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Linear programming duality and morphisms

Winfried Hochstättler, Jaroslav Nešetřil

Abstract. In this paper we investigate a class of problems permitting a good charac-
terisation from the point of view of morphisms of oriented matroids. We prove several
morphism-duality theorems for oriented matroids. These generalize LP-duality (in form
of Farkas’ Lemma) and Minty’s Painting Lemma. Moreover, we characterize all mor-
phism duality theorems, thus proving the essential unicity of Farkas’ Lemma. This re-
search helped to isolate perhaps the most natural definition of strong maps for oriented
matroids.

Keywords: oriented matroids, strong maps, homomorphisms, duality
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1. Introduction

There is a great variety of combinatorial optimization results which are of
min-max type or “good characterizations” ([6]) and from the point of view of
theoretical computer science these results establish the membership in the class
NP ∩ co-NP . However, it seems to be convenient for a better understanding to
have a more uniform description of certain classes of characterizations. The most
important here is of course the linear programming approach and the duality
of linear programming serves as a prototype and master theorem which implies
many (but not all) min-max results. Yet, there are other approaches for example
the lattice method of A. Hoffman [15], [16], or general methods related to the
Ellipsoid Method [10]; see also [4]. Another possible approach of algebraic flavour
was suggested in [21], [17], [12] and relies on the definition of classes by means
of special morphisms. (Although this has a definitive category theory flavour one
does not make use of any of the deep results of the theory of categories and thus
we do not have to use the formal language of this theory.) One proceeds as follows:
Suppose that K is a class of objects together with a certain class of maps

(“homomorphisms”, “morphisms”) between them. Given two objects A, B of K
we denote by A → B the existence of a map from A to B. Given a fixed object
A we denote by

→ (A)

the class of objects of K which map to A:

→ (A) := {B ∈ K | B → A}.

Supported partially by GAČR 0194, GAUK 194.
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Similarly, (A)→ := {B ∈ K | A → B}.
The complementary classes will be denoted by 6→ (A) and (A) 6→. Explicitly,

6→ (A) is the class of objects which do not map into A.
A homomorphism duality theorem for K is the following equation of two classes

(∗) (B)→ = 6→ (A).

The equation (∗) is the equation of two classes and thus, explicitly, it means:
For every object C of K : B → C iff C 6→ A.
Examples of homomorphism duality are numerous. The class of graphs and

homomorphisms between them was studied in greater detail in [21], [17], [12], [13]
(a homomorphism f : G → H is any edge preserving mapping of the vertices).
For example the following is proved in [21] and [17]:

Theorem A. The only homomorphism duality for the class of all undirected
graphs and their homomorphisms is the following pair:

(K2)→ = 6→ (K1).

Theorem B. For every oriented tree (i.e. an orientation of a tree) T there exists
a directed graph BT such that

(T )→ = 6→ (BT ).

These are the only homomorphism dualities for the class of all directed graphs

and their homomorphisms.

For example (as the first non-trivial case) for T on Fig. 1a BT is given on
Fig. 1b.

BTT

1a 1b

Figure 1: An example of Tree Duality in Digraphs
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These results show that in the case of graphs and their homomorphism the
examples of homomorphism dualities form a rather small group unable to describe
deeper min-max theorems valid for graphs. There are two ways how to save this
situation:

1. to consider more complicated objects,
2. to consider more special homomorphisms.

Approach 1 was taken in [11], [12], [13] where examples were found of path-
dualities, tree-dualities and bounded tree-width dualities. In all these examples
we deal with classes of graphs (instead of individual graphs). For example in [11]
it has been shown

Theorem C. For any directed path P the following holds for any directed
graph G:

G 6→ P iff there exists a path P ′, P ′ 6→ P with P ′ → G.

Theorem C is an instance of a path-duality as it claims the following: There is
an “easy” proof of G 6→ P . The reason is that G contains a homomorphic image
of a path P ′, P ′ 6→ P (i.e. a “bad path”). If the role of a path is played by trees
(i.e. by bad trees) or by graphs with bounded tree-width then we speak about a
tree-duality and a bounded tree-width duality. Let us state explicitely at least
the latter notion:
The decision H-coloring problem

Instance: A graph G

Question: Does there exist a homomorphism G → H ?
admits a bounded tree-width duality if there exists k ≥ 1 such that the following
holds:

G 6→ H if and only if there exists F with tree width ≤ k such that
F 6→ H and F → G.

