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Cardinal invariants of the lattice of partitions

Barbara Majcher–Iwanow

Abstract. We study cardinal coefficients related to combinatorial properties of partitions
of ω with respect to the order of almost containedness.

Keywords: lattice of partitions, almost containedness, tower number, splitting number,

reaping number, Cohen’s forcing

Classification: 03E05, 03E35

1. Introduction

The set (ω) of all partitions of ω has a natural structure of a lattice under the
order X ≤1 Y ↔ ‘any piece of Y is contained in a piece of X ’. The filter of
partitions with finite pieces induces the almost containedness relation ≤∗

1 which
was studied in a number of papers after Carlson and Simpson proved in [1] a
dualized version of Ramsey’s theorem. We mention [10], [3], [5] and [11], where
combinatorial properties of (ω) are expressed in terms of suitably defined cardinal
coefficients. The coefficients and relations between them are collected in so called
van Douwen’s diagram.
These papers involve mainly the methods developed for the Boolean algebra

P (ω). On the other hand, there is a serious difference from that case: (ω) is not
a Boolean algebra and does not have any natural complementation. Then the
converse order and the corresponding (converse) coefficients are still unknown.
This is a motivation for our paper: we study the converse order.
The above scheme also allows us to define another pair of orders, denoted below

by ≤∗
2 and �

∗
2 (the converse order). We prove that the first one is completely clear:

the corresponding cardinal coefficients are absolute (Section 4.1). One of the cases
of this result improves (and simplifies the proof of) the Spinas’ result that the
cardinality of a maximal non-trivial family of partitions where any two members
have meet 0 is continuum (Theorem 4.1 in [11]).
The converse order is very similar to the order converse to ≤∗

1. Nevertheless,
we show that all the orders are pairwise non-isomorphic.

1.1 Notation.

We use standard set theoretic conventions and notation. [ω]ω and [ω]<ω stand for

all infinite and all finite subsets of ω respectively. For k ∈ ω \ {0}, let [ω]k be the
set of all k-element subsets of ω. We often identify m ∈ ω with {0, . . . , m − 1}.
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The ideal of all first category subsets of the real line R is denoted by K. The
cardinal number cov(K) is defined by:

cov(K) = min{|A| : A ⊆ K ∧
⋃

A = R}.

By (ω) we denote the set of all partitions of ω i.e. families X ⊂ P (ω) consisting
of pairwise disjoint sets such that

⋃
X = ω. A partition is finite if it has finitely

many pieces. The set of all finite partitions will be denoted by (ω)<ω and the set
of all infinite partitions will be denoted by (ω)ω .
If X and Y are partitions of ω then we say that Y is coarser than X , or X is

finer than Y , and we write Y ≤ X , if each piece of Y is a union of pieces of X .
Notice that ((ω),≤) is a complete lattice with the least element 0— the partition
{ω} of ω into one piece and the greatest element 1 — the partition {{n} : n ∈ ω}
of ω into singletons.
For X ∈ (ω) let

(X)≤ = {Y ∈ (ω) : Y ≤ X},

(X)≥ = {Y ∈ (ω) : X ≤ Y }

and
Pairs(X) = {{k, l} ∈ [ω]2 : (∃ a ∈ X)({k, l} ⊂ a)}.

We say that X is trivial if Pairs(X) is finite, i.e. when all but finitely many finite
pieces of X are singletons. By IF we denote the set of all trivial partitions.
For d ∈ [ω]<ω and X ∈ (ω) let

Xd = {
⋃

{x ∈ X : x ∩ d 6= ∅}} ∪ {x ∈ X : x ∩ d = ∅}

and
Xd = {x \ d : x ∈ X} ∪ {{n} : n ∈ d}.

