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Spaces with σ-n-linked topologies

as special subspaces of separable spaces

Ronnie Levy, Mikhail Matveev

Abstract. We characterize spaces with σ-n-linked bases as specially embedded subspaces
of separable spaces, and derive some corollaries, such as the c-productivity of the prop-
erty of having a σ-linked base.
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A collection C of sets is centered if every finite subcollection of C has non-
empty intersection. A collection L of sets is linked if every two elements of L have
non-empty intersection. Thus, every centered collection is linked. More generally,
a collection is n-linked (where n ≥ 2) if every ≤ n-element subfamily has non-
empty intersection; “linked” is a synonym for “2-linked”. A collection which is
the union of countably many centered (respectively, n-linked, linked) families is
said to be σ-centered (respectively, σ-n-linked, σ-linked). The following chain of
implications is obvious:

separable

↓

σ-centered base

↓

. . .

↓

σ-(n+ 1)-linked base

↓

σ-n-linked base

↓

. . .

↓

σ-linked base

↓

c.c.c.



562 R. Levy, M.Matveev

It is known (see [vD1]; implicitly in [LMcD]) that a compact Hausdorff space
has a σ-centered base if and only if it is separable, and that a Tychonoff space
has a σ-centered base if and only if it has a separable Hausdorff compactification
(or, which is equivalent, if every Hausdorff compactification is separable). This
characterization of spaces with σ-centered base as dense subspaces of separable
spaces makes reasonable the question whether there is similar characterization
(i.e. as certain special subspaces of separable spaces) for spaces with σ-n-linked
bases. We give such a characterization below. It has as a corollary the result that
a regular space with a σ-linked base has weight at most c where c = 2ω and that
there is a bound on the cardinalities of Hausdorff spaces with σ-linked bases. The
result for Tychonoff spaces is a consequence of Theorem 5.8 in [BvD] where it is
shown that if B is a σ-linked Boolean algebra, then |B| ≤ c. Another corollary of
our characterization is the c-productivity of the classes of spaces with σ-n-linked
bases.
It is interesting to note that, unlike in the case of spaces with σ-centered bases, a

Hausdorff compact space with a σ-linked base need not be separable. This follows
from a series of examples of Steprans and Watson [SW] of Tychonoff spaces with
a σ-n-linked bases but without σ-(n+ 1)-linked bases, and a simple remark that
a compactification of a space with a σ-linked base also has a σ-linked base.

1. Preliminaries

In this section, we gather some results which will be used in what follows. We
make some conventions. All spaces are assumed to be at least Hausdorff. Also,
whenever we talk about a collection of sets, such as a base for a topology, we
always assume that each of the sets is non-empty.
The following theorem is proven in [vD1].

Theorem 1.1. Suppose that X is a Tychonoff space. Then the following are
equivalent.

(i) X has a σ-centered base.
(ii) X has a separable compactification.
(iii) Every compactification of X is separable.

A particular case of Theorem 1.1 arises when X is compact.

Corollary 1.2. A compact space has a σ-centered base if and only if it is sepa-
rable.

The question arises of whether the result in Corollary 1.2 holds if σ-centeredness
is replaced with σ-linkedness. To answer this, we need some lemmas.
A π-network is a family of sets, not necessarily open, such that every open set

contains an element of this family.

Lemma 1.3. The following are equivalent for a space X .

(i) X has a σ-linked π-network.
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(ii) X has a σ-linked base.
(iii) Every base for X is σ-linked.
(iv) The collection of non-empty open subsets of X is σ-linked.

Proof: Suppose that
⋃

n∈ω Bn is a π-network for X where each of the collections
Bn is linked. If C denotes the topology of X with the emptyset removed, let
Cn = {C ∈ C : there exists B ∈ Bn such that B ⊆ C}. Then Cn is linked for each
n ∈ ω and C =

⋃
n∈ω Cn.

The other implications are trivial. �

Definition 1.4. A space having a σ-n-linked (respectively, σ-linked) base is said
to be n-slinky (respectively, slinky).

Thus, “slinky” is a synonym for “2-slinky”.
We note that since a linked family cannot have disjoint elements, a slinky space

must satisfy the countable chain condition (see the diagram above). In particular,
a slinky space can have only countably many isolated points.

Lemma 1.5. The following are equivalent for a space X .

(i) X is n-slinky.
(ii) Every dense subset of X is n-slinky.
(iii) X has a n-slinky dense subset.
(iv) The collection of all non-empty open subsets of X is σ-n-linked.

