## Commentationes Mathematicae Universitatis Carolinae

Orin Chein; Andrew Rajah<br>Possible orders of nonassociative Moufang loops

Commentationes Mathematicae Universitatis Carolinae, Vol. 41 (2000), No. 2, 237--244

Persistent URL: http://dml.cz/dmlcz/119159

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

# Possible orders of nonassociative Moufang loops 

Orin Chein, Andrew Rajah


#### Abstract

The paper surveys the known results concerning the question: "For what values of $n$ does there exist a nonassociative Moufang loop of order $n$ ?"

Proofs of the newest results for $n$ odd, and a complete resolution of the case $n$ even are also presented.


Keywords: Moufang loop, order, nonassociative
Classification: Primary 20N05

## 1. Introduction and preliminaries

The question above and the equivalent question, "For what integers, $n$, must every Moufang loop of order $n$ be associative?" have long been of interest.

Since Artin observed that the loop of units of any alternative ring is a Moufang loop ([22]), examples of finite nonassociative Moufang loops were known right from the start. For example, the non-zero Cayley numbers form a Moufang loop under multiplication, and the subloop consisting of

$$
\{ \pm 1, \pm i, \pm j, \pm k, \pm e, \pm i e, \pm j e, \pm k e\}
$$

is a nonassociative Moufang loop of order $2^{4}=16$.
The simplest result on nonexistence may be found in [7], where it is shown that every Moufang loop of prime order must be a group. In [4], the first author extended this result to show that Moufang loops of order $p^{2}, p^{3}, p$ prime, must be associative. Since there are nonassociative Moufang loops of order $2^{4}$ [see above] and $3^{4}$ ([1] or [2]), it would seem that no extension of the results above is possible. However, in [8], Leong showed that a Moufang loop of order $p^{4}$, with $p>3$, must be a group. This is the best one can do, because Wright showed in [21] that there exists a nonassociative Moufang loop of order $p^{5}$, for any prime $p$.

If one allows more than one prime, the first author showed that Moufang loops of order $p q$, where $p$ and $q$ are distinct primes, must be associative ([4]). M. Purtill [16] extended the result to Moufang loops of orders $p q r$, and $p^{2} q,(p$, $q$ and $r$ distinct odd primes), although the proof of the latter result has a flaw in the case $q<p$; see [17]. Then Leong and his students produced a spate of papers, [14], [15], [9], [10], [11], culminating in [12], in which Leong and the second author showed the following:

[^0]1.1. Any Moufang loop of order $p^{\alpha} q_{1}^{\alpha_{1}} \ldots q_{n}^{\alpha_{n}}$, with $p<q_{1}<\cdots<q_{n}$ odd primes and with $\alpha \leq 3, \alpha_{i} \leq 2$, is a group, and the same is true with $\alpha=4$, provided that $p>3$.

Finally, the second author, in his doctoral dissertation [18], showed the following:
1.2. For $p$ and $q$ any odd primes, there exists a nonassociative Moufang loop of order $p q^{3}$ if and only if $q \equiv 1(\bmod p)$.

Since there exist nonassociative Moufang loops of order $3^{4}$ and of order $p^{5}$ for any prime $p$, and since the direct product of a nonassociative Moufang loop and a group is a nonassociative Moufang loop, the only remaining unresolved cases for $n$ odd are the following:

$$
n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}} q^{\beta} r_{1}^{\gamma_{1}} \ldots r_{s}^{\gamma_{s}}
$$

where

$$
\begin{aligned}
& p_{1}<\cdots<p_{k}<q<r_{1}<\cdots<r_{s} \text { are distinct odd primes; } \quad k \geq 1 ; \\
& \alpha_{i} \leq 4\left(\alpha_{1} \leq 3 \text { if } p_{1}=3\right) ; \quad \gamma_{i} \leq 2 ; \\
& q \not \equiv 1\left(\bmod p_{i}\right) \text { for all } i=1, \ldots, k ; \text { and } \\
& p_{j} \not \equiv 1\left(\bmod p_{i}\right) \text { for all } i<j \text { with } 3 \leq \alpha_{j} \leq 4 .
\end{aligned}
$$

