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Racks and orbits of dressing transformations

A.A. Balinsky

Abstract. A new algebraic structure on the orbits of dressing transformations of the
quasitriangular Poisson Lie groups is provided. This gives the topological interpretation
of the link invariants associated with the Weinstein-Xu classical solutions of the quantum
Yang-Baxter equation. Some applications to the three-dimensional topological quantum
field theories are discussed.
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Introduction

Three-dimensional topological quantum field theories and especially Chern-
Simons type theory (see [1], [2], [3]) have been attracting interest of mathemati-
cians and physicists. Many of them give us new invariants of links and 3-manifolds.
The article [11] gives an excellent account of main developments in knot theory
which followed upon the discovery of the Jones polynomials [12] in 1984. From our
point of view, nevertheless, we are far from the understanding of the topological
meaning of the new invariants.
In the very deep paper [7], A. Weinstein and P. Xu defined a broad class of

knot and link invariants using a kind of the classical solutions of the quantum
Yang-Baxter equation. In [7] the classical analogue is developed for the part
of the standard construction in which generalized Jones invariants are produced
from representations of quantum groups. As far as I know their article is the first
attempt to understand the topological meaning of the quantum group invariants
on the quasi-classical level. It was established in [10] that in the case of a fac-
torizable Poisson Lie group G the Weinstein-Xu link invariant coincides with the
space of link group representations in G. The general case of an arbitrary qua-
sitriangular Poisson Lie group is connected with Joyce’s theory of knot quandles
or fundamental racks.
Any codimension two link has a fundamental rack which contains more informa-

tion than the fundamental group and which is a complete invariant for irreducible
links in any 3-manifold.
The rack provides a complete algebraic and topological framework in which to

study links and knots in 3-manifolds. The search of rack structures inside of the
quantum link invariants and of the three-dimensional topological quantum field
theories looks like the search of hidden symmetries in the integrable equations.
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It was done in [8] for topological quantum field theories associated with finite
groups. I think that this is a very perspective area for investigation and that the
concept of rack gives us powerful tools for description of the topological quantum
field theories.
Our main goal in this paper is to give the rack structure for the Poisson Lie

group. This is the main ingredient in our interpretation of the Weinstein-Xu link
invariant in the general case of an arbitrary quasitriangular Poisson Lie group.

1. Racks and quandles

In this section we state some properties of racks and quandles which will be
used in this paper. For more details on this subject, see [4], [5], [6]. To simplify
reading, we keep the notations of [4] wherever possible, on one hand, but give all
necessary definitions, on the other.
Recall that a set with product is a pair (∆, ∗) where ∆ is a set and ∗ is a

map ∆ × ∆ → ∆. The value of this map for (a, b) will be denoted by ab or by
a ∗ b. The reasons for writing the operation exponentially are explained in [4].
A morphism of sets with product (∆, ∗) → (∆′, ∗′) is a map φ : ∆ → ∆′ such
that φ(a ∗ b) = φ(a) ∗′ φ(b). For any set with product (∆, ∗) and b ∈ ∆, the right

translation rb is the map rb : ∆→ ∆ defined by rb(a) = a ∗ b = a
b.

Definition 1.1 ([4]). A rack is a non-empty set ∆ with a product satisfying the
following two axioms.

• Given a, b ∈ ∆ there is a unique c ∈ ∆ such that a = cb.
• Given a, b, c ∈ ∆ the formula

abc = acb
c

holds.

Here abc means (ab)c and ab
c

means a(b
c).

In other words, a set with product (∆, ∗) is a rack, iff all right translations are
automorphisms:

• ∀ a, b ∈ ∆ ∃! c ∈ ∆ a = c ∗ b
• ∀ a, b, c ∈ ∆ (a ∗ c) ∗ (b ∗ c) = (a ∗ b) ∗ c.

One can find many examples of automorphic sets in [4], [6].
The rack axioms are the algebraic distillation of two of the Reidemeister moves

(the second and third moves).

Definition 1.2 ([7], [13]). A map R : S × S → S × S, where S is any set, is
called a solution to the set-theoretic quantum Yang-Baxter equation if

R13R23R12 = R12R23R13,

where Rij : S×S×S → S×S×S is R on the ith and jth factors of the cartesian
product and Id on the third one.

The following fact is crucial for using racks in low-dimensional topology.
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Lemma 1.3. If ∆ is a rack then the map

R : ∆×∆→ ∆×∆ (a, b) 7→ (a, ba)

is a solution to the set-theoretic Yang-Baxter equation.