The importance of this lies in the fact that any bounded tree-width duality
yields a polynomial algorithm for the correspondingH-coloring problem. This was
independently (and by different means) shown in [12] and [8]. In fact, presently,
this approach yields all polynomial instances of coloring problems.
Our approach here combines 1 and 2. We demonstrate the power of homomor-

phism duality scheme (∗) by showing that the duality theorem of linear program-
ming, Farkas’ Lemma, may be interpreted within this framework. We shall show
that the standard class of morphisms for oriented matroids yields a particular in-
stance of duality which is equivalent to Farkas’ Lemma (Theorem 4.1). Moreover,
we show that with properly defined morphisms this is the only existing duality
(Theorem 5.5). Thus, in this setting, Farkas’ Lemma is the only valid duality (i.e.
it is the only valid duality for oriented matroids with a given class of maps).
The use of oriented matroids for linear programming in the context of ho-

momorphism dualities was suggested by L. Lovász and A. Schrijver [19]. Our
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approach here is motivated by this and by their question whether there exists a
homomorphism duality for Farkas’ Lemma of such a form, that on both sides of
the equation (∗) is the same type of morphisms (as is the case for homomorphisms
of graphs; indeed our formulation of a homomorphism duality covers only such
cases).
Thus our main results (Theorem 4.1, 5.2 and 5.4) have the simple form of a

class-equation
A 6→ = → B

for suitably defined objects and morphisms. However, there is a price to be paid
for this apparent simplicity: the definitions of morphisms and objects are complex,
yet we believe natural.
The paper is organized as follows: In Section 2 we review some basic facts about

oriented matroids. In Section 3 we introduce our morphisms (Definition 3.2) and
prove their basic properties. Section 4 contains a proof of the main result and
finally in Section 5 we analyse the relations on the oriented matroids given by the
morphism and extend them such that Farkas’ Lemma is the only homomorphism
duality theorem.

2. Oriented matroids

Oriented matroids ([5], [9]) are perhaps not as widely known and familiar as
matroids but at least there are already a few books available ([1], [3]).
From the various cryptomorphic axiom systems for oriented matroids we have

chosen the circuit axioms. The advantage is that they can be immediately ob-
served from the circuit axioms of matroid theory by considering digraphs (see de-
tailed comments after Definition 2.1). We will start with the definition of signed
sets and basic notations for them. For reasons which we hope will become clear
later on, we use a notation similar to that of Folkman and Lawrence [9].

Definition 2.1. Let E be a set. For our purposes it will be convenient to consider
two copies of E namely E+, E− with different signs. We will denote E+ ∪ E−

by ±E. The involution − : ±E → ±E is defined the obvious way mapping
e.g. element e+ to e− and vice versa. The support supp (X) ⊆ E of a subset
X ⊆ ±E is the set of elements of the underlying ground set. A signed subset
X ⊆ E+ ∪ E− of E is a set with supp (X ∩ E+) ∩ supp (X ∩ E−) = ∅. For
short, we write X+ := X ∩ E+ and X− := X ∩ E− and denote by 2±E the set

of all signed subsets of E. The separator of two signed subsets X, Y is defined as
sep (X, Y ) := supp (X ∩ −Y ).
A collection C of signed subsets of a set E is the set of signed circuits of an

oriented matroid on E if it satisfies the following axioms
(C0) ∅ /∈ C,
(C1) C = −C, (symmetry)
(C2) ∀X, Y ∈ C : supp (X) ⊆ supp (Y )⇒ X ∈ {Y,−Y }, (incomparability)
(C3) ∀X 6= −Y ∈ C ∀ e ∈ sep (X, Y )∃Z ∈ C : Z ⊆ X ∪ Y \ {e+, e−} (weak

elimination).
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If D is a collection of signed subsets of a finite set E then X ∈ D is elementary
in E iff {Y ∈ D | ∅ 6= Y ⊂ X} = ∅.

Consider a digraph D = (V, E). For any circuit of the underlying graph we
can derive two signed sets C and −C on E as follows. Choose an orientation in
which the circuit is traversed. Let

C+ := {e+ ∈ E+ | e is an edge which is traversed from tail to head} and

C− := {e− ∈ E− | e is an edge which is traversed from head to tail}.