For $n$ odd, we also have the following results which will be needed below:
1.3 ([7]). If $L$ is a Moufang loop of odd order and if $K$ is a subloop of $L$, and $\pi$ is a set of primes which divide $|L|$, then
(a) $|K|$ divides $|L|$.
(b) If $K$ is a minimal normal subloop of $L$, then it is an elementary abelian group.
(c) $L$ contains a Hall $\pi$-subloop.
1.4 ([12]). If $L$ is a nonassociative Moufang loop of odd order and if all of the proper quotient loops of $L$ are groups, then $L_{a}$, the subloop of $L$ generated by all associators, is a minimal normal subloop of $L$.
1.5 ([9]). If $L$ is a Moufang loop of odd order and if every proper subloop of $L$ is a group and if there exists a minimal normal Sylow subloop in $L$, then $L$ is a group.
1.6 ([11]). Let $L$ be a Moufang loop of odd order such that every proper subloop of $L$ is associative. Suppose that $K$ is a minimal normal subloop which contains $L_{a}$, and that $Q$ is a Hall subloop of $L$ such that $(|K|,|Q|)=1$ and $Q \triangleleft K Q$. Then $L$ is a group.

For $n$ even, many cases are handled by a construction of the first author ([4]) which produces a nonassociative Moufang loop, $M(G, 2)$ of order $2 m$ for any nonabelian group $G$ of order $m$. Thus, if there exists a nonabelian group of order $m$, then there exists a nonassociative Moufang loop of order $n=2 m$. In particular, since the dihedral group $D_{r}$ is not abelian, we get a nonassociative

Moufang loop of order $4 r$, for each $r \geq 3$. This leaves the case $n=2 m$, for $m$ odd and for which every group of order $m$ is abelian.

The following result ([14]) will also be needed below:
1.7. Any Moufang loop $L$ of order $2 m$, with $m$ odd must contain a (normal) subloop of order $m$.

Finally, we can characterize those odd $m$ for which every group of order $m$ is abelian. (We would like to thank Anthony Hughes for suggesting this lemma and for his helpful advice regarding its proof.)

Lemma 1.8. If $m=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$, with $p_{1}<\cdots<p_{k}$ odd primes and $\alpha_{i}>0$, for all $i$, then every group of order $m$ is abelian if and only if the following conditions hold:
(i) $\alpha_{i} \leq 2$, for all $i=1, \ldots, k$,
(ii) $p_{j}^{\alpha_{j}} \not \equiv 1\left(\bmod p_{i}\right)$, for any $i$ and $j$.

Proof: Note that, since the direct product of a nonabelian group with any group is a nonabelian group, if there exists a nonabelian group of order $s$ and if $s \mid m$, then there exists a nonabelian group of order $m$. Since there exists a nonabelian group of order $p^{3}$ for any prime $p$, (i) is necessary. Similarly, since $\left|A u t\left(C_{q}\right)\right|=$ $q-1$, and $\left|\operatorname{Aut}\left(C_{q} \times C_{q}\right)\right|=\left(q^{2}-1\right)\left(q^{2}-q\right)$, there exists a nonabelian group of order $p q$ if $q \equiv 1(\bmod p)$ and one of order $p q^{2}$ if $q^{2} \equiv 1(\bmod p)$. Thus (ii) is necessary.

To see that these conditions are sufficient, suppose that $G$ is a group of order $m$, with $m$ as above. For each $j=1, \ldots, k$, let $P_{j}$ be a $p_{j}$-Sylow subgroup of $G$.

