X)

(∗) |Fg |(f) =

∫

Ω
f̃(ω)ϑ(g)(ω) dµ for all f ∈ Lϕ(X).

Proof: (i) ⇒ (ii) Let mϕ(f̃n)→ 0. In view of [24, Theorem 2.3] it follows that

f̃n
(o)∗
−→ 0 in Lϕ. Hence F (fn)→ 0, as desired.

(ii) ⇒ (i) Let f̃n
(o)
−→ 0 in Lϕ. Then mϕ(λf̃n) → 0 for some λ > 0. Hence

F (fn)→ 0 as desired.

(i) ⇔ (iii) It follows from [6, Theorem 4.1].

The identity (∗) follows from Lemma 2.1. �

Lemma 2.3 (cf. [25], [28]). Assume that lim inf
t→∞

ϕ(t)
t =∞ (resp. lim inf

t→∞

ϕ(t)
t = a,

where 0 < a < ∞). Then for a measurable bounded function v ≥ 0 (resp. v with
0 ≤ v(ω) < a µ-a.e.) there exists a measurable bounded function u ≥ 0 such that
ϕ(u(ω)) + ϕ∗(v(ω)) = u(ω)v(ω) µ-a.e.

Now we are ready to describe Mϕ, ‖ · ‖Mϕ
and ||| · |||

Mϕ
on Lϕ(X)∼n (cf. [19],

[25, Theorem 4.2]).

Theorem 2.4. For each g ∈ Lϕ∗

(X∗, X) the following identities hold:

(i) Mϕ(Fg) = mϕ∗(ϑ(g));
(ii) ‖Fg‖Mϕ

= ‖ϑ(g)‖ϕ∗ = ‖g‖Lϕ∗(X∗,X);

(iii) |||Fg |||Mϕ
= |||ϑ(g)|||ϕ∗ = |||g|||Lϕ∗ (X∗,X);

(iv) PMϕ
(Fg) = sup{|

∫
Ω u(ω)ϑ(g)(ω) dµ| : u ∈ Eϕ, mϕ(u) ≤ 1}

= sup{|
∫
Ω〈h(ω), g(ω)〉 dµ| : h ∈ Eϕ(X), Mϕ(h) ≤ 1}.

Proof: (i) From the definition of ϕ∗ it follows that

Mϕ(Fg) ≤ mϕ∗(ϑ(g)).

To prove that Mϕ(Fg) ≥ mϕ∗(ϑ(g)) we will distinguish two cases:

A. Assume that lim inf
t→∞

ϕ(t)
t = a < ∞. Then ϕ∗(s) < ∞ for 0 ≤ v ≤ a,

ϕ∗(s) = ∞ for s > a. Thus the inclusion Lϕ∗

⊂ L∞ holds and we can consider
two subcases:

10. Assume that ‖ϑ(g)‖∞ ≤ a (here ‖ · ‖∞ stands for the norm in L∞). Since
suppEϕ = Ω there exists a sequence (Ωn) in Σ such that Ωn ↑ Ω, µ(Ωn) < ∞
and χΩn

∈ Eϕ (see [37, Theorem 86.2]). For n ∈ N let us set

vn(ω) =

{
ϑ(g)(ω) if ϑ(g)(ω) ≤ n and ω ∈ Ωn,

0 elsewhere.
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Hence vn ∈ Eϕ, because vn ≤ nχΩn
for n ∈ N. In view of Lemma 2.3 for

n ∈ N there exists 0 ≤ wn ∈ L0 with suppwn ⊂ Ωn and such that ϕ(wn(ω)) +
ϕ∗(vn(ω)) = wn(ω)vn(ω) for ω ∈ Ω. Since ϕ∗(vn(ω)) ↑n ϕ∗(ϑ(g)(ω)) for ω ∈ Ω,
by the Fatou lemma we get

(1)

mϕ∗(ϑ(g)) =

∫

Ω

ϕ∗(ϑ(g)(ω)) dµ ≤ sup
n

∫

Ω

ϕ∗(vn(ω)) dµ

= sup
n

(∫

Ω

wn(ω)vn(ω) dµ −

∫

Ω

ϕ(wn(ω)) dµ
)

≤ sup
n

(∫

Ω

wn(ω)ϑ(g)(ω) dµ −

∫

Ω

ϕ(wn(ω)) dµ
)
.

For n ∈ N let fn(ω) = wn(ω)x0 for ω ∈ Ω and some x0 ∈ SX . Let ε > 0 be given.

In view of Lemma 2.1 for n ∈ N there exists hn ∈ Lϕ(X) with h̃n ≤ f̃n and such
that

(2)

∫

Ω
f̃n(ω)ϑ(g)(ω) dµ ≤

∣∣∣
∫

Ω
〈hn(ω), g(ω)〉 dµ

∣∣∣+ ε.

