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Connected transversals — the Zassenhaus case

Tomáš Kepka, Petr Němec

Abstract. In this short note, it is shown that if A, B are H-connected transversals for a
finite subgroup H of an infinite group G such that the index of H in G is at least 3 and
H ∩ Hu ∩ Hv = 1 whenever u, v ∈ G \ H and uv−1 ∈ G \ H then A = B is a normal
abelian subgroup of G.
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Throughout this extremely short note, let H be a subgroup of a group G
such that the index of H in G is at least 3 and H ∩ Hu ∩ Hv = 1 whenever
u, v ∈ G \ H and uv−1 ∈ G \ H . Furthermore, let A, B be subsets of G such
that AH = G = BH and a−1b−1ab ∈ H for all a ∈ A and b ∈ B. In his
remarkable paper [3], A. Drápal showed that then A = B is an abelian subgroup
of G, provided that G is finite. The purpose of the present modest note is to
check that A = B is a normal abelian subgroup of G, provided that H is finite
and G is infinite (notice that if H is infinite then neither A nor B need to be a
subgroup of G — see [1] and [2]). The kind reader is fully referred to [1], [2] and
[3] as concerns all the necessary background and many further useful details and
connections.
In the rest of this note, assume that H is finite and G is infinite. If G1 = 〈A, B〉

and H1 = H ∩ G1 then AH1 = G1 = BH1 and we show first that the centralizer
K of H1 in G1 is of finite index in G1.
Since n = |H1| is finite, we have H1 ⊆ 〈C〉 for a finite subset C ⊆ A∪B. Now,

take c ∈ C and put Kc = {x ∈ G1;xc = cx} and Bu = {b ∈ B; c−1b−1cb = u}
for every u ∈ H1 (here we assume c ∈ A, the other case being similar). Then

B =
⋃

Bu, this union is disjoint and b2b
−1
1 ∈ Kc for all b1, b2 ∈ Bu. Further, for

every u ∈ H1 such that Bu 6= ∅, choose bu ∈ Bu and put Dc = {bu;u ∈ H1}.
Then G1 = KcDcH1, |DcH1| ≤ n2 and it follows easily that the index of Kc in
G1 is at most n2. On the other hand, K =

⋂
Kc and consequently the index of

K in G1 is finite, too.
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Since H is finite, G1 is of finite index in G and we conclude that also the
index of K in G is finite. Finally, if L = KG denotes the core of K in G then
G/L is a finite group. Since G is infinite, L must be so and the finiteness of H

implies that we can find elements u1, v1 ∈ L \ H such that u1v
−1
1 /∈ H . Now,

H1 = H1 ∩ Hu1
1 ∩ Hv1

1 ⊆ H ∩ Hu1 ∩ Hv1 = 1 and we have proven that H1 = 1.
Consequently, ab = ba for all a ∈ A and b ∈ B.
Next, we show that both A and B are subgroups of G. Indeed, if H2 = 〈A〉∩H

then Hb
2 = H2 ⊆ H for every b ∈ B and we see that H2 ⊆ HG = 1, where HG

is the core of H in G. Thus H2 = 1 and it follows easily that 〈A〉 = A. Quite
similarly, B is a subgroup of G.
Since the index of A ∩ B in G is finite, we can find e ∈ A ∩ B, e 6= 1. If a ∈ A

and b ∈ B are such that a−1b ∈ H then a−1b ∈ H ∩ Hu ∩ Hv, where u = a−1

and v = (a−1ea)−1. Assume, for a moment, that a 6= b. Then u, v ∈ G \ H ,
uv−1 ∈ G \ H , and therefore H ∩ Hu ∩ Hv = 1 and a = b, a contradiction. Thus
a = b and we have shown that A = B. Clearly, this subgroup is abelian.
It remains to show that A is normal in G. Since A is of finite index in G, the

core AG is infinite. If E denotes the centralizer of AG, then A ⊆ E, E is normal
in G and we have E = AH3 for some H3 ⊆ H . Finally, H3 ⊆ Hw for every
w ∈ AG, and therefore H3 = 1 and A = E.
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