Given a rack ∆, we can get an action of the braid group Bn on (∆)
n. More

precisely, suppose that R : ∆×∆→ ∆×∆ is a solution to the set-theoretic Yang-
Baxter equation from the lemma above. Let R̂ = R ◦ σ with σ : ∆×∆→ ∆×∆
being the exchange of components, and let R̂i(n) be the endomorphism of the
cartesian power ∆n defined by:

R̂i(n)((x1, . . . , xn)) = (x1, . . . , xi−1, R̂(xi, xi+1), xi+2, . . . , xn).

Then by the assignment of R̂i(n) to the i
th generator bi of the braid group Bn

we obtain an action of Bn on ∆
n for each n.

In what follows, all examples will be satisfied by the identity

aa = a for all a ∈ ∆,

which we call the quandle condition. This condition is quarantine the first Rei-
demeister move. We shall call a rack satisfying the quandle condition a quandle
rack or quandle. The term quandle is due to Joyce [5].
Finally, we recall a definition of Freyd and Yetter [14] (see also [4]).

Definition 1.4. A (right) crossed G-set for a group G is a set, X , with a right
action of the group G, which we write as

(x, g) 7→ x · g where x, x · g ∈ X and g ∈ G,

and a function δ : X → G satisfying the augmentation identity:

δ(a · g) = g−1(δ(a))g for all a ∈ X, g ∈ G,

which is precisely the same as saying that δ is G-map when G is regarded as a
right G-set under right conjugation.

Given a crossed G-set X , we can define an operation of X on itself by defining
ab to be a · δ(b). One can easily check that the operation (a, b) 7→ ab gives us the
rack structure on X , which we call the augmented rack with augmentation δ. For
more details on the theory of augmented rack see [4].

2. Quasitriangular Poisson Lie groups

As usual, the Poisson bracket {·, ·} on a smooth manifold M is understood as
a Lie algebra structure on the space of smooth functions C∞(M) satisfying the
Leibnitz identity, i.e. a bilinear operation {·, ·} such that

i. {f, g} = −{g, f},
ii. {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 (Jacobi identity), and
iii. {fg, h} = f{g, h}+ {f, h}g (Leibnitz identity).
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One can easily see that in local coordinates xi on the manifold M , an arbitrary
Poisson bracket looks like

(1) {f, g}(x) = πij(x)∂f(x)/∂xi · ∂g(x)/∂xj ,

for some Poisson tensor πij(x). Note that summation over repeated indices is
always understood. Bracket (1) is Poisson if and only if the Poisson tensor satisfies
the equation:

πlk(x)
∂πij(x)

∂xl
+ πli(x)

∂πjk(x)

∂xl
+ πlj(x)

∂πki(x)

∂xl
= 0.

The Poisson tensor πij(x) is called a Poisson structure on the manifold M .
A product M1 ×M2 of two manifolds equipped with Poisson brackets {·, ·}1

and {·, ·}2, respectively, may be given a product Poisson bracket. The latter is a

Poisson bracket whose Poisson tensor πijp (x, y) in the point (x, y) ∈M1 ×M2 is

πp(x, y) =

(
π
ij
1 (x) 0

0 π
ij
2 (y)

)
,

where π
ij
1 and π

ij
2 are Poisson tensors of {·, ·}1 and {·, ·}2, respectively. If p1 :

M1 × M2 → M1 and p2 : M1 × M2 → M2 are natural projections, and p
∗
1 :

C∞(M1) → C∞(M1 ×M2) and p
∗
2 : C

∞(M2) → C∞(M1 ×M2) are the corre-
sponding pullbacks, then it is easy to see that the product Poisson bracket may
be defined as the only Poisson bracket on M1 ×M2 satisfying the conditions:

i. {p∗1(f), p
∗
1(g)} = {f, g}1, and {p∗2(f), p

∗
2(g)} = {f, g}2,

ii. {p∗1(f), p
∗
2(g)} = 0.

A mapping F : M1 → M2 of two manifolds equipped with Poisson brackets
{·, ·}1 and {·, ·}2, respectively, is called Poisson if the pullback F

∗ : C∞(M2)→
C∞(M1) is a Lie algebra homomorphism, i.e.

{f ◦ F, g ◦ F}1 = {f, g}2 ◦ F.