Proof: (i)⇒ (ii). Let
⋃

k∈ω Bk be a σ-n-linked base for X where each collection
Bk is n-linked and suppose that D is dense in X . Let Ck = {B ∩ D : B ∈ Bk}.
Then it follows easily from the fact that D is dense in X that Ck is n-linked for
each k ∈ ω, and

⋃
k∈ω Ck is a base for D.

(iii) ⇒ (iv). Suppose D is a dense subset of X having the σ-n-linked base⋃
k∈ω Ck where each collection Ck is n-linked. Let Uk = {U ⊆ X : U is non-empty
and open in X and there exists C ∈ Ck such that C ⊆ U}. Then Uk is n-linked for
each k ∈ ω and if U is any non-empty open subset of X , then U ∩D is non-empty
and open in D so there exists an k ∈ ω and C ∈ Ck such that C ⊆ U . Therefore,⋃

k∈ω Uk is the collection of all non-empty open subsets of X .

The other implications are obvious. �

Corollary 1.6. The following are equivalent for a Tychonoff space X .

(i) X is n-slinky.
(ii) X has a n-slinky Hausdorff compactification.
(iii) Every Hausdorff compactification of X is n-slinky.

The following observation will be used later.

Proposition 1.7. If X is n-slinky and f : X → Y is a continuous surjection,
then Y is n-slinky.

Proof: Suppose X is slinky and write the collection of non-empty open subsets
of X as

⋃
k∈ω Bk where each collection Bk is n-linked. For k ∈ ω, let Ck = {V ⊆
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Y : U is open in Y, f←(V ) ∈ Bk}. Then each non-empty open subset of Y is
in Ck for some k ∈ ω, because f is continuous, and since each collection Ck is
n-linked, so is Bk for each k ∈ ω. �

We close this section with a series of examples due to Steprans and Watson.

Example 1.8 (Steprans, Watson [SW]). For every n ≥ 2 there is a slinky Ty-
chonoff space Xn which is not (n + 1)-slinky. Furthermore, there is a Tychonoff
space X∞ which is n-slinky for each n ≥ 2, but which does not have a σ-centered
base.

We note that the spaces in this examples are subspaces of the Pixley-Roy ex-
ponent of the irrationals, and, therefore, have additional nice properties: they
are metacompact Moore spaces (see [vD2] or [T]). Metacompact plus Moore im-
plies having a point countable base; this shows how far slinky is from separable:
a separable space with a point countable base is second-countable.

2. Separability and σ-linked bases

By a result of Baumgartner and van Douwen (Theorem 5.8 in [BvD]), every
Tychonoff slinky space has weight at most c. Therefore, since every Tychonoff
space of weight c is a subspace of a separable space, every slinky Tychonoff space
embeds in a separable space. In this section, we discuss the relationship between
separability and slinkiness. We first point out that even for compact spaces,
having a σ-linked base is different from having a σ-centered base, that is, slinkiness
is different from separability.

Example 2.1. There exists a nonseparable compact slinky space.

Proof: Let X∞ be the space in Example 1.8 and let Y be a Hausdorff compact-
ification of X∞. By Corollary 1.6, Y has a σ-linked base, but by Theorem 1.1, Y
is not separable. �

We now turn to the task of showing that slinky Tychonoff spaces not only
embed in separable spaces, as follows from the Baumgartner-van Douwen result,
but they embed in a nice way. Furthermore, we show that even non-Tychonoff
slinky spaces embed in separable spaces in a nice way.

Notation 2.2. Suppose X is a space having a base
⋃

n∈ω Bn where the collection
Bn is linked for each n ∈ ω. We consider ω as a copy of a countable discrete space

disjoint from X . If U is an open subset of X and F ⊆ ω, we denote by ÛF the

subset U ∪ {n ∈ ω : U ∈ Bn} \ F of X ∪ ω. We write Û for Û∅.

The notation in 2.2 should include reference to the particular σ-linked base
being used, and to the representation of that base as the union of countably
many linked collections. However, in our construction, there will be only one
such base and representation under consideration.
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Lemma 2.3. Suppose n ≥ 2 is an integer, X is a space having a base
⋃

k∈ω Bk

where the collection Bk is n-linked for each k ∈ ω and U1 · · ·Un are open subsets

of X . Then U1 ∩ · · · ∩ Un = ∅ if and only if Û1 ∩ · · · ∩ Ûn = ∅.