This uniquely defines C. It is immediate that the set of signed sets which can be
derived from D satisfies the above axioms.
There is another classical example for oriented matroids. It stems from vector

spaces over ordered fields K. Let E ⊂ Kd be finite and n = |E|. Thus, we may
consider E as a (d × n) matrix over the reals. Let A ⊆ E be a circuit of E, i.e. a

minimal dependent subset and λ ∈ K|E| such that Aλ = 0 and λe 6= 0 ⇔ e ∈ A.
Hence λ is a minimal non-trivial element in the kernel of A. From λ we derive
the signed set ⋃

λi>0
e∈E

e+ ∪
⋃

λi<0
e∈E

e−.

Elementary computations show that the signed sets derived this way satisfy the
circuit axioms of oriented matroid theory.
These signed sets correspond to the vectors of minimal support in a vector

space. Arbitrary elements of that space correspond to compositions of circuits,
which we are going to define now. A composition of any two circuits derived from
say λ and µ yields the sign pattern of λ+ εµ for some small positive ε:

Definition 2.1. Let C and D be two signed subsets of a finite set E. The
composition C ◦ D is the signed set C ∪ (D \ −C) (where by \ we mean set
difference). Note, that this operation is associative. Let C be the set of circuits
of an oriented matroid and let C1, . . . , Ck ∈ C. Then we call the signed set
C1 ◦ . . . ◦ Ck a vector of C.

Thus the vectors of an oriented matroid which is given by a linear space over
an ordered field correspond bijectively to the sign patterns of the vectors of that
linear space.
It is useful to notice that each positive vector is the composition of positive

circuits:

Proposition 2.1 (cf. [3, 3.7.2]). If X is a vector of an oriented matroid C on a
finite set E, and e ∈ E such that {e+, e−} ∩ X 6= ∅ then there is a C ∈ C such
that C ⊆ X and {e+, e−} ∩ C 6= ∅.

Both of the above examples show that oriented matroids provide a combinato-
rial framework to study linear programming duality. Actually, Minty’s Painting
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Lemma [20] for directed graphs is formulated in these terms. Thus note, that in
the abstract setting of this paper we view linear programming duality as Farkas’
Lemma in the homogeneous form (see [1] and [7]):

Lemma 2.1 (Farkas’ Lemma). Let V ∈ Rn be a subspace of the d-dimensional
Euclidean space. Then

∃x = (x1, . . . , xn) ∈ V : x ≥ 0, x1 > 0

⇔ ∄ y = (y1, . . . , yn) ∈ V ⊥ : y ≥ 0, y1 > 0.

Before we can present Farkas’ Lemma in oriented matroids we first have to
define the orthogonal complements or duals of oriented matroids. Consider the
polygonmatroid of a graph. The cocircuits of this matroid are the cuts of the
graph. It is immediate how to derive signed subsets for the cuts of a directed
graph. One observes that any circuit which traverses a cut has to traverse it in
both directions. This and the definition of orthogonality in linear spaces motivate
the following:

Definition 2.2. Let X, Y be two signed sets. X and Y are orthogonal X⊥Y if

X ∩ Y = ∅ ⇔ −X ∩ Y = ∅.

Proposition 2.2 (cf. [3, 3.7.6 and 3.7.12]). Let C be an oriented matroid. Denote
by C∗ the set of signed subsets which are elementary in C⊥ := {X ∈ 2±E | ∀C ∈
C : X⊥C}. Then C∗ satisfies the circuit axioms of oriented matroid theory. We
call C∗ the dual oriented matroid of C. Furthermore, we have (C∗)∗ = C.

Definition 2.3. Let C be an oriented matroid. We call an element of C∗ a
cocircuit of C and an element from C⊥ a covector of C.

After these preparations Farkas’ Lemma translates to oriented matroids.

Lemma 2.2 (Farkas’ Lemma in oriented matroids cf. [3, 3.4.6]). Let C be an
oriented matroid on a finite set E and e ∈ E. Then exactly one of the following
conditions holds:

1. there is a C ∈ C such that e+ ∈ C ⊆ E+,
2. there is a C′ ∈ C∗ such that e+ ∈ C′ ⊆ E+.

As mentioned above, Farkas’ Lemma for digraphs is also known as Minty’s
Painting Lemma. It is possible to define oriented matroids as the unique combi-
natorial structure such that Farkas’ Lemma holds for all possible sign patterns in
all minors (cf. [3, 3.4.4] or [1]).
What are the minors of oriented matroids?
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Proposition 2.3 (cf. [3, 3.3.1 and 3.3.2]). Let E be finite and C an oriented
matroid on E and I ⊆ E.