The following definitions describe the approach from [10] (and, in fact, from
[1]). Let X ∈ (ω). A partition X∗ ∈ (ω) is called a finite modification of X
if X∗ is obtained from X by gluing together a finite number of pieces of X , i.e.
(∃ d ∈ [ω]<ω)(X∗ = Xd). Of course we always have X∗ ≤ X . This notion allows
us to introduce relations of almost containedness and orthogonalities defined as
follows:

1. X ≤∗
1 Y (X is almost contained in Y ) if for some finite modification X∗

of X , we have X∗ ≤ Y ;
2. X ⊥1 Y (X is orthogonal to Y ) if X ∧ Y ∈ (ω)<ω;
3. X⊤1Y (X is c-orthogonal to Y ) if X ∨ Y ∈ IF .

The order converse to ≤ will be denoted by � and the order converse to ≤∗
1 —

by �∗
1. The induced equivalence relation will be denoted by =

∗
1. Notice that the

equivalence class [0]1 coincides with (ω)
<ω and [1]1 = IF ,

X⊤1Y ↔ |Pairs(X) ∩ Pairs(Y )| < ω,

Pairs(X) ⊆∗ Pairs(Y )→ X �∗
1 Y
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(by ⊆∗ we denote almost containedness of sets). The converse

X �∗
1 Y → Pairs(X) ⊆∗ Pairs(Y )

is true for X and Y consisting of finite pieces. Let (ω)c1 stand for the set of all
infinite non-trivial partitions.
Finally, we say that two partitions X and Y from (ω)ω are compatible if X

and Y are not orthogonal, i.e. if X ∧ Y ∈ (ω)ω. Non-trivial partitions X and Y
are said to be c-compatible if they are not c-orthogonal, i.e. if X ∨ Y /∈ IF .
The main results of the paper concern the order �∗

1. In the following lemma
we state separativity of the order.

Lemma 1.1. If X, Y ∈ (ω)c1 and X �∗
1 Y does not hold then there is Z ∈ (ω)c1

such that Z � X and Z⊤1Y .

Proof: Since X �∗
1 Y does not hold, Pairs(X) is not almost contained in

Pairs(Y ). Thus there is an infinite sequence {xi}i∈ω of pairs which meet distinct
pieces of Y and the same pieces of X . Define Z = {xi : i ∈ ω} ∪ {{i} : i ∈ r},
where r = ω \

⋃
{xi : i ∈ ω}. Then Z is contained in X and c-orthogonal to Y .

�

2. The order �∗
1

Applying the general scheme from [3] and [13] to (ω)c1 and �∗
1 we obtain the

definitions of the cardinals ac1, p
c
1, t

c
1, s

c
1, r

c
1, h

c
1. To be more precise we describe

them in the following definition.

Definition 2.1. 1. We say that A ⊆ (ω)c1 is a maximal c-orthogonal family of
partitions (maco) if A is a maximal family of pairwise c-orthogonal partitions.

ac1 = min{|A| : A is a maco in (ω)c};

2. We say that P ⊆ (ω)c1 is a c-centered family of partitions if for each finite
P0 ⊆ P there is some Y ∈ (ω)c1 such that for eachX ∈ P0 we have Y � X .
We say that P ⊆ (ω)ω has no c-bound if there is no partition Y ∈ (ω)c

such that P ∪ {Y } is c-centered and Y �∗
1 X for all X ∈ P .

pc
1 = min{|P| : P is a c-centered family of partitions with no c-bound};

3. We say that a c-centered family T ⊆ (ω)c1 is a c-tower if it is well-ordered
by ≤∗

1 and has no c-bound.

tc1 = min{|T | : T is a c-tower};

4. For X, Y ∈ (ω)c1, we say that X c-splits Y if there are Z, T ∈ (ω)c1,
Z, T � Y , such that Z � X and T⊤1X . We say that S ⊆ (ω)c1-c-splits
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T ⊆ (ω)c1 if for each A ∈ T there is some S ∈ S that c-splits A. The
family S ⊆ (ω)c1 is a c-splitting family if S c-splits (ω)

c
1.

sc1 = min{|S| : S is a c-splitting family};

5. We say that R ⊆ (ω)c1 is a c-reaping family if for each A ∈ (ω)c1 there is
some R ∈ R such that either R �∗

1 A or R⊤1A.

rc1 = min{|R| : R is a c-reaping family};

6. A family F of maco families of partitions c-shatters a partition A ∈ (ω)c1
if there are F ∈ F and two distinct partitions X, Y ∈ F such that A is c-
compatible with both X and Y . A family F of maco families of partitions
is c-shattering if F c-shatters each A ∈ (ω)c.

hc
1 = min{|F| : F is a c-shattering family of macos}.