Proof: We prove the case where n = 2, the other cases being essentially the

same. One direction is trivial—since U ⊆ Û and V ⊆ V̂ , if Û ∩ V̂ = ∅, then
U ∩V = ∅. For the converse, we note that if k ∈ Û ∩ V̂ , where k ∈ ω, then U ∈ Bk

and V ∈ Bk, and since Bk is linked, U ∩ V 6= ∅. �

Definition 2.4. Let n ≥ 2. Suppose 〈Y, TY 〉 is a space and 〈X, TX 〉 is a subspace
of 〈Y, TY 〉. Then X is In-embedded in Y if there exists a function :̂ TX → TY

such that for each U ∈ TX , Û ∩ X = U and such that U1 ∩ · · · ∩ Un = ∅ implies

Û1 ∩ · · · ∩ Ûn = ∅, where Û = (̂U). The function ̂ is called an In operator. If
the operator ̂ is In for each n ≥ 2, then we will call it an I<ω-operator, and we
will say that X is I<ω-embedded into Y .

We note that the property of being In embedded is transitive:

Proposition 2.5. If X is In-embedded in Z and Z is In-embedded in Y , then
X is In-embedded in Y .

The obvious proof works.

Lemma 2.6. If X is dense in Z, then X is I<ω-embedded in Z.

Proof: For an open subset U of X , let KU = ClXU \ U , and let Û =
IntZ(ClZU) \ ClZKU . Since U is open in X and X is dense in Z, U ⊆

IntZ(ClZU); since KU is closed in X and disjoint from U , U ⊆ Û . There-

fore, U ⊆ Û ∩ X . For the reverse inclusion, note that the only elements of X

which are in IntZ(ClZU) are elements of ClXU , so Û ∩ X ⊆ U and, hence,

Û ∩X = U . Next, it is easy to see, that for open sets U and V in X , IntZClZU ∩
IntZClZV = IntZClZ(U ∩ V ). Therefore IntZClZU1 ∩ · · · ∩ IntZClZUn = ∅
whenever U1 ∩ · · · ∩ Un = ∅. �

We are now ready to show that slinky spaces are I2-embedded in separable
spaces. This construction will lead to a characterization of slinky spaces.

Proposition 2.7. Suppose X is a slinky space. Then there exists a separable
space Y such that X is an I2-embedded subspace of Y . Furthermore, if X is
Tychonoff, Y may be taken to be Tychonoff.

Proof: We give the proof for the case of Tychonoff spaces. It is not difficult
to see that the same construction, but without the additional step of embedding
X into a compact space, provides the preservation of lower axioms of separation
than T3 1

2

.
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If X is Tychonoff, then by Corollary 1.6, X has a Hausdorff compactification
having a σ-linked base; if we can prove the result for this compactification, then
we have also proved the result for X . Therefore, if X is Tychonoff, we can and
do assume that it is compact Hausdorff.
By Lemma 1.5, the collection of all non-empty open subsets of X is σ-linked,

so we can write this collection as
⋃

k∈ω Bk where Bk is linked for each k ∈ ω.
Moreover, if X is n-slinky, we can assume that each Bk is n-linked (this remark is
important for the use in Proposition 2.10 below). Furthermore, we may assume
that if U ∈ Bk and U ⊆ V , then V ∈ Bk. As a set, let Y be the disjoint union
of X and ω. Let each element of ω be isolated, and for each open subset U of X

and each finite subset F of ω, declare ÛF to be open in Y . Observe that for open

subsets U and V ofX , if U∩V ∈ Bk, then U ∈ Bk and V ∈ Bk, so Û ∩ V ⊆ Û∩V̂ .
It follows that we have defined a base for a topology on Y .
To show that Y is Hausdorff, suppose that p and q are distinct elements of Y .

Since each element of ω is isolated, and each finite subset of ω is closed in Y , we
may assume that p, q ∈ X . Let U and V be disjoint neighborhoods of p and q

in X . Then by Lemma 2.3, Û and V̂ are disjoint neighborhoods of p and q in Y .
We must also show that Y is Tychonoff. We will do more: using compactness,

hence normality of X (recall that we have replaced X by its compactification) we
prove that Y is normal. So, let F1 and F2 be disjoint closed sets in Y , and let
H1 = F1 ∩ X , H2 = F2 ∩ X . Then H1 and H2 are disjoint closed sets in X . By
normality of X , there are disjoint open sets in X , U1 ⊃ H1 and U2 ⊃ H2. By