Hence by (1) and (2)

mϕ∗(ϑ(g)) ≤ sup
n

{∣∣∣
∫

Ω

〈hn(ω), g(ω)〉 dµ
∣∣∣ −

∫

Ω

ϕ(h̃n(ω)) dµ
}
+ ε

≤ sup
n

{∣∣∣
∫

Ω

〈h(ω), g(ω)〉 dµ
∣∣∣ −

∫

Ω

ϕ(h̃(ω)) dµ : h ∈ Lϕ(X)
}
+ ε

≤ Mϕ(Fg) + ε.

It follows that mϕ∗(ϑ(g)) =Mϕ(Fg), as desired.

20. Assume that ‖ϑ(g)‖∞ > a. Then mϕ∗(ϑ(g)) = ∞. Since lim inf
t→∞

ϕ(t)
t = a,

there exists a sequence (tn) such that 0 < tn ↑ ∞ and ϕ(tn) < (a+ δ)tn. Choose

0 < λ < 1 and 0 < δ < a such that ‖λϑ(g)‖∞ = a and
λ(a+δ)

a−δ < 1. Let

A = {ω ∈ Ω: λϑ(g)(ω) > a − δ} and choose C ∈ Σ with C ⊂ A such that
0 < µ(C) < ∞. Let un = tnχC for n ∈ N and fn = unx0 for some x0 ∈ SX .
Let ε > 0 be given. Then by Lemma 2.1 for n ∈ N there exists hn ∈ Lϕ(X)

with h̃n ≤ f̃n = un and such that

∫

Ω
un(ω)ϑ(g)(ω) dµ ≤

∣∣∣
∫

Ω
〈hn(ω), g(ω)〉 dµ

∣∣∣+ ε.
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Thus
Mϕ(Fg) ≥

∣∣∣
∫

Ω

〈hn(ω), g(ω)〉 dµ
∣∣∣ −

∫

Ω

ϕ(h̃n(ω)) dµ

≥

∫

Ω

un(ω)ϑ(g)(ω) dµ −

∫

Ω

ϕ(un(ω)) dµ − ε.

But
λ(a+ δ)

a − δ

∫

Ω
un(ω)ϑ(g)(ω) dµ ≥

λ(a+ δ)

a − δ
tn ·

a − δ

λ
µ(C)

= (a+ δ)tnµ(C) ≥

∫

Ω
ϕ(un(ω)) dµ.

Hence for n ∈ N

Mϕ(Fg) ≥
(
1−

λ(a+ δ)

a − δ

) ∫

Ω

un(ω)ϑ(g)(ω) dµ − ε

≥
(
1−

λ(a+ δ)

a − δ

)a − δ

λ
tnµ(C)− ε.

It follows that Mϕ(Fg) =∞, because tn ↑ ∞.

B. Assume that lim inf
t→∞

ϕ(t)
t = ∞. Then ϕ∗(s) < ∞ for all s ≥ 0 and one can

repeat the argument of the subcase 10 of A.

(ii) Since λFg = Fλg and ϑ(λg) = λϑ(g) for λ > 0, by (i)

‖Fg‖Mϕ
= inf

{
λ−1(1 +Mϕ(λFg))

}

= inf
{

λ−1(1 +mϕ∗(λϑ(g)))
}
= ‖ϑ(g)‖ϕ∗ .

(iii) Similarly by (ii) we get

|||Fg |||Mϕ
= inf{λ > 0 :Mϕ(Fg/λ) ≤ 1}

= inf{λ > 0 : mϕ∗(ϑ(g)/λ) ≤ 1} = |||ϑ(g)|||ϕ∗ .

(iv) Combining Theorem 1.3 and Lemma 2.1 and using the Fatou lemma we
get

PMϕ
(Fg) = sup{|

∫

Ω
u(ω)ϑ(g)(ω) dµ| : u ∈ Eϕ, mϕ(u) ≤ 1}.

Thus for ε > 0 there exists u0 ∈ Eϕ with mϕ(u0) ≤ 1 such that

(3) PMϕ
(Fg) ≤

∫

Ω
|u0(ω)|ϑ(g)(ω) dµ +

ε

2
.

Next, by Lemma 2.1 there exists h0 ∈ Lϕ(X) with h̃0 ≤ |u0| such that

(4)

∫

Ω
|u0(ω)ϑ(g)(ω) dµ ≤ |

∫

Ω
〈h0(ω), g(ω)〉 dµ|+

ε

2
.