By condition (ii), $\left(m, p_{j}^{\alpha_{j}}-1\right)=1$.
Claim: $\quad N_{G}\left(P_{j}\right)=C_{G}\left(P_{j}\right)$.
Suppose not. For $g \in N_{G}\left(P_{j}\right)-C_{G}\left(P_{j}\right)$, conjugation by $g$ induces a non-trivial automorphism $\theta$ of $P_{j}$. Since $P_{j}$ is an abelian group, $\theta^{s}$ is the identity mapping on $P_{j}$, whenever $g^{s} \in P_{j}$. In particular, since $|g| \mid m, \theta^{m}$ is the identity map. Hence, $|\theta| \mid m$. On the other hand, $|\theta|\left|\left|A u t\left(P_{j}\right)\right|\right.$, so $| \theta\left|\mid\left(m,\left|A u t\left(P_{j}\right)\right|\right)\right.$. If $\alpha_{j}=1$, $\left|A u t\left(P_{j}\right)\right|=p_{j}-1$. But $\left(m, p_{j}-1\right)=1$, so $|\theta|=1$, contrary to assumption. Therefore, $\alpha_{j}=2$. If $P_{j}$ is cyclic, $\left|A u t\left(P_{j}\right)\right|=p_{j}\left(p_{j}-1\right)$; and if $P_{j}$ is elementary abelian, $\left|\operatorname{Aut}\left(P_{j}\right)\right|=p_{j}\left(p_{j}^{2}-1\right)\left(p_{j}-1\right)$. In either case, since $\left(m, p_{j}^{\alpha_{j}}-1\right)=1$ and $\left(p_{j}-1\right) \mid\left(p_{j}^{2}-1\right)$, we also have $\left(m,\left(p_{j}^{\alpha_{j}}-1\right)\left(p_{j}-1\right)\right)=1$. Therefore $\left(m,\left|\operatorname{Aut}\left(P_{j}\right)\right|\right)=p_{j}$ and $|\theta|=p_{j}$. Hence $g^{p_{j}} \in C_{G}\left(P_{j}\right)$. Thus, $\frac{N_{G}\left(P_{j}\right)}{C_{G}\left(P_{j}\right)}$ is a $p_{j}$-group contained in $\frac{N_{G}\left(P_{j}\right)}{P_{j}}$. (Recall that $P_{j}$ is abelian, since $\alpha_{j}=2$.) But then $\left.p_{j}| | \frac{N_{G}\left(P_{j}\right)}{P_{j}} \right\rvert\,$, and so $p_{j}^{3}| | N_{G}\left(P_{j}\right) \mid$, contradicting the assumption that $p_{j}^{3} \nmid|G|$. This establishes the claim.

Since $N_{G}\left(P_{j}\right)=C_{G}\left(P_{j}\right)$ for all $j$, by Burnside's Theorem ([20, p. 137]), each $P_{j}$ has a normal $p_{j}$-complement, which we denote by $N_{j}$.
$\left|\frac{G}{N_{j}}\right|=\left|P_{j}\right|=p_{j}^{\alpha_{j}}$, where $\alpha_{j} \leq 2$, so $\frac{G}{N_{j}}$ is abelian. Let $\varphi: G \rightarrow \frac{G}{N_{1}} \times \frac{G}{N_{2}} \times$ $\cdots \times \frac{G}{N_{k}}$ be defined by $g \varphi=\left(g N_{1}, g N_{2}, \ldots, g N_{k}\right)$. Clearly $\varphi$ is a homomorphism, and $\operatorname{ker}(\varphi)=\left\{g \mid g N_{j}=N_{j}\right.$, for all $\left.j\right\}=N_{1} \cap N_{2} \cap \cdots \cap N_{k}$.

Therefore, $\frac{G}{N_{1} \cap N_{2} \cap \cdots \cap N_{k}} \cong G \varphi \subseteq \frac{G}{N_{1}} \times \frac{G}{N_{2}} \times \cdots \times \frac{G}{N_{k}}$. But, for each $j$, $N_{1} \cap N_{2} \cap \cdots \cap N_{k} \subseteq N_{j} \subseteq G$, so $\left|N_{1} \cap N_{2} \cap \cdots \cap N_{k}\right|||G|=m$, and yet, for each $j,\left|N_{1} \cap N_{2} \cap \cdots \cap N_{k}\right|| | N_{j} \mid$, which is $p_{j}$-free. This implies that $\mid N_{1} \cap N_{2} \cap$ $\cdots \cap N_{k} \mid=1$. Thus $G \cong G \varphi \subseteq \frac{G}{N_{1}} \times \frac{G}{N_{2}} \times \cdots \times \frac{G}{N_{k}}$, which is abelian, as required.