Lemma 2.3, the sets Û1 and Û2 are disjoint open neighbourhoods of H1 and H2
in Y . We put V1 = (Û1 \ F2) ∪ (F1 ∩ ω) and V2 = (Û2 \ F1) ∪ (F2 ∩ ω). Then V1
and V2 are disjoint open neighbourhoods of F1 and F2 in Y .
It is immediate from Lemma 2.3 that X is I2-embedded in Y . Therefore, the

only thing left to show is that Y is separable. Let D = ω∪{p ∈ X : p is isolated in
X}. Since X is slinky, it has only countably many isolated points, and, therefore,
D is countable. Every non-empty set of isolated points of Y intersects D, so if we

can show that every set of the form ÛF , where U is a non-empty open subset of X
and F is a finite subset of ω, intersectsD, then we will have shown thatD is dense

in X . If U is finite, then U contains an isolated point p of X and p ∈ D ∩ ÛF .
Therefore, we assume that U is infinite. If we can show that {k ∈ ω : U ∈ Bk}

is infinite, then there exists m ∈ ω \ F such that U ∈ Bm and m ∈ D ∩ ÛF .
Suppose |{k ∈ ω : U ∈ Bk}| = r < ω. Choose r + 1 points p0, · · · , pr ∈ U and
let V0, · · · , Vr be disjoint open subsets of X such that pi ∈ Vi ⊆ U for i = 0, · · · r.
For i = 0, · · · , r, let ki ∈ ω be such that Vi ∈ Bki

. Then, since the Vi’s are
pairwise disjoint, if i 6= j, Bki

6= Bkj
. Since Vi ⊆ U for each i, this means that

U is an element of the r + 1 families Bk0 , · · · ,Bkr
, contradicting the assumption

that |{k ∈ ω : U ∈ Bk}| = r. �

Since every separable Tychonoff space has weight at most c and every separable
Hausdorff space has cardinality at most 2c, the following is an immediate corollary.
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Corollary 2.8.

(1) Every Hausdorff slinky space has cardinality at most 2c.
(2) Every slinky Tychonoff space has weight at most c.

Saying that the weight of a slinky space is ≤ c, it is natural to ask what happens
if the weight is strictly less than c? It turns out that assuming MA, Martin’s
Axiom, every slinky space of weight < c has a σ-centered base. Indeed, it follows
from ([W, Theorem 4.5]) that assuming MA, every partial order of cardinality < c

with c.c.c. is σ-centered. Therefore, assuming MA, every c.c.c. space of weight
< c has a σ-centered base, and in particular a σ-linked base becomes σ-centered.
It is easy to see that the property of having a σ-centered or a σ-n-linked base

is not preserved by arbitrary, even by closed, subspaces (since one can embed an
uncountable discrete space into a separable space). However, these properties are
preserved by I<ω- and by In-embeddings, respectively.

Proposition 2.9. An I<ω-embedded subspace of a space with a σ-centered base
has a σ-centered base.
An In-embedded subspace of an n-slinky space is an n-slinky space.

The proof is straightforward. We are now ready to characterize slinky spaces.

Proposition 2.10. A (Tychonoff ) space has a σ-centered base iff it can be I<ω-
embedded in a separable (Tychonoff ) space.
A (Tychonoff ) space is n-slinky iff it can be In-embedded into a separable

(Tychonoff ) space.

Proof: The “if” part follows from Lemma 2.3. The “only if” part follows from
Proposition 2.9. �

Proposition 2.10 can be generalized to larger cardinals. To state the general-
ization, we need the following definition.

Definition 2.11. Suppose κ is a cardinal. A collection which is the union of κ

centered (respectively, n-linked, linked) families of sets is said to be κ-centered

(respectively, κ-n-linked, κ-linked).

Proposition 2.12. Suppose that κ is an infinite cardinal.
A (Tychonoff ) space X has a κ-centered base if and only if there exists a

(Tychonoff ) space Y of density at most κ such that X is I<ω-embedded in Y .
A (Tychonoff ) space X has a κ-n-linked base if and only if there exists a

(Tychonoff ) space Y of density at most κ such that X is In-embedded in Y .

The proof is the trivial generalization of the proof of Proposition 2.7 and Propo-
sition 2.10.

3. Products

In this section we deal with questions related to products and n-slinky spaces.
In particular, we show that if X is Tychonoff, then the space Cp(X) of continuous
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real-valued functions defined on X is slinky if and only if Cp(X) has a σ-centered
base, and these conditions hold if and only if |X | ≤ c. We also show that the
property of being n-slinky is c-productive. We note here that all of the results
carry over in straightforward ways to higher cardinal analogues of slinky spaces.

Proposition 3.1. Suppose that X is a Tychonoff space. Then the following are
equivalent:

(1) Cp(X) has a σ-centered base;
(2) Cp(X) is slinky;
(3) |X | ≤ c.