Let G be a Poisson Lie group. This means that G is a Lie group equipped with a
Poisson structure π such that the multiplication in G viewed as a map G×G→ G
is a Poisson mapping, where G × G carries the product Poisson structure. The
theory of Poisson Lie groups is a quasiclassical version of the theory of quantum
groups.
One can easily check that the Poisson structure π must vanish at the identity

e ∈ G, so that its linearization deπ : G → G ∧ G at e is well defined (here G
is the Lie algebra of G). It turns out that this linear homomorphism is a 1–
cocycle with respect to the adjoint action. Moreover, the dual homomorphism
G∗ ∧ G∗ → G∗ satisfies the Jacobi identity; i.e. G∗ becomes a Lie algebra. Such
a pair (G,G∗) is called a Lie bialgebra ([15]). Each Lie bialgebra corresponds to
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a unique connected, simply connected Poisson Lie group. It is easy to show that
the pair (G∗,G) is a Lie bialgebra as soon as (G,G∗) is one. The Poisson Lie group
(G∗, π∗) corresponding to (G∗,G) will be called dual to (G, π). Thus (connected,
simply connected) Poisson Lie groups come in dual pairs.

G and G∗ may be put as Lie subalgebras into the greater Lie algebra G̃ which

is called the double Lie algebra. A vector space G̃ equals G⊕G∗, with Lie bracket

[X + ξ, Y + η] = [X,Y ] + [ξ, η] + ad∗Xη − ad∗Y ξ + ad
∗

ξY − ad∗ηY.

Here X,Y ∈ G, ξ, η ∈ G∗ and ad∗ denotes the coadjoint representations of G
on G∗ and of G∗ on G = (G∗)∗. We use [·, ·] to denote both the bracket on G and
G∗.
With respect to the ad-invariant non-degenerate canonical bilinear form

(X + ξ, Y + η) = 〈X, η〉+ 〈Y, ξ〉,

G and G∗ form maximal isotropic subspaces of G̃.

The simply connected group G̃ corresponding to G̃ is the classical Drinfeld
double of the Poisson Lie group (G, π).

Conversely, any Lie algebra G̃ with a non-degenerate symmetric ad-invariant
bilinear form and a pair of maximal isotropic subalgebras (a Manin triple) gives
a pair of dual Lie bialgebras by identifying one of the subalgebras with the dual
of the other by means of this bilinear form.
Let r =

∑
i ai ⊗ bi be an element of G ⊗ G; we say that r satisfies the classical

Yang-Baxter equation if

[r12, r13] + [r12, r23] + [r13, r23] = 0.

Here, for instance, [r12, r13] =
∑
i,j [ai, aj ]⊗b

i⊗bj. A quasitriangular Lie bialgebra

is a pair (G, r), where G is Lie bialgebra, r ∈ G ⊗ G, the coboundary of r is the
cobracket deπ : G → G ∧ G and r satisfies the classical Yang-Baxter equation.
Let us associate with r a linear operator

r+ : G
∗ → G, ξ 7→ 〈r, ξ ⊗ id〉.

Its adjoint is given by

−r− = r
∗
+ : G

∗ → G, ξ 7→ 〈r, id⊗ ξ〉 = 〈P (r), ξ ⊗ id〉,

where P is the permutation operator in G × G, P (X ⊗ Y ) = Y ⊗X .
The Lie bracket [·, ·] in G∗ is given by

[ξ, η] = ad∗r+(ξ)η − ad∗r
−
(η)ξ.
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Lemma 2.1 ([7], [16]). For any quasitriangular Lie bialgebra (G, r), the linear
maps

r+, r− : G
∗ → G

defined above are both Lie algebra homomorphisms.

We now turn our attention to groups.

Definition 2.2 ([7]). A Poisson Lie group G is called quasitriangular if its cor-
responding Lie bialgebra (G,G∗) is quasitriangular and if the Lie algebra homo-
morphisms r+ and r− from G∗ to G lift to Lie group homomorphisms R+ and R−

from G∗ to G.

It turns out that if G is quasitriangular, the maps φ and ψ from G∗ to G are
Poisson morphisms, where φ(x) = R+(x

−1) and ψ(x) = R−(x
−1) for any x ∈ G∗.