## 2. New results

We divide this section into two parts: $n$ odd, and $n=2 m, m$ odd.
$n$ odd.
Theorem 2.1. If $L$ is a Moufang loop of order $p_{1} p_{2} \ldots p_{k} q^{3}$, with $p_{1}, p_{2}, \ldots, p_{k}$ and $q$ distinct odd primes, and if $q \not \equiv 1\left(\bmod p_{1}\right)$ and, for each $i>1, q^{2} \not \equiv 1$ $\left(\bmod p_{i}\right)$, then $L$ is a group.
Proof: Suppose not. Let $k$ be the smallest positive integer for which there exists a nonassociative Moufang loop of order $p_{1} p_{2} \ldots p_{k} q^{3}$, with $p_{1}, p_{2}, \ldots, p_{k}$ and $q$ distinct odd primes, and with $q \not \equiv 1\left(\bmod p_{1}\right)$ and $q^{2} \not \equiv 1\left(\bmod p_{i}\right)$ for each $i>1$; and let $L$ be such a loop. By $1.2, k \geq 2$.

Let $H$ be a proper subloop of $L$. By $1.3(\mathrm{a}),|\bar{H}|=p_{j_{1}} p_{j_{2}} \ldots p_{j_{s}} q^{\beta}$, where either $\beta<3$, or $s<k$. If $\beta<3$, then $H$ is a group by 1.1 ; and if $s<k$, then $H$ is a group by the minimality of $k$. Thus, every proper subloop of $L$ is a group. The same applies to any proper quotient loop of $L$. Therefore, by 1.4 and 1.3 (b), $L_{a}$ is a minimal normal subloop of $L$ and is an elementary abelian group. By 1.5, if $L$ is not a group, then $L_{a}$ cannot be a Sylow subloop of $L$, and so $\left|L_{a}\right| \neq q^{3}$, and $\left|L_{a}\right| \neq p_{i}$, for any $i$. But, by $1.3(\mathrm{a}),\left|L_{a}\right|$ must divide $|L|$, so, since $L_{a}$ is an elementary abelian group, $\left|L_{a}\right|=q$ or $q^{2}$. Therefore, by 1.3 (c), $L$ contains a subgroup $X_{j}$ of order $p_{j}$. Let $n_{k}$ denote the number of $p_{k}$-Sylow subgroups of $L_{a} X_{k}$. By the Sylow theorems, $n_{k} \equiv 1\left(\bmod p_{k}\right)$, so $\left(n_{k}, p_{k}\right)=1$. Also $n_{k}$ divides $\left|L_{a} X_{k}\right|$. But, since $L_{a} \triangleleft L,\left|L_{a} X_{k}\right|=p_{k} q$ or $p_{k} q^{2}$, so, in either case, $n_{k} \mid q^{2}$. If $n_{k} \neq 1$, then $n_{k}=q$ or $q^{2}$ and so, in either case, $q^{2} \equiv 1\left(\bmod p_{k}\right)$, contrary to assumption. Therefore, $n_{k}=1$, and so $X_{k} \triangleleft L_{a} X_{k}$. But $X_{k}$ is a Hall subloop of $L$, and $\left(\left|L_{a}\right|,\left|X_{k}\right|\right)=1$. Therefore, by $1.6, L$ is a group, contrary to assumption. The theorem now follows.

This leaves us with the question: What happens if $q^{2} \equiv 1\left(\bmod p_{i}\right)$ for some $i$ ? If $q \equiv 1\left(\bmod p_{i}\right)$, then, by 1.2 , there exists a nonassociative Moufang loop of order $p_{i} q^{3}$. Thus, we may assume that, for all $i, q \not \equiv 1\left(\bmod p_{i}\right)$, but that
$q \equiv-1\left(\bmod p_{i}\right)$, for some $i$. If there is only one such $i$, then, by reordering if necessary, we can assume that it is $p_{1}$, and we have a group, by Theorem 2.1. Therefore, we are left with the case $k \geq 2, q \equiv-1\left(\bmod p_{1}\right)$, and $q \equiv-1\left(\bmod p_{k}\right)$ (with no assumption about the relationship between $q$ and $p_{i}$ for $1<i<k$, other than $\left.q \not \equiv 1\left(\bmod p_{i}\right)\right)$. The smallest such open case is $n=3 \cdot 5 \cdot 29^{3}$.
$n=2 m, m$ odd.
Suppose that $L$ is a Moufang loop of order $2 m, m$ odd, and that $L$ contains a (normal) abelian subgroup $M$ of order $m$.