Thus by (3) and (4), PMϕ
(Fg) ≤

∫
Ω〈h0(ω), g(ω)〉| + ε and since h0 ∈ Eϕ(X)

the proof is complete. �
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3. Singular linear functionals on Orlicz-Bochner spaces

Definition 3.1 (see [27, Definition 2.3]). A functional F ∈ Lϕ(X)∼ is said to
be singular if there exists an ideal B of Lϕ(X) with suppB = Ω and such that
F (f) = 0 for all f ∈ B. The set consisting of all singular functionals on Lϕ(X)
will be denoted by Lϕ(X)∼s and called the singular dual of Lϕ(X). Lϕ(X)∼s is
an ideal of Lϕ(X)∼ (see [27, Theorem 2.8]).

The set L
ϕ
0 (X) = {f ∈ Lϕ(X) :Mϕ(f) < ∞} is an absolutely convex absorbing

subset of Lϕ(X). Let Kϕ stand for its Minkowski functional, i.e., for f ∈ Lϕ(X)

Kϕ(f) = inf{λ > 0 :Mϕ(f/λ) < ∞}.

Clearly Kϕ(f) ≤ |||f |||Lϕ(X) for f ∈ Lϕ(X) and Eϕ(X) = kerKϕ.

Lemma 3.1. Let B be an ideal of Lϕ(X) with suppB = Ω and let Mϕ(f) < ∞.
Then for each ε > 0 there exists h ∈ B such that Mϕ(f − h) ≤ ε.

Proof: Let B̃ = {u ∈ Lϕ: |u| ≤ h̃ for some h ∈ B}. Then B̃ is an ideal of Lϕ

with supp B̃ = Ω and B = B̃(X) = {h ∈ Lϕ(X): h̃ ∈ B̃} (see [27, Lemma 1.1]).

Since supp B̃ = Ω there exists a sequence (Ωn) in Σ such that Ωn ↑ Ω, µ(Ωn) < ∞

with χΩn
∈ B̃ for n ∈ N (see [37, Theorem 86.2]). For n ∈ N let

fn(ω) =

{
f(ω) if f̃(ω) ≤ n and ω ∈ Ωn,

0 elsewhere.

Since f̃n ≤ nχΩn
we get f̃n ∈ B̃, so fn ∈ B for n ∈ N. By the Lebesgue dominated

convergence theorem Mϕ(f − fn)→ 0, so Mϕ(f − fn0) ≤ ε for some n0 ∈ N. �

Theorem 3.2. Let F ∈ Lϕ(X)∼s . Then

PMϕ
(F ) = sup{|F (f)| : f ∈ Lϕ(X), Mϕ(f) < ∞}

= sup{|F (f)| : f ∈ Lϕ(X), Kϕ(f) ≤ 1}.

Proof: Since F ∈ Lϕ(X)∼s , F (h) = 0 for all h ∈ B, where B is an ideal of Lϕ(X)
with suppB = Ω. Let f ∈ Lϕ(X) with Kϕ(f) ≤ 1, and let ε > 0 be given. Then

f
Kϕ(f)+ε

∈ L
ϕ
0 (X), i.e., Mϕ(

f
Kϕ(f)+ε

) < ∞. In view of Lemma 3.1 there exists

h ∈ B such that Mϕ(
f

Kϕ(f)+ε
− h) ≤ 1. Hence

PMϕ
(F ) ≥

∣∣∣F
( f

Kϕ(f) + ε
− h

)∣∣∣ =
∣∣∣F

( f

Kϕ(f) + ε

)∣∣∣ = 1

Kϕ(f) + ε
|F (f)|.

It follows that |F (f)| ≤ PMϕ
(F ) · Kϕ(f) ≤ PMϕ

(F ). Hence sup{|F (f)| : f ∈
Lϕ(X), Kϕ(f) ≤ 1} ≤ PMϕ

(F ), and the proof is complete. �

For a non-empty subset A of Lϕ(X) let A⊥ stand for its annihilator in Lϕ(X)∗

i.e., A⊥ = {F ∈ Lϕ(X)∗: F (f) = 0 for all f ∈ A}.
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Corollary 3.3. Lϕ(X)∼s = (L
ϕ(X), Kϕ)

∗ = Eϕ(X)⊥.

Proof: Let F ∈ Lϕ(X)∼s . Then for f ∈ Lϕ(X) and ε > 0 we haveMϕ(
f

Kϕ(f)+ε
)

< ∞, so by Theorem 3.2 |F (f)| ≤ PMϕ
(F ) · Kϕ(f). Thus F ∈ (Lϕ(X), Kϕ)

∗, so

the inclusion Lϕ(X)∼s ⊂ (Lϕ(X), Kϕ)
∗ holds.

To show that (Lϕ(X), Kϕ)
∗ ⊂ Eϕ(X)⊥ holds let F ∈ (Lϕ(X), Kϕ)

∗. Then
|F (f)| ≤ M ·Kϕ(f) for some M > 0 and all f ∈ Lϕ(X). Hence for f ∈ Eϕ(X) =

kerKϕ we have F (f) = 0, so F ∈ Eϕ(X)⊥.