To distinguish between the classical van Douwen’s diagram (compare e.g. [13])
and the dual ones we use small bold case for the classical cardinals and small bold
case with indexes for the dual diagrams.

2.1 Inequalities.

Several lemmas below are counterparts to those from [3]. We start with the
following fact.

Lemma 2.2. If X0 ≤ X1 ≤ X2 ≤ . . . is a decreasing (in the sense of �) sequence
of partitions from (ω)c1 then there exists Y ∈ (ω)c1 such that Y �∗

1 Xi for each

i ∈ ω.

Proof: By induction. Let y0 be any two-element subset of ω contained in one
piece of X0. Suppose that we have already constructed the first n pieces of Y . Let
yn be an arbitrary two-element subset of ω contained in one piece of Xn which is
disjoint from each yk, for k < n. Put

Y = {yn : n ∈ ω} ∪ {{n} : n ∈ z},

where z = ω \
⋃
{yn : n ∈ ω}. �

Remark. This lemma states that tc1 is uncountable. On the other hand it does
not imply that the numbers pc

1 and t
c
1 are defined. Indeed, to have these numbers

defined we need a c-centered family without c-bound (a c-tower respectively).
Nevertheless the idea of the proof yields such a family. Take a partition X con-
sisting of two-element pieces and any c-centered family Γ consisting of partitions
≤-greater than X . If Y is a c-bound then Y ∨ X is a non-trivial partition con-
sisting of at most two-element pieces. Let Y ′ � Y ∨ X be a partition such that
its two-element pieces form an infinite and coinfinite subset of the corresponding
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set for Y ∨ X . Then it is easy to verify that Γ ∪ {Y ′} is a c-centered family. If
it has a c-bound we apply this construction again. It is clear that eventually we
get a c-centered family without c-bound. A similar argument works for tc1. �

We now consider relations between pc
1, t

c
1, h

c
1, s

c
1 and the classical coefficients.

We need the following notation:

For N ∈ [[ω]2]ω consisting of pairwise disjoint elements we define the
partition XN = N ∪ {{n} : n ∈ ω \

⋃
N}.

Lemma 2.3. The following inequalities hold: pc
1 ≤ p, tc1 ≤ t ≤ hc

1 ≤ h, s ≤ sc1.

Proof: pc
1 ≤ p. Let {Aα : α < p} ⊆ [ω]ω be a ⊆-centered family without lower

bound. For each α < p, let Xα = {Aα} ∪ {{n} : n ∈ ω \ Aα}. Then the family
{Xα : α < p} ⊂ (ω)c1 is a c-centered family without a c-bound.

tc1 ≤ t is proved in a similar way.

t ≤ hc
1. A standard argument shows that there is κ ≤ hc

1 and a c-consistent
family of partitions {Xα : α < κ} consisting of at most two-element pieces such
that the family is well-ordered by ≤∗

1 and does not have a c-bound. Then the

family {Pairs(Xα) : α < κ} ⊂ [[ω]2]ω is a tower without a lower bound.

hc
1 ≤ h. For X ∈ (ω)c1 let MX = ω \ {min(x) : x ∈ X}. If X �∗

1 Y then
obviously MX ⊆∗ MY . Let ℑ be a m.a.d. family. Then the set ℜ = {X ∈ (ω)c1 :
(∃A ∈ ℑ)(MX ⊆∗ A)} is dense in ((ω)c1,�∗

1). So, to every m.a.d. we can assign

a maximal almost c-orthogonal family of partitions ℑ̂ ⊆ ℜ. One can easily show
that if {ℑα : α < h} is a shattering family then the family {ℑ̂α : α < h} is a
c-shattering family of partitions.