Let $u$ be an element of $L-M$. Then $L=<u, M>$, and every element of $L$ can be expressed in the form $m u^{\alpha}$, where $m \in M$ and $0 \leq \alpha \leq 1$. Let $T_{u}$ denote the inner mapping of $L$ corresponding to conjugation by $u$. That is, for $x$ in $L, x T_{u}=u^{-1} x u$. Since $M$ is a normal subloop, $T_{u}$ maps $M$ to itself. Let $\theta$ be the restriction of $T_{u}$ to $M$. That is, for every $m$ in $M, m \theta=u^{-1} m u$, and $m u=u(m \theta)$. By diassociativity, $m^{2} \theta=u^{-1} m^{2} u=u^{-1} m u u^{-1} m u=(m \theta)^{2}$. Also, since $u^{2}$ must be in $M$, and since $M$ is abelian, $u^{2}$ is in the center of $M$. Thus, $m \theta^{2}=u^{-1}\left(u^{-1} m u\right) u=u^{-2} m u^{2}=m$; so $\theta^{2}$ is the identity mapping and $\theta^{-1}=\theta$.

By Lemma 3.2 on page 117 of [3], $T_{u}$ is a semiautomorphism of $L$. That is, for $x, y$ in $L,(x y x) T_{u}=\left(x T_{u}\right)\left(y T_{u}\right)\left(x T_{u}\right)$. In particular, for $m_{1}, m_{2}$ in $M,\left(m_{1} m_{2} m_{1}\right) \theta=\left(m_{1} \theta\right)\left(m_{2} \theta\right)\left(m_{1} \theta\right)$. But $M$ is abelian, so $\left(m_{1}^{2} m_{2}\right) \theta=$ $\left(m_{1} \theta\right)^{2}\left(m_{2} \theta\right)=\left(m_{1}^{2} \theta\right)\left(m_{2} \theta\right)$. Since $M$ is of odd order and since the order of an element of a finite Moufang loop must divide the order of the loop, every element of $M$ is of odd order and hence has a square root. (That is, if $|m|=2 k+1$, then $\left(m^{k+1}\right)^{2}=m$.) Thus, for any $m, m^{\prime}$ in $M,\left(m m^{\prime}\right) \theta=\left[\left(m^{\prime \prime}\right)^{2} m^{\prime}\right] \theta=$ $\left[\left(m^{\prime \prime}\right)^{2} \theta\right]\left(m^{\prime} \theta\right)=(m \theta)\left(m^{\prime} \theta\right)$, where $m^{\prime \prime}$ is the square root of $m$. Thus $\theta$ is an automorphism of $M$.

For $m_{1}$ and $m_{2}$ in $M$, let $x=\left(m_{1} u\right) m_{2}$, let $y=m_{1}\left(m_{2} u\right)$, and let $z=\left(m_{1} u\right)\left(m_{2} u\right)$. Then, by the Moufang identities and the fact that $M$ is an abelian group, $x u=\left[\left(m_{1} u\right) m_{2}\right] u=m_{1}\left(u m_{2} u\right)=m_{1}\left[u^{2}\left(m_{2} \theta\right)\right]=m_{1}\left[\left(m_{2} \theta\right) u^{2}\right]=$ $\left[m_{1}\left(m_{2} \theta\right)\right] u^{2}$, so that

$$
\left(m_{1} u\right) m_{2}=x=\left[m_{1}\left(m_{2} \theta\right)\right] u
$$

Similarly,

$$
\begin{aligned}
u y & =u\left[m_{1}\left(m_{2} u\right)\right]=u\left[m_{1}\left(u\left(m_{2} \theta\right)\right)\right]=\left(u m_{1} u\right)\left(m_{2} \theta\right)=\left[u^{2}\left(m_{1} \theta\right)\right]\left(m_{2} \theta\right) \\
& =u^{2}\left[\left(m_{1} \theta\right)\left(m_{2} \theta\right)\right]
\end{aligned}
$$

so that

$$
m_{1}\left(m_{2} u\right)=y=u\left[\left(m_{1} \theta\right)\left(m_{2} \theta\right)\right]=\left[\left(m_{1} \theta\right)\left(m_{2} \theta\right)\right] \theta u
$$