Since Eϕ(X)⊥ ⊂ Lϕ(X)∼s , the proof is complete. �

Theorem 3.4. For F ∈ Lϕ(X)∼s we have

Mϕ(F ) = PMϕ
(F ) = ‖F‖

Mϕ
= |||F |||

Mϕ
.

Proof: To prove that Mϕ(F ) ≥ PMϕ
(F ) let ε > 0 be given. Then by The-

orem 3.2 there exists f ∈ Lϕ(X) with Mϕ(f) < ∞ and such that PMϕ
(F ) ≤

|F (f)| + ε
2 . By Lemma 3.1 there exists h ∈ Eϕ(X) such that Mϕ(f − h) ≤ ε

2 .

Since Lϕ(X)∼s = Eϕ(X)⊥ (see Corollary 3.3) we get PMϕ
(F ) ≤ |F (f − h)| + ε

2 .

Hence Mϕ(F ) ≥ |F (f − h)| −Mϕ(f − h) ≥ PMϕ
(F )− ε. In view of Theorem 3.2

the inequality Mϕ(F ) ≤ PMϕ
(F ) holds, so Mϕ(F ) = PMϕ

(F ).

Hence Mϕ(λF ) = λMϕ(F ) for λ > 0, because PMϕ
is a norm on Lϕ(X)∗.

Thus we get

‖F‖
Mϕ
= inf

λ>0

{ 1
λ
(1 + λMϕ(F ))

}
=Mϕ(F )

and

|||F |||
Mϕ
= inf{λ > 0 :Mϕ(F ) ≤ λ} =Mϕ(F ).

�

4. Topological dual of Orlicz-Bochner spaces

We start with some results concerning Mackey topologies of Orlicz-Bochner
spaces. Let us recall that the Mackey topology τL of a topological vector space
(L, ξ) is the finest locally convex topology on L that produces the same continuous
linear functionals as the original topology ξ.
The next theorem will be of importance (see [29, Theorem 2.4, Theorem 3.4],

[11, Theorem 5.1, Theorem 5.3]).

Theorem 4.1 (cf. [11]).
(i) The Mackey topology τEϕ(X) of (E

ϕ(X), Tϕ(X)|Eϕ(X)) coincides

with the topology Tϕ(X)|Eϕ(X) induced from (L
ϕ(X), Tϕ(X)), i.e., τEϕ(X) =

Tϕ(X)|Eϕ(X). Hence τEϕ(X) is normable iff lim inf
t→∞

ϕ(t)
t > 0.
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(ii) The Mackey topology τLϕ(X) of (L
ϕ(X), Tϕ(X)) coincides with the supre-

mum of Tϕ(X)|Lϕ(X) and the topology πϕ(X) of the seminormKϕ, i.e., τLϕ(X) =

Tϕ(X)|Lϕ(X) ∨ πϕ(X).

Theorem 4.2 (see [29, Corollary 2.5]). The following statements are equivalent:

(i) (Lϕ(X), Tϕ(X)) is locally convex;
(ii) (Eϕ(X), Tϕ(X)|Eϕ(X)) is locally convex;

(iii) ϕ is equivalent to ϕ.

Now, we are ready to state our main result that extends the well known results
concerning the dual of scalar Orlicz spaces (cf. [2], [14], [26], [32], [33]).

Theorem 4.3. (i) Let lim inf
t→∞

ϕ(t)
t > 0. Then

Lϕ(X)∗ = Lϕ(X)∼n ⊕ Lϕ(X)∼s .

(ii) Let lim inf
t→∞

ϕ(t)
t = 0. Then Lϕ(X)∗ = Lϕ(X)∼s .

Proof: (i) Let F ∈ Lϕ(X)∗. Then by Theorem 4.1(i) the functional F0 =
F |Eϕ(X) restricted to Eϕ(X) is Tϕ(X)|Eϕ(X)-continuous. Since Eϕ(X) →֒

Eϕ(X), by the Hahn-Banach extension theorem there exists a ||| · |||Lϕ(X)-conti-

nuous linear functional F 0 on Eϕ(X) such that F 0(h) = F0(h) for all h ∈ Eϕ(X).
It is known that Eϕ = (Lϕ)a (= the ||| · |||ϕ -closed ideal of absolutely con-

tinuous elements of Lϕ) and the identity (Eϕ)′ = Lϕ∗

holds (see [18, Theo-
rem 2.3.2]), where (Eϕ)′ stands for the Köthe dual of Eϕ. Hence by [6, Corol-

lary 4.1], [5, Theorem 7] there exists a unique g0 ∈ Lϕ∗

(X∗, X) such that F 0(h) =∫
Ω〈h(ω), g0(ω)〉 dµ for all h ∈ Eϕ(X). Hence F0(h) =

∫
Ω〈h(ω), g0(ω)〉 dµ for all

h ∈ Eϕ(X). Thus F (h) = Fg0(h) for all h ∈ Eϕ(X), where Fg0 ∈ Lϕ(X)∼n
(see Theorem 2.1). Let Fs(f) = F (f) − Fg0(f) for all f ∈ Lϕ(X). Thus