s ≤ sc1. It is easy to check that a family S ⊂ (ω)c1 is c-splitting iff for every
X ∈ (ω)c1 the family SX = {X ∨ A : A ∈ S} is a c-splitting family for (X)≥. Let
{Xα : α < κ} ⊆ (ω)c1, κ < s, be an arbitrary family of partitions and X ∈ (ω)c1
be any partition such that (∀x ∈ X)(|x| ≤ 2). Consider the family {Aα : α < κ},
where Aα = X ∨ Xα. We will show that it is not a c-splitting family for (X)≥.
Since κ < s, the family {Pairs(Aα) : α < κ} ⊆ [Pairs(X)]ω is not splitting for
[Pairs(X)]ω . So, there is N ∈ [Pairs(X)]ω such that

(∀α < κ)(N ⊆∗ Pairs(Aα) ∨ |N ∩ Pairs(Aα)| < ω).

Therefore the partition XN ∈ (X)≥ has the corresponding property, i.e.,

(∀α < κ)(XN �∗
1 Aα ∨ Aα⊤1XN ).

�

In the following lemma we collect preliminary information concerning rc1.
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Lemma 2.4. (a) Suppose that κ < cov(K) and that {Xξ}ξ<κ is a family of

partitions from (ω)c1. Then there exists Y ∈ (ω)c1 such that Y is c-compatible
with each Xξ and for no ξ < κ we have Xξ �∗

1 Y . In particular, rc1 ≥ cov(K).

(b) Let X ∈ (ω)c1 and ℜ ⊂ (X)≥ be a c-reaping family for (X)≥. Then ℜ is a
c-reaping family of partitions.

(c) rc1 ≤ r.

Proof: (a) For every ξ < κ let

Gξ = {f ∈ ωω : (∀m ∈ ω)(∃ a, b ∈ Xξ)(∃ k, l ∈ a)(∃ r, s ∈ b)

(k 6= l ∧ m < f(k) = f(l) ∧ m < f(r) 6= f(s) > m)}.

It is easy to see that Gξ is a dense Gδ subset of the Baire space ωω for every
ξ < κ. Since κ < cov(K), there is an unbounded f such that f ∈ Gξ , for every

ξ < κ. Put Y = {f−1(n) : n ∈ ω} \ {∅}.

(b) Let Y ∈ (ω)c1. If X⊤1Y then Y ⊤1Z for any Z ∈ ℜ. If X ∨ Y ∈ (ω)c1
then either there is Z ∈ ℜ such that Z⊤1(X ∨ Y ) or there is Z ∈ ℜ such that
Z �∗

1 (X ∨ Y ) � Y . Since Z �∗
1 X , the condition Z⊤1(X ∨ Y ) implies that

Z⊤1Y . So, ℜ is a c-reaping family.

(c) To prove rc1 ≤ r let X ∈ (ω)c1 be any partition of at most two-element

pieces. Let ℜ̂ ⊆ [Pairs(X)]ω be a reaping family of sets such that |ℜ̂| = r. Then

the family ℜ = {XN : N ∈ ℜ̂} is a c-reaping family for (X)≥. So, by the previous
statement, this is a c-reaping family of partitions. �

We now study ac1.

Lemma 2.5. The cardinal number a is not greater than ac1.

Proof: Let {Xα : α < κ} ⊆ (ω)c1, κ < a, be a family of c-orthogonal partitions.
Then the corresponding family {Pairs(Xα) : α < κ} is an almost disjoint family
of subsets of [ω]2. Let

ℑ = {M ∈ [ω]ω : (∃α < κ)(M ∈ Xα)}.

Clearly, ℑ consists of pairwise almost disjoint subsets of ω. One of the following
cases holds: (1) ℑ = ∅; (2) ℑ is maximal; (3) ℑ is not maximal.