1. C \ I := {X ∈ 2±E\I | X ∈ C} is an oriented matroid which we call the
submatroid induced by E \ I. We as well say that C \ I arises from C by
deletion of I.

2. Let C/I denote the set of vectors which are elementary in {X ∈ 2±E\I |
∃ X̃ ∈ C : X = X̃ \ (I+ ∪ I−)}. Then C/I is an oriented matroid which
we call the contraction of C to E \ I. We as well say that C/I arises from
C by contraction of I.

The reader will not be very surprised that contraction and deletion are dual
operations.

Proposition 2.4 (cf. [3, 3.4.1]). Let C be an oriented matroid on a finite set E
and I ⊆ E. Then

(M \ I)∗ =M∗ / I,

(M / I)∗ =M∗ \ I.

Definition 2.4. Let e, f ∈ E. Let X = {e+}, Y = {e+, f−} and Z = {e+, f+}.
Then e is called a loop of C if X ∈ C. We say that e and f are (anti)-parallel if
Y ∈ C (Z ∈ C).

The following fact is immediate from the definition and well known from ma-
troid theory: the duals of the loops are the bonds and the dual of a set of parallels
is a series.

Proposition 2.5. Let e, f ∈ E, then

1. e is a loop of C if and only if ∀X ∈ C⊥ : Xe = 0,
2. e and f are (anti-)parallel in C if and only if ∀X ∈ C⊥ : Xe = Xf (Xe =

−Xf ).

With these preparations we have objects in the right form to define our mor-
phisms.

3. Strong maps

In matroid theory there are two reasonable notions of morphisms: “strong
maps” (an abstraction of linear maps) and “weak maps” (which can move points
from general to more special position). Linear algebra homomorphisms are related
to strong maps and thus for our purposes weak maps do not play a role. Below
we define strong maps for oriented matroids (Definition 3.2). We believe that this
definition is most natural, as our strong maps are those maps where “the inverse
image of a convex set is convex”. The possibility to define strong maps in this
way seems to have been overlooked so far. It is also the reason why we had to
choose the slightly non-standard notation for oriented matroids due to Folkman
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and Lawrence. This notation enables us to define convexity not only for a special
class of oriented matroids, namely the acyclic simple matroids, (see [3, Exercises
3.8–3.12]) and exploit the full structure that convexity may give.

Moreover, we show below (Proposition 3.1) that our definition coincides with
the definition given in [3, 7.7.2.] for oriented matroids with the same ground set.
In view of Lemmata 3.1 and 3.2 our definition is compatible with Exercise 7.27
in [3].

Definition 3.1. Let C be the family of circuits of an oriented matroid C on the
finite ground set E. Let A ⊆ ±E. The convex closure conv (A) of A is defined as

conv (A) := A ∪ {f ∈ ±E | ∃C ∈ C : −f ∈ C ⊆ A ∪ −f}.

A set A ⊆ ±E is convex if conv (A) = A.

Hence, by definition any loop is in the convex hull of the empty set.

Definition 3.2. Let C and D be oriented matroids on the ground sets E and F .
A strong map σ from C to D is a function σ : E ∪ {o} → F ∪ {o} — where o is
a loop on an additional element — mapping o to o and satisfying the following
condition:

The extension σ∗ : ±E ∪ {o} → ±F ∪ {o} of σ mapping e+ 7→ σ(e)+ and
e− 7→ σ(e)− if σ(e) 6= o, and σ∗(e) = o otherwise, has the property that the
inverse image of any convex set of D is convex in C.

Note, that a strong map between two oriented matroids is a strong map between
the underlying matroids. However, the strong maps of oriented matroids are not
as “nice” as in the unoriented case since they in general do not factor into an
extension followed by a contraction (see [3, 7.7.4]). But we will see that, basically,
it suffices to consider strong maps on fixed ground sets. First we check that for
fixed ground sets we get the standard definition of strong maps.

Proposition 3.1. Let C and D be two oriented matroids on the same ground
set E. The identity map is a strong map from C to D iff any circuit of C is a
vector of D. In this case we say that the identity is a quotient map from C to D.

Proof: Let A ⊆ ±E be convex in D. Assume e ∈ ±E \A is in the convex closure
of A in C. Hence there exists a circuit −e ∈ C ⊆ A ∪ {−e} in C. By assumption
C is a vector of D contradicting the fact that e /∈ A but A is convex closed in
D. To prove the other implication let C be a circuit in C and e ∈ C. We have
conv C(C \ e) = C \ {e} ∪ {−e} ⇒ {−e} ∈ conv D(C \ e). Hence C contains a
circuit in D containing e. Since e was arbitrary C is a union of circuits in D and
thus a vector. �

The following observation will be useful later on.
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Corollary 3.1. The identity map is a strong map from C to D if and only if it is
a strong map from D∗ to C∗. We say that the identity map is a dual strong map.

