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Possible orders of nonassociative Moufang loops

Orin Chein, Andrew Rajah

Abstract. The paper surveys the known results concerning the question: “For what
values of n does there exist a nonassociative Moufang loop of order n?”
Proofs of the newest results for n odd, and a complete resolution of the case n even

are also presented.
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1. Introduction and preliminaries

The question above and the equivalent question, “For what integers, n, must
every Moufang loop of order n be associative?” have long been of interest.
Since Artin observed that the loop of units of any alternative ring is a Moufang

loop ([22]), examples of finite nonassociative Moufang loops were known right from
the start. For example, the non-zero Cayley numbers form a Moufang loop under
multiplication, and the subloop consisting of

{±1,±i,±j,±k,±e,±ie,±je,±ke}

is a nonassociative Moufang loop of order 24 = 16.
The simplest result on nonexistence may be found in [7], where it is shown

that every Moufang loop of prime order must be a group. In [4], the first author
extended this result to show that Moufang loops of order p2, p3, p prime, must be
associative. Since there are nonassociative Moufang loops of order 24 [see above]
and 34 ([1] or [2]), it would seem that no extension of the results above is possible.
However, in [8], Leong showed that a Moufang loop of order p4, with p > 3, must
be a group. This is the best one can do, because Wright showed in [21] that there
exists a nonassociative Moufang loop of order p5, for any prime p.
If one allows more than one prime, the first author showed that Moufang

loops of order pq, where p and q are distinct primes, must be associative ([4]).
M. Purtill [16] extended the result to Moufang loops of orders pqr, and p2q, (p,
q and r distinct odd primes), although the proof of the latter result has a flaw in
the case q < p; see [17]. Then Leong and his students produced a spate of papers,
[14], [15], [9], [10], [11], culminating in [12], in which Leong and the second author
showed the following:

Research of the first author was supported in part by a summer research award and a grant-
in-aid of research from Temple University.
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1.1. Any Moufang loop of order pαqα1
1 . . . qαn

n , with p < q1 < · · · < qn odd primes
and with α ≤ 3, αi ≤ 2, is a group, and the same is true with α = 4, provided
that p > 3.

Finally, the second author, in his doctoral dissertation [18], showed the follow-
ing:

1.2. For p and q any odd primes, there exists a nonassociative Moufang loop of
order pq3 if and only if q ≡ 1 (mod p).
Since there exist nonassociative Moufang loops of order 34 and of order p5 for

any prime p, and since the direct product of a nonassociative Moufang loop and a
group is a nonassociative Moufang loop, the only remaining unresolved cases for
n odd are the following:

n = pα1
1 . . . pαk

k
qβrγ1
1 . . . rγs

s ,

where

p1 < · · · < pk < q < r1 < · · · < rs are distinct odd primes; k ≥ 1;
αi ≤ 4 (α1 ≤ 3 if p1 = 3); 3 ≤ β ≤ 4; γi ≤ 2;
q 6≡ 1 (mod pi) for all i = 1, . . . , k; and
pj 6≡ 1 (mod pi) for all i < j with 3 ≤ αj ≤ 4.

For n odd, we also have the following results which will be needed below:

1.3 ([7]). If L is a Moufang loop of odd order and if K is a subloop of L, and π
is a set of primes which divide |L|, then

(a) |K| divides |L|.
(b) If K is a minimal normal subloop of L, then it is an elementary abelian
group.

(c) L contains a Hall π-subloop.

1.4 ([12]). If L is a nonassociative Moufang loop of odd order and if all of the
proper quotient loops of L are groups, then La, the subloop of L generated by all
associators, is a minimal normal subloop of L.

1.5 ([9]). If L is a Moufang loop of odd order and if every proper subloop of L
is a group and if there exists a minimal normal Sylow subloop in L, then L is
a group.