Fs(h) = 0 for all h ∈ Eϕ(X), so Fs ∈ Eϕ(X)⊥ = Lϕ(X)∼s (see Corollary 3.3).
Since Lϕ(X)∼n ∩ Lϕ(X)∼s = {0} (see [27, Theorem 2.9]), the identity Lϕ(X)∗ =
Lϕ(X)∼n ⊕ Lϕ(X)∼s holds, as desired.

(ii) In view of Theorem 4.1(ii) the Mackey topology τLϕ(X) is generated by the

seminorm Kϕ, so by Corollary 3.3, L
ϕ(X)∗ = (Lϕ(X), Kϕ)

∗ = Lϕ(X)∼s . �

Corollary 4.4. The following statements are equivalent:

(i) lim inf
t→∞

ϕ(t)
t = 0;

(ii) Lϕ(X)∗ = Lϕ(X)∼s ;
(iii) Lϕ(X)∼n = {0}.

Proof: (i) ⇒ (ii) See Theorem 4.3.

(ii) ⇒ (iii) We have Lϕ(X)∼n = Lϕ(X)∗ ∩ Lϕ(X)∼n = {0}.

(iii) ⇒ (i) Let lim inf
t→∞

ϕ(t)
t > 0. Then by Theorem 2.1. Lϕ(X)∼n 6= {0}. �
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Corollary 4.5. The following statements are equivalent:

(i) ϕ ∈ ∆2;
(ii) Lϕ(X)∼s = {0};
(iii) Lϕ(X)∗ = Lϕ(X)∼n .

Proof: (i)⇒ (ii) We know that Eϕ(X) = Lϕ(X), so Lϕ(X)∼s = Eϕ(X)⊥ = {0}
(see Corollary 3.3).

(ii) ⇒ (iii) It follows from Theorem 4.3.

(iii) ⇒ (ii) We have Lϕ(X)∼s = Lϕ(X)∗ ∩ Lϕ(X)∼s = {0}.

(ii) ⇒ (i) Assume that ϕ /∈ ∆2. Then Eϕ(X) $ Lϕ(X). Since Eϕ(X) = kerKϕ,
Eϕ(X) is Kϕ-closed subspace of Lϕ(X). Hence for each f ∈ Lϕ(X) \ Eϕ(X)
there exists F ∈ (Lϕ(X), Kϕ)

∗ = Lϕ(X)∼s such that F (f) = 1 and F (h) = 0 for
all h ∈ Eϕ(X) (see [36, 2.3.9]). Thus Lϕ(X)∼s 6= {0}. �

Combining Theorem 4.3, Corollary 4.4 and Corollary 4.5 we get:

Corollary 4.6 (cf. [10], [11], [34]). The following statements are equivalent:

(i) Lϕ(X)∗ = {0};

(ii) lim inf
t→∞

ϕ(t)
t = 0 and ϕ ∈ ∆2.

The basic properties of the conjugate modular Mϕ and the norms ‖ · ‖
Mϕ
,

||| · |||
Mϕ
and PMϕ

on Lϕ(X)∗ are described by the following theorem.

Theorem 4.7. Assume that lim inf
t→∞

ϕ(t)
t > 0 and ϕ /∈ ∆2. Let F = Fg + Fs,

where g ∈ Lϕ∗

(X∗, X) and Fs ∈ Lϕ(X)∼s . Then

(i) Mϕ(F ) =Mϕ(Fg) +Mϕ(Fs);

(ii) |||F |||
Mϕ
= inf{λ > 0: mϕ∗(ϑ(g)/λ) + λ−1Mϕ(Fs) ≤ 1};

(iii) ‖F‖
Mϕ
= ‖Fg‖Mϕ

+ ‖F‖
Mϕ
;

(iv) P
Mϕ
(F ) = PMϕ

(Fg) + PMϕ
(Fs).

Proof: (i) To prove that Mϕ(F ) ≥ Mϕ(Fg) + Mϕ(Fs) let ε > 0 be given.

Then there exists h ∈ Lϕ(X) with Mϕ(h) < ∞ and such that Mϕ(Fg) − ε ≤
Fg(h)− Mϕ(h). Since suppEϕ = Ω, there exists a sequence (Ωn) in Σ such that
Ωn ↑ Ω, χΩn

∈ Eϕ for n ∈ N. Let

h(n)(ω) =

{
h(ω) if h̃(ω) ≤ n and ω ∈ Ωn,

0 elsewhere.

