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Zeroes of the Bergman kernel of Hartogs domains

Miroslav Englǐs

Abstract. We exhibit a class of bounded, strongly convex Hartogs domains with real-
analytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a
zero.
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Let Ω be a domain in Cn and KΩ(z, w) its Bergman kernel. It was conjectured
by Lu Qi-Keng in [Lu] that if Ω is simply connected, then KΩ(z, w) 6= 0 for
all z and w. This conjecture was shown to be false by Skwarczynski [Skw] who
exhibited an unbounded Reinhardt domain in C2 for which KΩ(z, w) has a zero.
Later Boas [B1] obtained even a bounded, strongly pseudoconvex counterexample
to the Lu Qi-Keng conjecture and showed that the set of domains whose Bergman
kernel function has a zero is dense in various topologies [B2], but a possibility still
remained that KΩ(z, w) is zero-free for all convex domains. Recently Boas, Fu
and Straube [BFS] showed that the Bergman kernel function of the domain in C3

defined by |z1| + |z2| + |z3| < 1 has a zero. By exhaustion it follows that when
n ≥ 3, there exist bounded, strongly convex domains with real-analytic boundary
in Cn whose Bergman kernel function has a zero. Subsequently Pflug and Youssfi
[PY] used the “minimal ball” studied in [OPY] to construct a concrete example
of smooth, bounded, strongly convex, algebraic domain in Cn for any n ≥ 4 for
which the Lu Qi-Keng conjecture fails.
The aim of this short note is to call attention to the fact that there exists a

large family of strongly convex domains in Cn, bounded and with smooth (or
even real-analytic) boundary, for which the Lu Qi-Keng conjecture fails. In fact,
it turns out that in some sense such domains are generic in the class of smoothly
bounded, strongly convex domains with a certain circular symmetry. The result
is a simple consequence of an earlier result of the author’s on the asymptotics of
weighted Bergman kernels [E1] and a formula of Ligocka [Lig]. Unfortunately, it
gives no information about the dimension n.
More precisely, we will consider the Hartogs domains

Ω̃m = {(z, t) ∈ Ω×Cm : ‖t‖2 < F (z)}

The research was supported by GAAV ČR grant No. A1019701.
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where F is a positive continuous function on some domain Ω ⊂ Cd and m =

1, 2, . . . . It is well-known that Ω̃m is pseudoconvex if and only if Ω is pseu-
doconvex and − logF is plurisubharmonic, and convex if and only if Ω is con-

vex and F is concave. Further, it is not difficult to see that Ω̃m is smoothly
(or real-analytically) bounded if Ω is smoothly (real-analytically) bounded and
F ∈ C∞(Ω) (F ∈ Cω(Ω)), F = 0 on ∂Ω and ∇F 6= 0 on ∂Ω (i.e. −F is a smooth
resp. a real-analytic defining function for Ω), and in that case it is strongly convex
if and only if F is strongly concave.
Let us say that F has property (K) if there exists a function F̃ (z, w) on Ω×Ω

such that

(i) F̃ (z, w) is holomorphic in z and conjugate-holomorphic in w,

(ii) F̃ (z, z) = F (z),

(iii) |F̃ (z, w)|2 ≥ F̃ (z, z)F̃ (w, w) (the “reverse Schwarz” inequality).

Observe that any function having property (K) is necessarily real-analytic on Ω,

and also (iii) and the positivity of F imply that the extension F̃ does not vanish
on Ω× Ω. Our result is the following.

Theorem. Let Ω be a bounded domain in Cd, F a bounded positive continuous

function on Ω such that logF is concave. Assume that there exists a sequence

of integers 0 < m1 < m2 < . . . such that for each mj , KeΩmj

((z, 0), (w, 0)) 6= 0
∀ z, w ∈ Ω. Then F has property (K).

Corollary. Let Ω be a bounded strongly convex domain in Cd with C∞ bound-

ary and −F a strongly convex C∞ defining function for Ω such that F does not

have property (K). Then there exists an integer m0 such that ∀m ≥ m0, Ω̃m is

a bounded, strongly convex domain with C∞ boundary whose Bergman kernel

function has a zero. The same assertion holds with C∞ replaced by Cω .

Observe that a generic C∞ function is not real-analytic, and, likewise, a generic
real-analytic function on Ω fails to have a sesqui-holomorphic extension to all
of Ω × Ω (even though such extension always exists in a neighbourhood of the
diagonal, by the definition of real-analyticity), i.e. to satisfy the conditions (i) and
(ii) above. (Indeed, after making the change of coordinates z = u+iv, w = u+iv,

the domain Ω×Ω gets transformed into some other domain U ⊂ C2d, its diagonal
into U ∩R2d, and the assertion becomes apparent; cf. Example 2 below.) Thus
the functions F to which the last Corollary applies are generic among the strongly
concave, C∞- (resp. Cω-) smooth positively signed defining functions for Ω.

Proof of the Theorem: According to [Lig, Proposition 0] (cf. also [E2, Propo-
sition 0], and [BFS, Section 2]),

KeΩm
((z, t), (w, s)) =

∞∑

k=0

(k +m)!

k!πm
KΩ,F m+k(z, w) 〈t, s〉k
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where KΩ,F m+k stands for the Bergman kernel on Ω with respect to the weight

F (z)m+k, and 〈·, ·〉 denotes the scalar product in Cm. In particular,

KeΩm
((z, 0), (w, 0)) =

m!

πm
KΩ,F m(z, w).

Our hypothesis therefore implies that

KΩ,F
mj (z, w) 6= 0 ∀ z, w ∈ Ω ∀ j = 1, 2, . . . .

Note that in view of the boundedness of F and Ω, the function constant 1 belongs
to the weighted Bergman spaces L2hol(Ω, Fα dλ) for any α > 0 (dλ is the Lebesgue
measure). By [E1, Theorem A and Theorem C] (with G ≡ 1 and U = Ω), the
assertion follows. �

Proof of the Corollary: Immediate from the Theorem, the above remarks

concerning (strong) convexity and C∞- (resp. Cω-) boundedness of Ω̃m, and the
elementary fact that logF is (strongly) concave whenever F is. �

Example 1. Let f be a strongly convex smooth function on Cd which satisfies
lim|z|→∞ |f(z)| = +∞ and which is not real-analytic at some point z0. Let

c > f(z0) and take Ω = {z : f(z) < c} and F (z) = c − f(z). As F is not
real-analytic at z0, it cannot have property (K).

Example 2. Let f be a function holomorphic in a neighbourhood of the interval
[0, 1] in the complex plane, with f ′ < 0, f ′′ < 0 on [0, 1] and f(1) = 0, which
cannot be extended holomorphically to the whole unit disc D. (For instance,

f(x) = (23 − 2
2x+1 ) + 5(1 − x).) Take Ω = D, F (z) = f(|z|2). Then the only

candidate for an F̃ satisfying (i) and (ii) is F̃ (z, w) = f(zw), which however is not
defined on all ofD×D. Hence, F is real-analytic and does not have property (K).

Example 3. Let Ω = D and F (z) = f(|z|2) where f(x) = (x−1)(x+ 34 )(x−
11
4 ).

This time F̃ (z, w) = f(zw) is defined on all of Ω×Ω, but (iii) fails since f(−34 ) = 0.
Consequently, F is a Cω function on D, even possessing a sesqui-holomorphic
extension to D×D, which does not have property (K).
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