1.6 ([11]). Let L be a Moufang loop of odd order such that every proper subloop
of L is associative. Suppose that K is a minimal normal subloop which contains
La, and that Q is a Hall subloop of L such that (|K|, |Q|) = 1 and Q ⊳ KQ.
Then L is a group.

For n even, many cases are handled by a construction of the first author ([4])
which produces a nonassociative Moufang loop, M(G, 2) of order 2m for any
nonabelian group G of order m. Thus, if there exists a nonabelian group of
order m, then there exists a nonassociative Moufang loop of order n = 2m. In
particular, since the dihedral group Dr is not abelian, we get a nonassociative
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Moufang loop of order 4r, for each r ≥ 3. This leaves the case n = 2m, for m odd
and for which every group of order m is abelian.
The following result ([14]) will also be needed below:

1.7. Any Moufang loop L of order 2m, with m odd must contain a (normal)
subloop of order m.

Finally, we can characterize those odd m for which every group of order m is
abelian. (We would like to thank Anthony Hughes for suggesting this lemma and
for his helpful advice regarding its proof.)

Lemma 1.8. If m = pα1
1 . . . pαk

k
, with p1 < · · · < pk odd primes and αi > 0, for

all i, then every group of order m is abelian if and only if the following conditions
hold:

(i) αi ≤ 2, for all i = 1, . . . , k,

(ii) p
αj

j 6≡ 1 (mod pi), for any i and j.

Proof: Note that, since the direct product of a nonabelian group with any group
is a nonabelian group, if there exists a nonabelian group of order s and if s | m,
then there exists a nonabelian group of order m. Since there exists a nonabelian
group of order p3 for any prime p, (i) is necessary. Similarly, since

∣

∣Aut(Cq)
∣

∣ =

q− 1, and
∣

∣Aut(Cq × Cq)
∣

∣ =
(

q2 − 1
) (

q2 − q
)

, there exists a nonabelian group of

order pq if q ≡ 1 (mod p) and one of order pq2 if q2 ≡ 1 (mod p). Thus (ii) is
necessary.

To see that these conditions are sufficient, suppose that G is a group of order
m, with m as above. For each j = 1, . . . , k, let Pj be a pj-Sylow subgroup of G.

By condition (ii), (m, p
αj

j − 1) = 1.

Claim: NG(Pj) = CG

(

Pj

)

.

Suppose not. For g ∈ NG(Pj)−CG

(

Pj

)

, conjugation by g induces a non-trivial
automorphism θ of Pj . Since Pj is an abelian group, θ

s is the identity mapping on
Pj , whenever gs ∈ Pj . In particular, since |g| | m, θm is the identity map. Hence,

|θ| | m. On the other hand, |θ| |
∣

∣Aut(Pj)
∣

∣, so |θ| |
(

m, |Aut(Pj

)

|). If αj = 1,
∣

∣Aut(Pj)
∣

∣ = pj − 1. But
(

m, pj − 1
)

= 1, so |θ| = 1, contrary to assumption.

Therefore, αj = 2. If Pj is cyclic,
∣

∣Aut(Pj)
∣

∣ = pj(pj − 1); and if Pj is elementary

abelian,
∣

∣Aut(Pj)
∣

∣ = pj(p
2
j − 1)

(

pj − 1
)

. In either case, since (m, p
αj

j − 1) = 1

and
(

pj − 1
)

|
(

p2j − 1
)

, we also have (m, (p
αj

j − 1)
(

pj − 1
)

) = 1. Therefore
(

m, |Aut(Pj

)

|) = pj and |θ| = pj . Hence gpj ∈ CG

(

Pj

)

. Thus,
NG(Pj)
CG(Pj)

is a

pj -group contained in
NG(Pj)

Pj
. (Recall that Pj is abelian, since αj = 2.) But then

pj |
∣

∣

∣

NG(Pj)
Pj

∣

∣

∣
, and so p3j |

∣

∣NG

(

Pj

)
∣

∣, contradicting the assumption that p3j ∤ |G|.