Case 1. Since for each α < κ, Xα consists of finite pieces, for every α < κ and
i ∈ ω, Pairs(Xα) is almost disjoint from Ni = {{i, j} : j ∈ ω}. So, the family
{Pairs(Xα) : α < κ} ∪ {Ni : i ∈ ω} is an almost disjoint family of subsets of [ω]2

of cardinality κ + ω < a. Thus there is N ∈ [[ω]2]ω almost disjoint from each
element of the family. It is easy to see that N contains an infinite N ′ consisting
of pairwise disjoint elements. Then for each α < κ, XN ′ is c-orthogonal to Xα.
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Case 2. If ℑ is maximal and |ℑ| ≤ κ < a, it must be finite. Let ℑ = {M1, . . . ,
Mn}. W.l.o.g. we may assume that ℑ consists of pairwise disjoint elements and
its union is ω. For i ∈ Mk, put Ni = {{i, j} : j ∈ ω \ Mk}. One can see that for
each α < κ and i ∈ ω, Pairs(Xα) is almost disjoint from Ni. Thus the family
{Pairs(Xα) : α < κ} ∪ {Ni : i ∈ ω} is almost disjoint of cardinality less than
a. There is N almost disjoint from each member of the family. As in Case 1,
N contains an infinite N ′ consisting of pairwise disjoint elements. Thus for each
α < κ, XN ′ is c-orthogonal to Xα.

Case 3. Since ℑ is not maximal there is Q ∈ [ω]ω almost disjoint from each
M ∈ ℑ. Now, for each α < κ, the partition Zα = {x ∩ Q : x ∈ Xα} \ {∅} is
a partition of Q consisting of finite pieces. So, by Case 1, we can construct the
partition Z of Q that is almost c-orthogonal to Zα for all α < κ. Finally, let
Y = Z∪{{n} : n ∈ ω \Q}. It is clear, that for all α < κ, Y is c-orthogonal to Xα.

�

Remark. Notice that the proof of the lemma additionally implies that if {Xi :
i ∈ n} ⊆ (ω)c1 is a finite family of pairwise c-orthogonal partitions then there
exists Y ∈ (ω)c1 such that Y ⊤1Xi, for every i ∈ n. This statement does not hold
in the case of sets.
Also note that if Y is chosen as above then for any k ∈ ω there exist m, l ≥ k

such that m 6= l, {m, l} ∈ Pairs(Y ) and {m, l} /∈
⋃
{Pairs(Xi) : i ∈ n}. This

follows from the fact that |Pairs(Y ) \
⋃

i∈n Pairs(Xi)| = ω. This will be applied
in forcing arguments of Section 2.2. �

Now, we are able to draw the diagram for the converse case.

Proposition 2.6. The following relations are provable in ZFC.

ac1

��?
??

??
??

?

ω1 // pc
1

// tc1
// hc

1
// sc1

// 2ω

rc1

??��������

.

Moreover rc1 and a
c
1 are uncountable.

Proof: The inequality pc
1 ≥ ω1 is a consequence of Lemma 2.2 (note that we

must use c-centeredness at this point). The uncountability of rc1 and a
c
1 follows

from Lemmas 2.4 and 2.5.
The remaining inequalities follow from Lemma 2.3 and the classical diagram

([13]). �
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2.2 Consistency.

Unlike in the case of the order≤∗
1, all the converse coefficients are equal continuum

under MA. To show this we shall define the following notions of forcing.

Definition 2.7. (1) Let A ⊆ (ω)c1 be a c-orthogonal family. Let PA = (PA,≤)
be the following notion of forcing:

PA consists of pairs (σ, F ) where σ is a finite family of pairwise disjoint 2-
element subsets of ω and F is a finite subfamily of A;

≤ : (σ, F ) ≤ (τ, T ) iff σ ⊇ τ, F ⊇ T and for each a ∈ σ \ τ and X ∈ T , a is not
contained in one piece of X .

(2) Let S = {Xα : α < κ}, where κ < 2ω, be a c-centered family of partitions.
Let PS = (S,≤) be a notion of forcing, where S is a set of pairs (σ, F ) such that
σ is a finite family of pairwise disjoint finite sets and F is a finite subfamily of S.
The ordering ≤ is defined as follows: (σ, F ) ≤ (τ, T ) iff σ ⊇ τ , F ⊇ T and for
each a ∈ σ \ τ and each X ∈ T there is x ∈ X such that a ⊆ x.