Finally, $z u=\left[\left(m_{1} u\right)\left(m_{2} u\right)\right] u=m_{1}\left(u m_{2} u^{2}\right)=m_{1}\left[u\left(m_{2} u^{2}\right)\right]$, so that

$$
u z u=u\left\{m_{1}\left[u\left(m_{2} u^{2}\right)\right]\right\}=\left(u m_{1} u\right)\left(m_{2} u^{2}\right)=\left[u^{2}\left(m_{1} \theta\right)\right]\left(m_{2} u^{2}\right)=\left[\left(m_{1} \theta\right) m_{2}\right] u^{4} .
$$

Thus, $(z \theta) u^{2}=u^{2}(z \theta)=u z u=\left[\left(m_{1} \theta\right) m_{2}\right] u^{4}$, so $z \theta=\left[\left(m_{1} \theta\right) m_{2}\right] u^{2}$, and

$$
\left(m_{1} u\right)\left(m_{2} u\right)=z=\left[\left(m_{1} \theta\right) m_{2}\right] \theta u^{2}
$$

As in [5], we can summarize these results as follows: For $0 \leq \alpha, \beta \leq 1$,

$$
\left(m_{1} u^{\alpha}\right)\left(m_{2} u^{\beta}\right)=\left[\left(m_{1} \theta^{\beta}\right)\left(m_{2} \theta^{\alpha+\beta}\right)\right] \theta^{\beta} \cdot u^{\alpha+\beta}
$$

But $\theta$ is an endomorphism of $M$, and $\theta^{2}$ is the identity, so

$$
\begin{gathered}
\left(m_{1} u^{\alpha}\right)\left(m_{2} u^{\beta}\right)=\left[\left(m_{1} \theta^{\beta}\right)\left(m_{2} \theta^{\alpha+\beta}\right)\right] \theta^{\beta} u^{\alpha+\beta}=\left[\left(m_{1} \theta^{2 \beta}\right)\left(m_{2} \theta^{\alpha+2 \beta}\right)\right] u^{\alpha+\beta} \\
=\left[m_{1}\left(m_{2} \theta^{\alpha}\right)\right] u^{\alpha+\beta}
\end{gathered}
$$

But then, for any $m_{1} u^{\alpha}, m_{2} u^{\beta}, m_{3} u^{\gamma}$ in $L$,

$$
\begin{aligned}
& {\left[\left(m_{1} u^{\alpha}\right)\left(m_{2} u^{\beta}\right)\right]\left(m_{3} u^{\gamma}\right)=\left\{\left[m_{1}\left(m_{2} \theta^{\alpha}\right)\right] u^{\alpha+\beta}\right\}\left(m_{3} u^{\gamma}\right)} \\
& =\left\{\left[m_{1}\left(m_{2} \theta^{\alpha}\right)\right] m_{3} \theta^{\alpha+\beta}\right\} u^{\alpha+\beta+\gamma}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(m_{1} u^{\alpha}\right)\left[\left(m_{2} u^{\beta}\right)\left(m_{3} u^{\gamma}\right)\right]=\left(m_{1} u^{\alpha}\right)\left\{\left[m_{2}\left(m_{3} \theta^{\beta}\right)\right] u^{\beta+\gamma}\right\} \\
& =\left\{m_{1}\left[m_{2}\left(m_{3} \theta^{\beta}\right)\right] \theta^{\alpha}\right\} u^{\alpha+\beta+\gamma}=\left\{m_{1}\left[\left(m_{2} \theta^{\alpha}\right)\left(m_{3} \theta^{\alpha+\beta}\right)\right]\right\} u^{\alpha+\beta+\gamma} \\
& \quad=\left\{\left[m_{1}\left(m_{2} \theta^{\alpha}\right)\right]\left(m_{3} \theta^{\alpha+\beta}\right)\right\} u^{\alpha+\beta+\gamma}
\end{aligned}
$$

Thus $L$ is associative.
We have proved the following:
Theorem 2.2. Every Moufang loop $L$ of order $2 m$, $m$ odd, which contains a (normal) abelian subgroup $M$ of order $m$ is a group.