This establishes the claim.
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Since NG(Pj) = CG

(

Pj

)

for all j, by Burnside’s Theorem ([20, p. 137]), each
Pj has a normal pj-complement, which we denote by Nj .

∣

∣

∣

G
Nj

∣

∣

∣
=

∣

∣Pj

∣

∣ = p
αj

j , where αj ≤ 2, so G
Nj
is abelian. Let ϕ : G → G

N1
× G

N2
×

· · ·× G
Nk
be defined by gϕ = (gN1, gN2, . . . , gNk). Clearly ϕ is a homomorphism,

and ker (ϕ) =
{

g | gNj = Nj , for all j
}

= N1 ∩ N2 ∩ · · · ∩ Nk.

Therefore, G
N1∩N2∩···∩Nk

∼= Gϕ ⊆ G
N1

× G
N2

× · · · × G
Nk
. But, for each j,

N1 ∩ N2 ∩ · · · ∩ Nk ⊆ Nj ⊆ G, so |N1 ∩ N2 ∩ · · · ∩ Nk| | |G| = m, and yet, for

each j, |N1 ∩ N2 ∩ · · · ∩ Nk| |
∣

∣Nj

∣

∣, which is pj-free. This implies that
∣

∣N1 ∩N2∩

· · ·∩Nk

∣

∣ = 1. Thus G ∼= Gϕ ⊆ G
N1

× G
N2

×· · ·× G
Nk
, which is abelian, as required.

�

2. New results

We divide this section into two parts: n odd, and n = 2m, m odd.

n odd.

Theorem 2.1. If L is a Moufang loop of order p1p2 . . . pkq3, with p1, p2, . . . , pk

and q distinct odd primes, and if q 6≡ 1 (mod p1) and, for each i > 1, q2 6≡ 1
(mod pi), then L is a group.

Proof: Suppose not. Let k be the smallest positive integer for which there
exists a nonassociative Moufang loop of order p1p2 . . . pkq3, with p1, p2, . . . , pk

and q distinct odd primes, and with q 6≡ 1 (mod p1) and q2 6≡ 1 (mod pi) for
each i > 1; and let L be such a loop. By 1.2, k ≥ 2.
Let H be a proper subloop of L. By 1.3 (a), |H | = pj1pj2 . . . pjs

qβ , where either
β < 3, or s < k. If β < 3, then H is a group by 1.1; and if s < k, then H is a
group by the minimality of k. Thus, every proper subloop of L is a group. The
same applies to any proper quotient loop of L. Therefore, by 1.4 and 1.3 (b), La

is a minimal normal subloop of L and is an elementary abelian group. By 1.5,
if L is not a group, then La cannot be a Sylow subloop of L, and so |La| 6= q3,
and |La| 6= pi, for any i. But, by 1.3 (a), |La| must divide |L|, so, since La is
an elementary abelian group, |La| = q or q2. Therefore, by 1.3 (c), L contains a
subgroup Xj of order pj . Let nk denote the number of pk-Sylow subgroups of
LaXk. By the Sylow theorems, nk ≡ 1 (mod pk), so (nk, pk) = 1. Also nk divides
|LaXk|. But, since La ⊳ L, |LaXk| = pkq or pkq2, so, in either case, nk | q2. If
nk 6= 1, then nk = q or q2 and so, in either case, q2 ≡ 1 (mod pk), contrary to
assumption. Therefore, nk = 1, and so Xk ⊳ LaXk. But Xk is a Hall subloop of
L, and (|La| , |Xk|) = 1. Therefore, by 1.6, L is a group, contrary to assumption.
The theorem now follows. �

This leaves us with the question: What happens if q2 ≡ 1 (mod pi) for some i?
If q ≡ 1 (mod pi), then, by 1.2, there exists a nonassociative Moufang loop
of order piq

3. Thus, we may assume that, for all i, q 6≡ 1 (mod pi), but that
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q ≡ −1 (mod pi), for some i. If there is only one such i, then, by reordering if nec-
essary, we can assume that it is p1, and we have a group, by Theorem 2.1. There-
fore, we are left with the case k ≥ 2, q ≡ −1 (mod p1), and q ≡ −1 (mod pk)
(with no assumption about the relationship between q and pi for 1 < i < k, other
than q 6≡ 1 (mod pi)). The smallest such open case is n = 3 · 5 · 293.

n = 2m, m odd.