For every Poisson Lie group G there are naturally defined left and right “dressing”
actions of G on G∗ ([17]), whose orbits are exactly the symplectic leaves of G∗.
When G has the zero Poisson structure, its dual Poisson Lie group is simply G∗

with the abelian Lie group structure and ordinary Lie-Poisson bracket. The left
and right dressing actions in this case are simply the left and right coadjoint
actions of G on G∗.
Given a Poisson Lie group (G, π), we can consider the Lie algebra homomor-

phism from G to the Lie algebra of vector fields on G∗. To describe this ho-
momorphism, we pick an element v ∈ G = (G∗)∗. It may be identified with an
element αv ∈ T ∗

eG
∗. Let α be an extension of αv to a right-invariant 1-form

on G∗. Then the vector field v∗ corresponding to v is obtained from −α by means
of the Poisson structure π∗. It turns out that in this way we get a Lie algebra
homomorphism from G to the Lie algebra of vector fields on G∗ ([18]). Hence,
if all the vector fields v∗ are complete (G is a complete Poisson Lie group), we
obtain a G-action λ on G∗ called the left dressing action. If in this construction
we replace the right-invariant 1-form by the left-invariant 1-form on G∗ we obtain
the right dressing action ρ of G on G∗.

3. Poisson Lie rack

Let G be a quasitriangular Poisson Lie group with Lie bialgebra G, and let
G∗ be its simply connected dual. We can lift the Lie algebra homomorphisms
r± : G

∗ → G to the group homomorphisms R± : G
∗ → G, and define the map

J : G∗ → G by J(x) = R+(x)(R−(x))
−1. The group G is factorizable if J is a

global diffeomorphism. In this case, for each element x ∈ G we have a factorization
x = x+x

−1
−
, where x± = R±(J

−1(x)).
The following theorem gives us an augmented rack structure for G∗.

Theorem 3.1. Let G be a quasitriangular Poisson Lie group and let G∗ be its

simply connected dual. Then G∗ has a structure of crossed G-set with (right)
action

(x, g) 7→ λg−1x
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and augmentation δ:
δ(x) = φ(x−1)ψ(x).

This theorem is the generalization for quasitriangular Poisson Lie groups of the
well-known fact that the left dressing action of G on G∗, for a factorizable Poisson
Lie group G, coincides with the conjugation action Adx under the identification
of G with G∗ by J .

Proof: It follows from Lemma 2.1 that the Lie algebra homomorphisms r±
naturally extend to Lie algebra homomorphisms f± from the double Lie algebra

G̃ onto G defined by: f±(X + ξ) = X + r±ξ. By F± we denote the Lie group

homomorphism from the classical Drinfeld double G̃ of the Poisson Lie group

(G, π). For any d = gu = ūḡ ∈ G̃ with g, ḡ ∈ G and u, ū ∈ G∗ we have

F+ = gφ(u
−1) = φ(ū−1)ḡ

and
F− = gψ(u

−1) = ψ(ū−1)ḡ.

These imply that
φ(ū−1)ψ(ū) = gφ(u−1)ψ(u)g−1.

Finally, a straightforward calculation based on the identity λgu = ū shows that
G∗ has the structure of a crossed G-set. �

It follows from a result of Weinstein-Xu (Lemma 8.5 from [7]) that the rack
from Theorem 3.1 is the quandle.

Definition 3.2. Let G be a quasitriangular Poisson Lie group and let G∗ be its

simply connected dual. The Poisson Lie quandle is G∗ with the following rack

operation:
ba = λψ(a−1)φ(a)b.

Symplectic Poisson Lie quandles are the symplectic leaves of G∗ (orbits of
“dressing” actions of G on G∗) with the same rack operation.

For any rack ∆ we have the braid group Bn action on ∆
n. Recall that two

braids give rise to equivalent links if and only if they are equivalent under Markov
moves. There are two types of Markov moves: one is conjugation A → BAB−1;
the other is the increase of the number of strings in braid by a simple twist:
A → Ab±n , for A ∈ Bn, where bn is n

th generator of Bn+1. After an elementary
calculation we get

Lemma 3.3. Suppose that ∆ is a quandle. If A ∈ Bn and B ∈ Bm define
equivalent links, then the fixed point sets of A on ∆n and of B on ∆m are
isomorphic.

This implies that for the Poisson Lie quandle G∗ we have the link invariant
as the fixed point set of the corresponding braid action on (G∗)n. This invariant
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is the space of representations of the fundamental augmented rack of a link into
Poisson Lie quandle (see Proposition 7.6 from [4]).
It turns out that this space of representations of the fundamental augmented

rack of a link into the Poisson Lie quandle is equal to the Weinstein-Xu link
invariant, associated with the quasitriangular Poisson Lie group G ([7]).
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