Then h(n) ∈ Eϕ(X) for n ∈ N and h̃(n) ↑ h̃. Hence Fg(h
(n)) → Fg(h) and

Mϕ(h
(n)) ↑ Mϕ(h), so there exists n0 ∈ N such that for h1 = h(n0) ∈ Eϕ(X) we

have

(1) Mϕ(Fg)−
ε

4
≤ Fg(h1)− Mϕ(h1).
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Moreover, there exists h2 ∈ Lϕ(X) with Mϕ(h2) < ∞ and such that

(2) Mϕ(Fs)−
ε

4
≤ Fs(h2)− Mϕ(h2).

Since suppEϕ = Ω there exists a sequence (un) in Eϕ such that 0 ≤ un ↑ h̃2
(see [17, Lemma 4.3.1]). Let Bn = {ω ∈ Ω: 2un(ω) ≥ h̃2(ω)}. Then Bn ↑µ Ω,

χBn
h̃2 ↑ h̃2 and χBn

h̃2 ≤ 2un ∈ Eϕ, so χBn
h2 ∈ Eϕ(X). Let An = Ω \ Bn

for n ∈ N. Then An ցµ ∅, so Fg(χAn
h1) → 0 and Fg(χAn

h2) → 0, because

χAn
h̃1
(o)
−→ 0, χAn

h̃2
(o)
−→ 0. Choose n0 ∈ N such that

(3) |Fg(χAn0
h1)| ≤

ε

4
and |Fg(χAn0

h2)| ≤
ε

4
.

Let us put

h0(ω) =

{
h1(ω) if ω ∈ Ω \ An0 = Bn0 ,

h2(ω) if ω ∈ An0 .

Then Mϕ(h0) ≤ Mϕ(χΩ\An0
h1) + Mϕ(χAn0

h2) and since h1 ∈ Eϕ(X) and

χΩ\An0
h2 ∈ Eϕ(X), by (1), (2) and (3) and Corollary 3.3 we get

Mϕ(F ) ≥ F (h0)− Mϕ(h0)

≥ Fg(χΩ\An0
h1) + Fg(χAn0

h2) + Fs(χΩ\An0
h1) + Fs(χAn0

h2)

− Mϕ(χΩ\An0
h1)− Mϕ(χAn0

h2)

≥ (Fg(h1)− Mϕ(h1)) + Fg(χAn0
h1) + Fg(χAn0

h2) + (Fs(χAn0
h2)

+ Fs(χΩ\An0
h2)− Mϕ(h0))

≥ Mϕ(Fg)−
ε

4
−

ε

4
−

ε

4
+Mϕ(Fs)−

ε

4
=Mϕ(Fg) +Mϕ(Fs)− ε.

On the other hand, since Mϕ(Fs) = sup{|Fs(f)| : Mϕ(f) < ∞} (see Theorems
3.2 and 3.4) we get

Mϕ(F ) ≤ sup{(|Fg(f)| − Mϕ(f)) + |Fs(f)| : f ∈ Lϕ(X), Mϕ(f) < ∞}

≤ sup{|Fg(f)| − Mϕ(f) :Mϕ(f) < ∞}+ sup{|Fs(f)| :Mϕ(f) < ∞}

=Mϕ(Fg) +Mϕ(Fs).

Thus the identity (i) is proved.

By making use of (i) and Theorem 2.4, and Theorem 3.4 we have

|||F |||
Mϕ
= inf{λ > 0 :Mϕ(λ

−1Fg) +M(λ−1Fs) ≤ 1}

= inf{λ > 0 : mϕ∗(λ−1ϑ(g)) + λ−1Mϕ(Fs) ≤ 1}
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(iii) Similarly, in view of (i) and Theorem 2.4 and Theorem 3.4 we have:

‖F‖
Mϕ
= inf

λ>0
{λ−1(Mϕ(λFg) + λMϕ(Fs) + 1)}

= inf
λ>0

{λ−1(Mϕ(λFg) + 1) +Mϕ(Fs)}

= ‖Fg‖Mϕ
+Mϕ(Fs) = ‖Fg‖Mϕ

+ ‖Fs‖Mϕ
.

(iv) To prove that PMϕ
(F ) ≤ PMϕ

(Fg) + PMϕ
(Fs) let ε > 0 be given. Then

in view of Theorem 2.1 there exists f1 ∈ Eϕ(X) with Mϕ(f1) ≤ 1 and such that

(4) PMϕ
(Fg)−

ε

8
≤ Fg(f1).