(3) Let PR = (R,≤) be a notion of forcing such that R is a set of finite families
of at most two-element pairwise disjoint subsets of ω and σ ≤ τ iff τ ⊆ σ.

It is easy to see that the notions of forcing defined above satisfy ccc. The
lemma below follows directly from Lemmas 2.4 and 2.5.

Lemma 2.8. (1) LetM |= ZFC and A ∈M be a c-orthogonal family. Let G be a
PA-generic overM, and Y =

⋃
{σ : (σ, F ) ∈ G for some F ⊂ A}∪{{n} : n ∈ R},

where R = ω \
⋃
{σ : (σ, F ) ∈ G for some F ⊂ A}. Then

M[G] |= (∀X ∈ A)(X⊤1Y ).

(2) LetM |= ZFC and N be a model obtained from M via PR-generic G and
let Y =

⋃
{σ : σ ∈ G} ∪ {{n} : n ∈ ω \

⋃
G}. Then the following is true in N :

For every X ∈ M ∩ (ω)c1 there are Y1, Y2 � Y such that Y1 � X but

Y2⊤1X .

Theorem 2.9. Assume MA. Then ac1 = p
c
1 = r

c
1 = 2

ω.

Proof: ac1 = r
c
1 = 2

ω easily follows from the previous lemma.
In a similar way, using PS , one can show that under MA every c-centered

family of partitions without a c-bound is of cardinality continuum. �

On the other side it is consistent that all the converse coefficients equal ω1.

Theorem 2.10. It is consistent with ZFC+ ¬CH that ac1 = s
c
1 = r

c
1 = ω1.

Proof: Let M |= ZFC+CH. Consider a sequence

M0 ⊆ M1 ⊆ · · · ⊆ Mα ⊆ · · · ⊆ Mω1
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of ccc-extensions of M such that

1. M0 =M;
2. Mα+1 |=MA+ 2ω = ωα+1;
3. if λ ≤ ω1 is a limit cardinal then Mλ is obtained via a direct limit (with
finite support) of smaller generic extensions.

Then in the final model Mω1 the required equalities hold.

We will give details only forMω1 |= a
c
1 = ω1. Start with an arbitrary countable

c-orthogonal family A0 ∈ M . Assume that we have already constructed a sequence
A0 ⊆ A1 ⊆ · · · ⊆ Aξ ⊆ . . . , ξ < α, such that for each ξ < α, Aξ ∈ Mξ is an c-
orthogonal family. Then put

(1) Aα :=
⋃
{Aξ : ξ < α}, for limit α or

(2) Aα := Aλ∪{Yλ+1}, where α = λ+1 and Yλ+1 is defined as in Lemma 2.8 (1)
for PAλ

∈ Mλ and generic G ∈ Mλ+1.

Then A =
⋃
{Aξ : ξ < ω1} is a c-orthogonal family of cardinality ω1. We claim

that it is maximal. Let X ∈ (ω)c1 ∩ Mω1 and ζ0 = min{ζ < ω1 : X ∈ Mζ}.
Suppose that X is c-orthogonal to each Z ∈ Aζ0 . Then for each n ∈ ω the
set Dn = {(σ, F ) ∈ PAζ0

: |σ ∩ Pairs(X)| ≥ n} is dense in PAζ0
. Thus X is

c-compatible with Yζ0+1. So A is maximal.
In a similar way we show Mω1 |= s

c
1 = ω1.

Applying Cohen notion of forcing one can easily show that Mω1 |= r = ω1.
Now the statement Mω1 |= r

c
1 = ω1 is a consequence of this fact and Lemma 2.4.

�

3. Orders

Let

Y ≤∗
2 X iff (∃ d ∈ [ω]<ω)(Y ≤ Xd).

It is easily seen that IF is the set of all partitions =∗
2-equivalent to 1. Observe

also that the class [0]2 consists of all partitions having a cofinite piece.
As in the case of ≤∗

1 we introduce (ω)
c
2 by

(ω)c2 = {X ∈ (ω) : 0 <∗
2 X <∗

2 1}.