Proof: Let X be a circuit in D∗. Thus ∀D ∈ D : X⊥D ⇒ ∀C ∈ C : X⊥C ⇒ X
is a vector of C∗. �

Here are some standard examples where the ground sets differ.

Example 3.1. Let C be an oriented matroid on the ground set E and U ⊂ E.
Let σ : E ∪{o} → E \U ∪{o} be the identy map on (E \U) and constant o on U .
Then σ is a strong map from C to D := C/U . We call these maps contractions.

Example 3.2. Let C,D be oriented matroids on sets E and F = E∪̇U such that
C = D \ U for some set U . Then the embedding map σ : E ∪ {o} → F ∪ {o} is a
strong map which we will call an embedding.

Example 3.3. Let C be an oriented matroid on the ground set E, e ∈ E be a
loop of C and f, g ∈ E be parallel in C.
Consider the following two modifications σ and σ′ of the identity map E∪{o} →

E ∪ {o},
σ : E ∪ {o} → (E \ {e}) ∪ {o} defined by σ(e) = o and σ(h) = h otherwise

and

σ′ : E ∪ {o} → (E \ {g}) ∪ {o} defined by σ′(g) = f and σ′(h) = h otherwise.

Both σ and σ′ are strong maps. A simplification is any composition of such maps.

Note, that a simplification only relates parallel elements f, g and does not relate
antiparallel elements. Furthermore observe, that contractions are dual strong
maps as were quotient maps (Corollary 3.1). Unfortunately, if σ is a strong map
from C → D that simplifies a parallel we do not necessarily have a non-trivial
strong map from D∗ → C∗ (see Remark 4.2 below).
Fixing this will lead to a definition where replacing a positive element by a

positive series is a morphism. This is reasonable because the corresponding op-
eration in a vector space (doubling a coordinate) in fact is even an isomorphism.
We will have to pay for this with the fact that our morphisms will no longer be
maps of the ground sets like strong maps. This will be done in Section 5 — the
corresponding morphisms are denoted by  and called generalized strong maps.

Lemma 3.1. Let σ : E ∪ {o} → F ∪ {o} be a strong map from C to D. Then σ
can be factored into a surjective strong map followed by an embedding.

Proof: Let F ′ ∪ {o} be the image of σ in F ∪ {o}. Let D′ := D \ (F \F ′). Then
σ induces a strong map from C to D′ and the claim follows if we compose this
with an embedding. �

Lemma 3.2. Let σ : E ∪ {o} → F ∪ {o} be a surjective strong map from C to
D. Then σ can be factored into a bijective strong map — hence a quotient map
followed by a relabeling of the elements — and a simplification.

Proof: Introduce a new loop for each element which is mapped to o and parallels
for the elements of F which have more than one element in its inverse image. �
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4. Affine strong maps

Strong maps per se cannot be used as homomorphisms for duality theorems
(see Introduction) as we have strong maps between any pair of oriented matroids.
This is clear for vector spaces and in general by the following:

Example 4.1. 7 Let C and D be two oriented matroids with ground sets E, F
such that E ∩ F = ∅. Then σ : E ∪ {o} → F ∪ {o} mapping all elements to o is a
strong map.

But it is not surprising that we cannot model Farkas’ Lemma as homomor-
phism duality in combinatorial models for linear spaces. Farkas’ Lemma needs
a distinguished coordinate — or hyperplane — which may not disappear under
the homomorphisms. Considering this hyperplane as the hyperplane at infinity
we may view Farkas’ Lemma as a theorem for affine spaces. Affine spaces are
modelled by affine oriented matroids (cf. [14] and [3, 4.5]).

Definition 4.1. Let C be an oriented matroid on a finite set E and g ∈ E not
a loop. Then we call the tuple (C, g) an affine oriented matroid. Let D be an
oriented matroid on F and h ∈ F . An affine strong map from (C, g) to (D, h) is
a strong map σ : E ∪ {o} → F ∪ {o} from C to D mapping g to h.

The following observation encodes one key step in the proof that Farkas’
Lemma is a homomorphism duality for strong maps.