In view of Theorem 2.2, Fg is modular continuous, so there exists 0 < δ <
Mϕ(h1) such that |Fg(f)| ≤

ε
8 whenever Mϕ(f) ≤ δ. Moreover, there exists a

subset A ∈ Σ such that Mϕ(χAf1) = δ, because µ is atomless. Hence Mϕ(f1) =
Mϕ(χAf1) +Mϕ(χΩ\Af1), so η = Mϕ(χΩ\Af1) < 1. Let us put f ′

1 = χΩ\Af1.

Then Fg(f
′
1) = Fg(f1)− F (χAf1) ≥ Fg(f1)−

ε
8 . Thus by (4)

(5) PMϕ
(Fg)−

ε

4
≤ Fg(f

′
1).

Moreover, there exists f2 ∈ Lϕ(X) with Mϕ(f2) ≤ 1 and such that

(6) PMϕ
(Fs)−

ε

4
≤ Fs(f2).

Then there exists a sequence (vn) in Eϕ such that 0 ≤ vn ↑ f̃2 (see [17,

Lemma 11.3.1]). Let Cn = {ω ∈ Ω: 2vn(ω) ≥ f̃2(ω)}. Then Cn ↑ Ω, χCn
f̃2 ↑ f̃2

and χCn
f̃2 ≤ 2vn ∈ Eϕ, so χCn

f2 ∈ Eϕ(X). Let Dn = Ω \ Cn. Since Dn ցµ ∅,
there exists n0 ∈ N such that

(7) |Fg(χDn0
f ′
1)| ≤

ε

4
and |Fg(χDn0

f2)| ≤
ε

4

and

(8) Mϕ(χDn0
f2) ≤ 1− η.

Let us put

f0(ω) =

{
f ′
1(ω) if ω ∈ Ω \ Dn0 = Cn0

f2(ω) if ω ∈ Dn0 .

Then Mϕ(f0) ≤ Mϕ(χΩ\Dn0
f ′
1) + Mϕ(χDn0

f2) ≤ Mϕ(f
′
1) + Mϕ(χDn0

f2) ≤

η+(1− η) = 1. Since f ′
1 ∈ Eϕ(X) and χΩ\Dn0

f2 = χCn0
f2 ∈ Eϕ(X) by (5), (6),
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(7) and (8) we get

PMϕ
(F ) ≥ F (h0) = Fg(h0) + Fs(h0)

= Fg(χΩ\Dn0
f ′
1) + Fg(χDn0

f2) + Fs(χΩ\Dn0
f ′
1) + Fs(χDn0

f2)

= Fg(f
′
1)− Fg(χDn0

f ′
1) + Fg(χDn0

f2) + Fs(χDn0
f2)

+ Fs(χΩ\Dn0
f2)

≥ PMϕ
(Fs)−

ε

4
−

ε

4
−

ε

4
+ PMϕ

(Fs)−
ε

4

= PMϕ
(Fg) + PMϕ

(Fs)− ε.

Since PMϕ
(F ) ≤ PMϕ

(Fg) + PMϕ
(Fs), the proof is complete. �

We know that (Lϕ(X), PMϕ
) is a Banach space (see Theorem 1.3). Assume

now that lim inf
t→∞

ϕ(t)
t > 0. In view of Theorem 4.3 one can define a projection

Pn: L
ϕ(X)∗ → Lϕ(X)∗ by Pn(F ) = Fg , whenever F = Fg + Fs ∈ Lϕ(X)∗ =

Lϕ(X)∼n ⊕Lϕ(X)∼s , and for each F ∈ Lϕ(X)∗ by Theorem 4.7 we have PMϕ
(F ) =

PMϕ
(Pn(F ))+PMϕ

(F −Pn(F )) (resp. ‖F‖
Mϕ
= ‖Pn(F )‖Mϕ

+‖F−Pn(F )‖Mϕ
).

It means that Pn is a continuous L-projection in (Lϕ(X)∗, PMϕ
) (resp. (Lϕ(X)∗,

‖ · ‖
Mϕ
)) (see [3, Definition 1.3]).

Moreover, Lϕ(X)∼n and Lϕ(X)∼s are topologically complementary in
(Lϕ(X)∗, PMϕ

) (resp. (Lϕ(X)∗, ‖ · ‖
Mϕ
)); see [36, 5.3]. It follows that both

Lϕ(X)∼n and Lϕ(X)∼s are closed in (L
ϕ(X)∗, PMϕ

) (resp. (Lϕ(X)∗, ‖ · ‖
Mϕ
))

(see [36, Remark 5.3.9]).