Notice that the ordering ≤∗
1 is a proper extension of ≤

∗
2. Indeed, let X ≤∗

2 Y ,

for some X, Y ∈ (ω). Then there is d ∈ [ω]<ω such that X ≤ Yd. Put d̂ =
{min(x) : x ∈ X ∧ ((x ∩ d 6= ∅) ∨ (∃ y ∈ Y )(x ∩ y 6= ∅ 6= d ∩ y)). It is easy to see

that d̂ is finite and X d̂ ≤ Y .
It is also worth noting that ≤∗

1 and ≤
∗
2 are equal on the set of partitions having

only finite pieces. In particular =∗
1- and =

∗
2-classes of 1 are the same.

Remark. The equivalence relations =∗
1 and =

∗
2 are not congruences of the lattice

of partitions. Indeed, for the first case let {A, B, C} be any partition of ω into
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three infinite pieces and let eA, eB be some enumerations of A and B respectively.
Put

X = {A, B} ∪ {{c} : c ∈ C},

Y = {A ∪ B} ∪ {{c} : c ∈ C},

Z = {{eA(i), eB(i)} : i ∈ ω} ∪ {{c} : c ∈ C}.

Obviously, X =∗
1 Y but Y ∨ Z = Z 6=∗

1 1 = X ∨ Z.
To show that =∗

2 is not a congruence take a partition X of ω into two infinite
sets A, B. Let a partition Y consist of A \ {a} and {a} ∪ B where a ∈ A. Then
X =∗

2 Y but X ∧ Y 6=∗
2 X ∧ X . �

Let �∗
2 denote the order converse to ≤

∗
2. We are going to show that all posets

introduced above (≤∗
1,�∗

1,≤
∗
2,�

∗
2) are not pairwise isomorphic. First note that

(ω)/ =∗
2 under ≤

∗
2 has atoms. Indeed, they are induced by partitions with exactly

two infinite classes. On the other hand, it is easily seen that all remained posets
do not have atoms and the ∗

1-posets do not have coatoms. This shows that we
must only prove that the ∗

1-posets are non-isomorphic. This will follow from the
following lemmas.

Lemma 3.1. Let X ∈ (ω)ω . Then the posets ((X)≤,≤) and ((ω),≤) are isomor-
phic. The corresponding isomorphism f can be chosen so that for any Y, Z ∈ (ω)
we have Y =∗

1 Z iff f(Y ) =∗
1 f(Z). In particular, the posets (((ω)/ =∗

1),≤
∗
1) and

(((X)≤/ =∗
1),≤

∗
1) are isomorphic.

Proof: Let X = {xi : i ∈ ω}. For Y ∈ (ω) and y ∈ Y put Ay =
⋃
{xi : i ∈ y}.

Then the function f(Y ) = {Ay : y ∈ Y } is a required isomorphism.

It suffices to show that for any Y ∈ (ω) and d ∈ [ω]<ω we have f(Y ) =∗
1 f(Y d)

and f−1(f(Y )d) =∗
1 Y . Let b = {minAy : (y ∈ Y ) ∧ (y ∩ d 6= ∅)} and c = {i :

xi ∩ d 6= ∅}. It is easy to see that b, c are finite subsets of ω and f(Y )b = f(Y d)

and f−1(f(Y )d) = Y c. �

For X ∈ (ω) let ([X ]) = {[Y ] ∈ ((ω)/ =∗
1) : [Y ] ≤

∗
1 [X ]}. It is clear, that

(((X)≤/ =∗
1),≤

∗
1) and (([X ]),≤

∗
1) are isomorphic. We have arrived at the follow-

ing

Corollary 3.2. Let X ∈ (ω)ω . Then (([X ]),≤∗
1) and (((ω)/ =

∗
1),≤

∗
1) are iso-

morphic.