Lemma 4.1. Let σ : E ∪ {o} → F ∪ {o} be an affine strong map from (C, g)→
(D, h). Then

(∃X ∈ D∗ : h+ ∈ X ⊆ F+)⇒ (∃Y ∈ C∗ : g+ ∈ Y ⊆ E+).

Proof: By the results of the last section it suffices to prove the assertion for
quotient maps, embeddings and simplifications.

Quotient maps are clear by Corollary 3.1 and Proposition 3.1. So assume σ is
an embedding. Thus C = D \ I and hence C∗ = D∗/I and any positive cocircuit
of D corresponds to a positive covector of C. Finally, a deletion of a loop does
not change the covectors at all and an elimination of a parallel only shortcuts a
positive (or negative) series in the dual. �

Now let (L, 1), (L∗, 1) denote the affine oriented matroids defined on the set
{1} consisting of a loop resp. a coloop. We would like to have a homomorphism
duality theorem with L and L∗. This does not work with affine strong maps since
in general we cannot invert simplifications, to be more precise:
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Example 4.2. Let (F , 1) = ({(+,+), (−,−)}, 1) denote the oriented matroid
on {1, 2} consisting of a positive circuit of length 2 then (F∗, 1) → (L∗, 1) but
(L, 1) 6→ (F , 1).

Proof: F∗ consists of two parallels which simplify to L∗. The other assertion
follows from the fact that {1+, 2−} is convex in F but loops are in the convex
hull of the empty set and therefore the inverse image of {1+, 2−} can never be
convex in L. �

As we will see in the next section the only homomorphism duality for oriented
matroids and affine strong maps with simple objects is the trivial equation

(L, 1) 6→ = → (F , 1) (see Theorem 5.2).

To model Farkas’ Lemma in terms of homomorphism duality with affine strong
maps we say that an oriented matroid C on {1, . . . , n}— for some positive natural
number n — is from the class Γ if it consists of an all positive vector and an all
negative vector.
We take a time out for a lemma.

Lemma 4.2. Let (C, g) be an affine oriented matroid. Then

(C, g)→ (L∗, 1)⇔ ∃N ∈ Γ : (N , 1)→ (C∗, g).

Proof: “⇒” By Lemma 4.1 C has a positive cocircuit containing g.

“⇐” By Lemmata 3.1 and 3.2 any strong map from (N , 1) to (C∗, g) factors
into a quotient map followed by a simplification and an embedding. By Propo-
sitions 3.1 and 2.1 we may assume that the quotient map is the identity. Since
N has no loops and parallels we, furthermore, may assume that the strong map
is an embedding. Hence C has a positive cocircuit containing g. Contracting the
complement of its support leaves a bunch of parallels which simplify to (L∗, 1).

�

Now Farkas’ Lemma gives the homomorphism duality theorem:

Theorem 4.1.

∀ (C, g) : (∃N ∈ Γ ((N , 1)→ (C, g)))⇔ ((C, g) 6→ (L∗, 1))

or for short

(Γ, 1)→ = 6→ (L∗, 1).

Proof: Let (C, g) be an oriented matroid and assume there is a non-trivial non-
negative cocircuit containing g in C. As above we conclude that (C, g)→ (L∗, 1).
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On the other hand by Lemma 4.1 there is a non-negative covector which is positive
on 1 in L∗ only if there is such a covector in C. Hence we have

(C, g)→ (L∗, 1) ⇔ ∃X ∈ C∗ : g+ ∈ X ⊆ E+

Farkas

⇔ ∄ Y ∈ C : g+ ∈ Y ⊆ E+

⇔ (C∗, g) 6→ (L∗, 1)

Lemma 4.2

⇔ (Γ, 1) 6→ (C, g).
�

5. Unicity of Farkas’ Lemma

In this section we will show that strong maps give only a trivial duality when
considering simple objects (not a class of objects, such as the class (Γ, 1) in The-
orem 4.1).
However we shall find a proper generalization of affine strong maps — gener-

alized strong maps — and we show not only that Farkas’ Lemma fits into this
framework (with simple objects) but also that it is unique.
First we examine the morphic structures of strong maps in more detail.

Definition 5.1. We say that two affine oriented matroids (C, g), (D, h) are mor-
phic if (C, g) → (D, h) and (D, h) → (C, g). This will be denoted by (C, g) ↔
(D, h).

Proposition 5.1. Let (C, g) be an affine oriented matroid.