Suppose that L is a Moufang loop of order 2m, m odd, and that L contains a
(normal) abelian subgroup M of order m.
Let u be an element of L − M . Then L =< u, M >, and every element of

L can be expressed in the form muα, where m ∈ M and 0 ≤ α ≤ 1. Let Tu

denote the inner mapping of L corresponding to conjugation by u. That is, for
x in L, xTu = u−1xu. Since M is a normal subloop, Tu maps M to itself. Let
θ be the restriction of Tu to M . That is, for every m in M , mθ = u−1mu, and
mu = u(mθ). By diassociativity, m2θ = u−1m2u = u−1muu−1mu = (mθ)2.
Also, since u2 must be in M , and since M is abelian, u2 is in the center of M .
Thus, mθ2 = u−1(u−1mu)u = u−2mu2 = m; so θ2 is the identity mapping and
θ−1 = θ.
By Lemma 3.2 on page 117 of [3], Tu is a semiautomorphism of L. That is,

for x, y in L, (xyx)Tu = (xTu)(yTu)(xTu). In particular, for m1, m2
in M , (m1m2m1)θ = (m1θ)(m2θ)(m1θ). But M is abelian, so (m21m2)θ =

(m1θ)
2(m2θ) = (m

2
1θ)(m2θ). Since M is of odd order and since the order of an

element of a finite Moufang loop must divide the order of the loop, every element
of M is of odd order and hence has a square root. (That is, if |m| = 2k + 1,

then (mk+1)2 = m.) Thus, for any m, m′ in M , (mm′)θ = [(m′′)2m′]θ =
[(m′′)2θ](m′θ) = (mθ)(m′θ), where m′′ is the square root of m. Thus θ is an
automorphism of M .

For m1 and m2 in M , let x = (m1u)m2, let y = m1(m2u), and let
z = (m1u)(m2u). Then, by the Moufang identities and the fact that M is an
abelian group, xu = [(m1u)m2]u = m1(um2u) = m1[u

2(m2θ)] = m1[(m2θ)u
2] =

[m1(m2θ)]u
2, so that

(m1u)m2 = x = [m1(m2θ)]u.

Similarly,

uy = u[m1(m2u)] = u[m1(u(m2θ))] = (um1u)(m2θ) = [u
2(m1θ)](m2θ)

= u2[(m1θ)(m2θ)],

so that
m1(m2u) = y = u[(m1θ)(m2θ)] = [(m1θ)(m2θ)]θu.

Finally, zu = [(m1u)(m2u)]u = m1(um2u
2) = m1[u(m2u

2)], so that

uzu = u{m1[u(m2u
2)]} = (um1u)(m2u

2) = [u2(m1θ)](m2u
2) = [(m1θ)m2]u

4.
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Thus, (zθ)u2 = u2(zθ) = uzu = [(m1θ)m2]u
4, so zθ = [(m1θ)m2]u

2, and

(m1u)(m2u) = z = [(m1θ)m2]θu
2.

As in [5], we can summarize these results as follows: For 0 ≤ α, β ≤ 1,

(m1u
α)(m2u

β) = [(m1θ
β)(m2θ

α+β)]θβ · uα+β .

But θ is an endomorphism of M , and θ2 is the identity, so

(m1u
α)(m2u

β) = [(m1θ
β)(m2θ

α+β)]θβuα+β = [(m1θ
2β)(m2θ

α+2β)]uα+β

= [m1(m2θ
α)]uα+β .