We can now settle the question of for which values of $n=2 m$ must every Moufang loop of order $n$ be a group.
Corollary 2.3. Every Moufang loop of order $2 m$ is associative if and only if every group of order $m$ is abelian.
Proof: We may assume that $m \geq 6$, since there are no nonabelian groups of order less than 6, and no nonassociative Moufang loops of order less than 12 ([6]).

If there exists a nonabelian group $G$ of order $m$, then the loop $M_{n}(G, 2)$ is a nonassociative Moufang loop of order $n=2 m$. As shown above, this takes care of all even values of $m$, since the dihedral group of order $m$ is not abelian.

Now consider $n=2 m, m$ odd, and suppose that every group of order $m$ is abelian. By 1.7, any Moufang loop $L$ of order $n$ must contain a normal subloop $M$ of order $m$. Since there exists a nonabelian group of order $p^{3}$, for any prime $p$, $m$ cannot be divisible by $p^{3}$ for any prime $p$. But then, $M$ must be associative, by 1.1. Furthermore, since all groups of order $m$ are abelian, $M$ is an abelian group. But then, by the theorem, $L$ is a group.

Applying Lemma 1.8, we obtain the following:

Corollary 2.4. Every Moufang loop of order $2 m$ is associative if and only if $m=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$, where $p_{1}<\cdots<p_{k}$ are odd primes and where
(i) $\alpha_{i} \leq 2$, for all $i=1, \ldots, k$,
(ii) $p_{j} \not \equiv 1\left(\bmod p_{i}\right)$, for any $i$ and $j$,
(iii) $p_{j}^{2} \not \equiv 1\left(\bmod p_{i}\right)$, for any $i$ and any $j$ with $\alpha_{j}=2$.

## 3. Some questions

We might wonder whether all of the hypotheses of Theorem 2.2 are really necessary.

Clearly it is necessary that $M$ be abelian, since the $M(G, 2)$ construction of [4] provides examples of nonassociative Moufang loops when $M$ is not abelian.

The proof of the theorem clearly uses the fact that $m$ is odd, but might there be a different proof which gives us the result for $m$ even as well? We thank E.G. Goodaire for noting that the loop $M_{32}\left(D_{4} \times C_{2}, 2\right)$ provides a counterexample. This nonassociative Moufang loop contains an abelian normal subgroup of index two which is isomorphic to $C_{2} \times C_{2} \times C_{2} \times C_{2}$.

How about the fact that $M$ is of index two? In the proof of the theorem, we do not really need $u^{2}$ to be an element of $M$. All that is needed is that $u^{2}$ commutes with every element of $M$ and that it associates with every pair of elements of $M$. That is, what is needed is that $u^{2}$ is in the center of $<u^{2}, M>$. We could therefore prove the following:
Corollary 3.1. If a Moufang loop $L$ contains a normal abelian subgroup $M$ of odd order $m$, such that $L / M$ is cyclic, and if $u^{2} \in Z\left(<u^{2}, M>\right)$, for $u M$ some generator of $L / M$, then $L$ is a group.

Can we dispose with the assumption that $u^{2} \in Z\left(<u^{2}, M>\right)$ ? That is, if a Moufang loop $L$ contains a normal abelian subgroup $M$ of odd order $m$, such that $L / M$ is cyclic, must $L$ be a group?