1. There is a strong affine map (L∗, 1)→ (C, g).
2. There is a strong affine map (C, g)→ (L, 1).
3. The second alternative of Farkas’ Lemma holds if and only if (C, g) ↔
(L∗, 1).

Proof: Note, that any subset of {o, 1+, 1−} is convex in L∗ and {o, 1+, 1−} is
the only convex set in L.
The last claim is clear from the above and Theorem 4.1. �

Definition 5.2 (see [3, 7.6.1]). Let C andD be two oriented matroids with ground
sets E, F such that E ∩ F = ∅. The direct sum of C and D is given as follows.

C∪̇D := {X ∈ 2±E∪̇F | X ⊆ C or X ⊆ D}.

An oriented matroids is connected if it is not the direct sum of two non-trivial
oriented matroids.

In the next lemma we will see that only the connected component containing
the special element is of interest for the existence of morphisms.
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Lemma 5.1. Let (C, g) and (D, h) be two affine oriented matroids, E, F their

ground sets and C̃ an oriented matroid on Ẽ such that E ∩ Ẽ = ∅. Then

1. there is a morphism from (C∪̇C̃, g) to (D, h) if and only if there is a mor-
phism from (C, g) to (D, h);

2. there is a morphism from D to (C∪̇C̃, g) if and only if there is a morphism
from (D, h) to (C, g).

Proof: Observe that (C∪̇C̃)/Ẽ = (C∪̇C̃) \ Ẽ. �

If we fix the special element in affine oriented matroids, say to 1, we get the
following picture of the morphic structure of affine oriented matroids defined by
existence of affine strong maps.

• The affine oriented matroids (C, 1) which have a positive cocircuit con-
taining 1 are exactly those which are morphic to the coloop.

• If (C, 1) has a positive circuit containing 1 let n denote the cardinality of
the support of the smallest of these circuits. Then (C, 1) has a strong map
from all elements of Γ containing at least n elements. Furthermore, there
is a largest element of Γ such that there is a strong affine map from (C, 1)
to this element.

• The only affine oriented matroids morphic to (L, 1) are those where 1 is
itself a loop.

Theorem 5.1. Let (Ξ, 1) → = 6→ (∆, 1) be a homomorphism duality theo-
rem, where Ξ and ∆ are classes of oriented matroids and → are affine strong

maps. Then each element of Ξ has a positive circuit containing 1.

Proof: Assume a representative C ∈ Ξ had a positive cocircuit containing 1.
Then (C, 1)↔ (L∗, 1) and there is no candidate left for ∆. �

In this direction we will not get any further. There even is a homomorphism
duality theorem where on both sides we just have an object and not a class:

Theorem 5.2.
(L, 1)→ = 6→ (F , 1).

Proof: (L, 1) → (C, 1) iff 1 is a loop in C. Otherwise we consider two cases. If
(C, 1) has a positive cocircuit containing 1 it is morphic to (L∗, 1) which we can
embed into (F , 1). Otherwise it has a positive circuit containing 1 and we prove
by induction on the number of elements n that it embeds into (F , 1). The case
n = 2 is clear. So assume that n > 2. If there is a parallel element in C we can
simplify and apply inductive assumption. Otherwise fix 1 and a second element
of the positive circuit containing 1 and contract an arbitrary third element. The
resulting oriented matroid satisfies the inductive assumption. �

The profane truth of Theorem 5.2 is that 1 either is a loop or it is not. But
this trivial duality is the only homomorphism duality theorem using strong maps
with simple objects. (So we have a situation analogous to undirected graphs and
their homomorphisms, cf. Theorem A):
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Theorem 5.3. Let (B, 1)→ = 6→ (A, 1) be a homomorphism duality theorem
for oriented matroids and affine strong maps. Then (B, 1)↔ (L, 1) and (A, 1)↔
(F , 1).

Proof: Let (B, 1), (A, 1) be a homomorphism duality pair. By Theorem 5.1 B
has a positive circuit containing 1.
For k ≥ n ≥ 3 let Sn

k denote the oriented matroid induced by the following
point configuration. Start with an n−2-dimensional simplex, e.g. spanned by the
unit vectors and the zero vector in Rn−2. Add k − n + 1 points in the convex
hull of these points, but in affinely general position. Embed these into the Rn−1

by adding a 1 in the last coordinate. Finally, replace the points in the interior of
the configuration by their negative inverse. Note, that the underlying matroid is
given by linear dependency and isomorphic to Un−1,k the uniform matroid on k
points of rank n − 1.
Let 1 be one of the corner points of the simplex. Now, the corner points