But then, for any m1u
α, m2u

β , m3u
γ in L,

[(m1u
α)(m2u

β)](m3u
γ) = {[m1(m2θ

α)]uα+β}(m3u
γ)

= {[m1(m2θ
α)]m3θ

α+β}uα+β+γ,

and

(m1u
α)[(m2u

β)(m3u
γ)] = (m1u

α){[m2(m3θ
β)]uβ+γ}

= {m1[m2(m3θ
β)]θα}uα+β+γ = {m1[(m2θ

α)(m3θ
α+β)]}uα+β+γ

= {[m1(m2θ
α)](m3θ

α+β)}uα+β+γ .

Thus L is associative.
We have proved the following:

Theorem 2.2. Every Moufang loop L of order 2m, m odd, which contains a
(normal) abelian subgroup M of order m is a group.

We can now settle the question of for which values of n = 2m must every
Moufang loop of order n be a group.

Corollary 2.3. Every Moufang loop of order 2m is associative if and only if
every group of order m is abelian.

Proof: We may assume that m ≥ 6, since there are no nonabelian groups of
order less than 6, and no nonassociative Moufang loops of order less than 12 ([6]).
If there exists a nonabelian group G of order m, then the loop Mn(G, 2) is a

nonassociative Moufang loop of order n = 2m. As shown above, this takes care
of all even values of m, since the dihedral group of order m is not abelian.

Now consider n = 2m, m odd, and suppose that every group of order m is
abelian. By 1.7, any Moufang loop L of order n must contain a normal subloop
M of order m. Since there exists a nonabelian group of order p3, for any prime p,
m cannot be divisible by p3 for any prime p. But then,M must be associative, by
1.1. Furthermore, since all groups of order m are abelian, M is an abelian group.
But then, by the theorem, L is a group. �

Applying Lemma 1.8, we obtain the following:
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Corollary 2.4. Every Moufang loop of order 2m is associative if and only if

m = pα1
1 . . . pαk

k
, where p1 < · · · < pk are odd primes and where

(i) αi ≤ 2, for all i = 1, . . . , k,
(ii) pj 6≡ 1 (mod pi), for any i and j,

(iii) p2j 6≡ 1 (mod pi), for any i and any j with αj = 2.

3. Some questions

We might wonder whether all of the hypotheses of Theorem 2.2 are really
necessary.
Clearly it is necessary thatM be abelian, since theM(G, 2) construction of [4]

provides examples of nonassociative Moufang loops when M is not abelian.
The proof of the theorem clearly uses the fact that m is odd, but might there

be a different proof which gives us the result for m even as well? We thank
E.G. Goodaire for noting that the loop M32(D4×C2, 2) provides a counterexam-
ple. This nonassociative Moufang loop contains an abelian normal subgroup of
index two which is isomorphic to C2 × C2 × C2 × C2.
How about the fact thatM is of index two? In the proof of the theorem, we do

not really need u2 to be an element of M . All that is needed is that u2 commutes
with every element of M and that it associates with every pair of elements of M .
That is, what is needed is that u2 is in the center of < u2, M >. We could
therefore prove the following:

Corollary 3.1. If a Moufang loop L contains a normal abelian subgroup M of

odd order m, such that L/M is cyclic, and if u2 ∈ Z(< u2, M >), for uM some

generator of L/M , then L is a group.

Can we dispose with the assumption that u2 ∈ Z(< u2, M >)? That is, if a
Moufang loop L contains a normal abelian subgroupM of odd order m, such that
L/M is cyclic, must L be a group?
The answer in general is no. When q ≡ 1 (mod 3), there exists a nonassociative

Moufang loop L of order 3q3, constructed in [18], which contains a normal abelian
subgroup M of order q3, with L/M ∼= C3. (Note also that, in this example,
(|M | , |L/M |) = 1, so that even this additional condition would not suffice to
guarantee that L is a group.) However, if p > 3, the subgroup of order q3 in the
nonassociative Moufang loop of order pq3, q ≡ 1 (mod p), is not abelian, so the
question is still open for |L/M | > 3.
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