The answer in general is no. When $q \equiv 1(\bmod 3)$, there exists a nonassociative Moufang loop $L$ of order $3 q^{3}$, constructed in [18], which contains a normal abelian subgroup $M$ of order $q^{3}$, with $L / M \cong C_{3}$. (Note also that, in this example, $(|M|,|L / M|)=1$, so that even this additional condition would not suffice to guarantee that $L$ is a group.) However, if $p>3$, the subgroup of order $q^{3}$ in the nonassociative Moufang loop of order $p q^{3}, q \equiv 1(\bmod p)$, is not abelian, so the question is still open for $|L / M|>3$.

## References

[1] Bol G., Gewebe und Gruppen, Math. Ann. 114 (1937), 414-431.
[2] Bruck R.H., Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245-354. (MR 8, p. 134).
[3] Bruck R.H., A Survey of Binary Systems, Ergeb. Math. Grenzgeb., vol. 20, Springer Verlag, 1968. (MR 20 \# 76).
[4] Chein O., Moufang loops of small order. I, Trans. Amer. Math. Soc. 188 (1974), 31-51. (MR 48 \# 8673).
[5] Chein O., Moufang loops of small order, Mem. Amer. Math. Soc. 197, Vol 13, Issue 1 (1978), 1-131. (MR 57 \# 6271).
[6] Chein O., Pflugfelder H.O., The smallest Moufang loop, Archiv der Mathematik 22 (1971), 573-576. (MR 45 \# 6966).
[7] Glauberman G., On loops of odd order II, J. Algebra 8 (1968), 393-414. (MR 36 \# 5250).
[8] Leong F., Moufang loops of order $p^{4}$, Nanta Math. 7 (1974), 33-34. (MR 51 \# 5826).
[9] Leong F., Rajah A., On Moufang loops of odd order pq², J. Algebra 176 (1995), 265-270. (MR 96i \# 20082).
[10] Leong F., Rajah A., Moufang loops of odd order $p_{1}^{2} p_{2}^{2} \ldots p_{m}^{2}$, J. Algebra 181 (1996), 876883 (MR 97i \# 20083).
[11] Leong F., Rajah A., Moufang loops of odd order $p^{4} q_{1} \ldots q_{n}$, J. Algebra 184 (1996), 561-569. (MR 97k \# 20118).
[12] Leong F., Rajah A., Moufang loops of odd order $p^{\alpha} q_{1}^{2} \ldots q_{n}^{2} r_{1} \ldots r_{m}$, J. Algebra 190 (1997), 474-486. (MR 98b \# 20115).
[13] Leong F., Teh P.E., Moufang loops of orders 2pq, Bull. of the Malaysian Math. Soc. 15 (1992), 27-29. (MR 93j \# 20142).
[14] Leong F., Teh P.E., Moufang loops of even order, J. Algebra 164 (1994), 409-414. (MR 95b \# 20097).
[15] Leong F., Teh P.E., Lim V.K., Moufang loops of odd order $p^{m} q_{1} \ldots q_{n}$, J. Algebra 168 (1994), 348-352. (MR 95g \# 20068).
[16] Purtill M., On Moufang loops of order the product of three primes, J. Algebra 112 (1988), 122-128. (MR 89c \# 20120).
[17] Purtill M., Corrigendum, J. Algebra 145 (1992), p. 262. (MR 92j \# 20066).
[18] Rajah A., Which Moufang loops are associative, Doctoral Dissertation, University Sains Malaysia, 1996.
[19] Rajah A., Jamal E., Moufang loops of order $2 m$, Publ. Math. Debrecen 55 (1999), 47-51.
[20] Scott W.R., Group Theory, Prentice Hall, Englewood Cliffs, NJ, 1964.
[21] Wright C.R.B., Nilpotency conditions for finite loops, Illinois J. Math. 9 (1965), 399-409. (MR 31 \# 5918).
[22] Zorn M., The theory of alternative rings, Hamb. Abhandl. 8 (1930), 123-147.

Department of Mathematics, Temple University, 1805 North Broad Street, Philadelphia, PA 19122, USA

School of Mathematical Sciences, University Sains Malaysia, 11800 USM Penang, Malaysia
(Received October 18, 1999)


[^0]:    Research of the first author was supported in part by a summer research award and a grant-in-aid of research from Temple University.