together with any — formerly — interior point form a positive circuit of length n.
Note, that Sn

k does not contain any smaller circuit.
By Lemma 5.3 (see below) for any affine strong map any positive circuit con-

taining 1 has to be mapped to a positive vector containing 1. Since B is finite,
there exists some n such that (B, 1) 6→ (Sn

k , 1) for all k ≥ n. So, by assumption,
for all k there is an affine strong map σ : (Sn

k , 1)→ (A, 1).
Letm denote the number of elements in A and choose k = m(n−1). Let x be an

element of A such that |σ−1(x)| ≥ n− 1 and consider the strong map induced on
the underlying matroids. Since σ−1(x) must contain a basis of the corresponding
matroid, we conclude that x has to span σ(Sn

k ) and therefore σ(Sn
k ) besides x may

contain only loops and elements which are (anti-)parallel to x. Since any positive
circuit containing 1 in Sn

k has to be mapped to a positive circuit containing 1,
either 1 must be a loop in A or A has to contain an element antiparallel to 1.
By Proposition 5.1 any oriented matroid has an affine strong map into the loop.
Since (B, 1) 6→ (A, 1), A has to contain a positive circuit of length two containing
1 and therefore is morphic to (F , 1). By Theorem 5.2 we get (B, 1)→⊆ (L, 1)→.
Since all members of (L, 1) are morphic to the loop the claim follows. �

Recall (see Introduction), that our ultimate goal was to express LP-duality
(Farkas’ Lemma) as the simple equation

A 6→ = → B

defined by simple objects. By defining affine strong maps we lost a particular fea-
ture of linear maps: the existence of dual maps (see Example 4.2). This problem
already arises in the case of (ordinary) strong maps in oriented matroids: Deleting
a parallel element from a rank one matroid yields a strong map by Example 3.3.
But, dually, there is no non-trivial strong map from a loop to a two circuit. This,
because the two circuit has nontrivial convex sets consisting of one signed copy
of each element.
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The following definition of generalized strong maps will allow us to complete
our project.

Definition 5.3. Let C and D be oriented matroids on the ground sets E and F .
We say that there is a generalized strong map from C to D if there is a sequence
C = C0, . . . , Ck = D of oriented matroids such that

• there is a strong map from (Ci, 1) to (Ci+1, 1) if i is even and 0 ≤ i ≤ k − 1
and

• there is a strong map from (C∗i+1, 1) to (C
∗
i , 1) if i is odd and 0 ≤ i ≤ k − 1.

We denote the existence of a generalized strong map from C to D by C  D.

Observe that a composition of generalized strong maps is a generalized strong
map and that the following two lemmata hold:

Lemma 5.2. (C, 1) (D, 1)⇔ (D∗, 1) (C∗, 1). �

Lemma 5.3. Let σ : E ∪ {o} → F ∪ {o} be an affine strong map from (C, g)→
(D, h). Then

(∃X ∈ C : g+ ∈ X ⊆ E+)⇒ (∃Y ∈ D : h+ ∈ Y ⊆ F+).

Proof: The claim is trivial for simplifications and embeddings and clear for
quotient maps by Proposition 2.1. �

Theorem 5.4.
(L, 1) = 6 (L∗, 1).

Proof: We proceed similarly to the above proof of Theorem 4.1. First we con-
sider the following analogue of Lemma 4.1:

Let σ : E ∪ {o} → F ∪ {o} be a generalized affine strong map from (C, g)  
(D, h). Then

(∃X ∈ D∗ : h+ ∈ X ⊆ F+)⇒ (∃Y ∈ C∗ : g+ ∈ Y ⊆ E+).

However this is a consequence of Lemmata 4.1 and 5.3. Now we have analogues
as in Theorem 4.1

(C, g) (L∗, 1) ⇔ ∃X ∈ C∗ : g+ ∈ X ⊆ E+

Farkas

⇔ ∄ Y ∈ C : g+ ∈ Y ⊆ E+

⇔ (C∗, g) 6 (L∗, 1)

Lemma 5.2

⇔ (L, 1) 6 (C, g).

�

Finally, Proposition 5.1, Theorem 5.1 and Lemma 5.2 now imply:
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Theorem 5.5. Let (B, 1) = 6 (A, 1) be a homomorphism duality theorem
for oriented matroids and generalized affine strong maps. Then (B, 1) is morphic
to the loop and (A, 1) is morphic to the coloop.
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