Proof: Since Cp(X) is dense in R
X , which is (homeomorphic to) a dense subset

of [0, 1]X , it follows from Lemma that Cp(X) is slinky if and only if [0, 1]
X is

slinky. If |X | ≤ c, then [0, 1]X is separable and, therefore, slinky. If |X | > c, then

the weight of [0, 1]X is greater than c and, hence, not slinky by Proposition 2.10.
It follows from Theorem 1.1 that Cp(X) has a σ-centered base if and only if
|X | ≤ c. �

Note that the equivalent conditions in the previous proposition do not imply the
separability of Cp(X): it is known that d(Cp(X)) = iw(X) ([A, Theorem I.1.5]).
(Recall that iw(X) = inf{w(Y ) : there exists a continuous bijection of X onto

Y }, see [A].)
We now turn to the question of productivity of n-slinky spaces. We note that

since a product of more than c spaces each of which has at least two points has
weight greater than c, the best that can be hoped for is that the product of at
most c n-slinky spaces is n-slinky. We prove this result in three steps. We first
show that in order to prove that a subspace is In-embedded in a space, it suffices
to define an In operator on a base for the subspace topology.

Lemma 3.2. Suppose 〈Y, TY 〉 is a space, 〈X, TX〉 is a subspace of 〈Y, TY 〉, and B
is a base for 〈X, TX〉. If there exists a function h:B → TY such that h(B)∩Y = B

for all B ∈ B, and B0 ∩ · · · ∩ Bn = ∅ implies h(B0) ∩ · · · ∩ h(Bn) = ∅ for all
B0, · · · , Bn ∈ B, then X is In-embedded in Y .

Proof: An In operator is defined by letting Û =
⋃
{h(B) : B ∈ B, B ⊂ U} for

each U ∈ TX . �

Next we show that the property of being In-embedded is productive.

Lemma 3.3. Suppose that Λ is a non-empty set and for each λ ∈ Λ, the space
Xλ is an In-embedded subspace of the space Yλ. Then

∏
λ∈ΛXλ is In-embedded

in
∏

λ∈Λ Yλ.

Proof: Denote the products
∏

λ∈ΛXλ and
∏

λ∈Λ Yλ by X and Y respectively,
and denote their topologies by TX and TY respectively. Let B be the collection
{
⋂

k∈F π←k Uk : F is a finite subset of Λ, Uk is open in Xk} of canonical open
subsets of the product

∏
λ∈ΛXλ. By Lemma 3.2, it suffices to show that there
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exists a function h : B → TY such that h(B) ∩ Y = B for all B ∈ B, and
B0 ∩ · · · ∩ Bn = ∅ implies h(B0) ∩ · · · ∩ h(Bn) = ∅ for all B0, · · · , Bn ∈ B. For

λ ∈ Λ, let U → Û be an In operator from Xλ to Yλ. (The fact that we use the
same notation for all of these In operators should not cause confusion.) Define

h : B → TY by h(
⋂

k∈F π←k Uk) =
⋂

k∈F π←k Ûk, where the projections on the left
side of the equal sign are taken in X and the projections on the right side of the
equal sign are taken in Y . Then it is clear that h has the required properties. �

Proposition 3.4. Suppose Λ is a non-empty set of cardinality at most c, and
suppose that for each λ ∈ Λ, Xλ is a space. Then the product

∏
λ∈ΛXλ is

n-slinky if and only if Xλ is n-slinky for each λ ∈ Λ.

Proof: Suppose first that each space Xλ is n-slinky. By Proposition 2.10, each
space Xλ is In-embedded in a separable space Yλ. By Lemma 3.3,

∏
λ∈ΛXλ is

In-embedded in
∏

λ∈Λ Yλ, which is separable since it is a product of at most c
separable spaces. Therefore, by Proposition 2.10,

∏
λ∈ΛXλ is n-slinky.

Conversely, each factor of a product is a continuous image of the product.
Therefore, if is

∏
λ∈ΛXλ is n-slinky, then for each λ ∈ Λ, the space Xλ is

n-slinky by Proposition 1.7. �

Acknowledgment. The authors express their gratitude to Alan Dow for draw-
ing their attention to the paper [BvD].

Added in proof. Properties of embedding similar to In, called Kn and Jn, have
been known in the literature for a considerable period, see, e.g. [vDTh], [vD0],
[B1], [B2]. We decided to introduce a new notion because In is just what works
in our constructions. Another application of In, in the study of star covering
properties, can be found in [BM].
Murray Bell has informed the authors that he constructed examples of n-slinky,

not n+1-slinky spaces before [SW], in [M. Bell, Two Boolean algebras with extreme
cellular and compactness properties, Canad. J. Math. 35 (1983), no. 5, 824–838].
Also Bell noted that in a slinky space there are at most c regular open sets. The
authors express their gratitude to Murray Bell for these and other remarks.
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