5. Applications

In this section we present some consequences of Theorems 4.3 and 4.7. First
we shall show that continuous linear functionals on Eϕ(X) have the unique PMϕ

-

norm preserving extension to Lϕ(X) (cf. [32, Theorem 5.3])

Theorem 5.1. Assume that lim inf
t→∞

ϕ(t)
t > 0 and ϕ /∈ ∆2. Let G be a ||| · |||ϕ-

continuous linear functional on Eϕ(X). Then there exists a unique |||·|||ϕ-continuous
linear functional F on Lϕ(X) such that F (h) = G(h) for all h ∈ Eϕ(X) and

PMϕ
(F ) = PMϕ

(G) = sup{|G(h)| : h ∈ Eϕ(X), Mϕ(h) ≤ 1}.

Proof: In view of Theorem 4.1(i) (Eϕ(X), Tϕ(X)|Eϕ(X))
∗ = (Eϕ(X),

Tϕ(X)|Eϕ(X))
∗. It is known that (Eϕ)′ = Lϕ∗

(see [25, Theorem 3.1]), so by [6,

Corollary 4.1] there exists g ∈ Lϕ∗

(X∗, X) such that G(h) =
∫
Ω〈h(ω), g(ω)〉 dµ

for h ∈ Eϕ(X). Let us put

F (f) =

∫

Ω
〈f(ω), g(ω)〉 dµ for all f ∈ Lϕ(X).
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Then F (h) = G(h) for all h ∈ Eϕ(X) and F ∈ Lϕ(X)∼n (see Theorem 2.2).
Moreover, by Theorem 2.4(iv) PMϕ

(F ) = PMϕ
(G).

Now assume that F is another such extension of G, and let F1 = F −F . Then
F1 ∈ Lϕ(X)∼s (see Corollary 3.3) and by Theorem 4.7 PMϕ

(F ) = PMϕ
(F ) =

PMϕ
(F ) + PMϕ

(F1), so PMϕ
(F1) = 0. Hence F1 = 0, so F = F , as desired. �

The next theorem gives an inner characterization of singular functionals on
Lϕ(X) in terms of their norms ‖ · ‖

Mϕ
and ||| · |||

Mϕ
(cf. [32, Theorem 3.5]).

Theorem 5.2. Assume that lim
t→∞

ϕ(t)
t =∞. Then for F ∈ Lϕ(X)∗ the following

statements are equivalent:

(i) F ∈ Lϕ(X)∼s ;
(ii) ‖F‖

Mϕ
= |||F |||

Mϕ
.

Proof: (i) ⇒ (ii) See Theorem 3.4.

(ii) ⇒ (i) Let F = Fg + Fs, where g ∈ Lϕ(X)∼n and Fs ∈ Lϕ(X)∼s . Then by
Theorem 4.3

|||F |||
Mϕ

≤ |||Fg |||Mϕ
+ |||Fs|||Mϕ

≤ ‖Fg‖Mϕ
+ ‖Fs‖Mϕ

= ‖F‖
Mϕ

.

Since |||Fs|||Mϕ
= ‖Fs‖Mϕ

(see Theorem 3.4) we conclude that |||Fg |||Mϕ
=

‖Fg‖Mϕ
, so in view of Theorem 2.4 the identity |||ϑ(g)|||ϕ∗ = ‖ϑ(g)‖ϕ∗ holds. It

follows that ϑ(g) = 0 (see [32, Lemma 1]). Hence g = 0, i.e., F = Fs ∈ Lϕ(X)∼s ,
as desired. �

Theorem 5.3. Assume that lim inf
t→∞

ϕ(t)
t > 0 and ϕ /∈ ∆2. Let F = Fg0 +

F 0s , where g0 ∈ Lϕ∗

(X∗, X) and F 0s ∈ Lϕ(X)∼s . Then Fg0 (resp. F 0s ) is the
unique best approximant of F with respect to Lϕ(X)∼n (resp. Lϕ(X)∼s ), whenever
Lϕ(X)∗ is provided with the norms PMϕ

and ‖ · ‖
Mϕ
.

Proof: In view of Theorem 4.7, for any g ∈ Lϕ∗

(X∗, X) we have PMϕ
(F −Fg) =

PMϕ
(Fg0+F 0s −Fg) = PMϕ

(Fg0−Fg)+PMϕ
(F 0s ). Hence distPMϕ

(F, Lϕ(X)∼n ) =

PMϕ
(F 0s ) = PMϕ

(F − Fg0).

On the other hand, assume that distPMϕ
(F, Lϕ(X)∼n ) = PMϕ

(F − Fg) for

some g ∈ Lϕ∗

(X∗, X). Hence PMϕ
(F 0s ) = PMϕ

(F −Fg) = PMϕ
(Fg0+F 0s −Fg) =

PMϕ
(Fg0 − Fg) + PMϕ

(F 0s ). It follows that PMϕ
(Fg0 − Fg) = 0, so Fg0 = Fg, as

desired.

Similarly in the other cases. �
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