Lemma 3.3. Let X ∈ (ω)c1 have at most two-element pieces. Then

(((X)≥/ =∗
1),�

∗
1) is isomorphic to (P (ω)/F in,⊆∗).

In particular, (P (ω)/F in,⊆∗) is isomorphic to (([X ])≥,�∗
1), where

([X ])≥ = {[Y ] ∈ ((ω)/ =∗
1) : [Y ] �

∗
1 [X ]}.
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Proof: Let X ′ = {xi : i ∈ ω} be an enumeration of all two-element pieces of X
and X = X ′ ∪ Y where Y = {x ∈ X : card(x) = 1}. For A ∈ [ω]ω put

XA = {xi : i ∈ A} ∪ {{n} : n ∈ xi, i ∈ ω \ A} ∪ Y.

Then the function f([A]) = [XA] is a required isomorphism. �

Theorem 3.4. The posets (((ω)/ =∗
1),≤

∗
1) and (((ω)/ =

∗
1),�

∗
1) are not isomor-

phic.

Proof: Assume that f is an isomorphism from the first poset onto the second
one. Let X be an infinite non-trivial partition whose pieces are at most two-
element. Then [X ] = f([Y ]) for some infinite Y and the posets (([X ])≥,�∗

1) and
(([Y ]),≤∗

1) are isomorphic. This yields by Lemmas 3.1 and 3.3 the existence of an
isomorphism between (P (ω)/F in,⊆∗) and (((ω)/ =∗

1),≤
∗
1), which is impossible

because the former is a Boolean algebra. �

The above arguments show that all these posets are pairwise elementary non-
equivalent.

4. Diagrams

The general idea of van Douwen’s diagram can be described as follows.
Let L be a lattice with 0 and 1, and let ≤a be a relation of almost containedness.

As we study a very particular case, we do not axiomatize almost containedness.
In the case of the lattice (or the converse lattice) of partitions ≤a is one of the
relations: ≤∗

1, �
∗
1, ≤

∗
2, �

∗
2. We write a =a b if a ≤a b and b ≤a a. Let I = {a ∈

L : a ≤a 0}. For any a ∈ L we put aI = {b : b =a a}. We say that a, b ∈ L \ I are
orthogonal if a ∧ b ≤a 0.
In general, to characterize the lattice L under these relations we need some

further notions. We say that a splits b if there are c, d ≤ b not in I such that
c ≤ a and d, a are orthogonal. A family Γ ⊂ L \ I is a splitting family if for every
b ∈ L \ I there exists a ∈ Γ that splits b. We say that Γ is a reaping family if
for each a ∈ L \ I there is some b ∈ Γ such that b ≤a a or a, b are orthogonal.
We also define a family Γ ⊂ L \ I to be ≤-centered if any finite intersection of its
elements is not in I.
We can now associate with L the following cardinals. Define aI to be the least

cardinality of a maximal family of pairwise orthogonal elements from L \ 1I . Let
pI be the least cardinality of a ≤-centered family without lower bound under ≤a

(from L \ I) such that the family extended by it (if it is not in the family) is
still ≤-centered. Similarly, define tI as the least cardinality of a ≤a-decreasing ≤-
centered chain without lower≤a-bound consistent (in the sense of ≤-centeredness)
with the family. The cardinals sI , rI are the corresponding cardinals for splitting
families and reaping families respectively. It is worth noting that pI and tI can
be undefined (for example if for any a ∈ L the set {b : b ≤ a} is finite). Also,
(L,≤a) does not necessarily have a splitting family (for example if L is an atomic
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boolean algebra and I is trivial). So, sI can be undefined too. On the other hand,
it is clear that pI ≤ tI if they are defined.
The last cardinal hI is defined as follows. A family Σ of maximal families of

pairwise orthogonal elements in L \ 1I is shattering if for every a ∈ L \ I there
are Γ ∈ Σ and distinct b, c ∈ Γ which are not orthogonal to a. Let hI be the least
cardinality of a shattering family in L.
Lemma 4.1. If sI is defined then hI ≤ sI .

Proof: Take a splitting family Γ = {cν : ν < sI}. For each ν < sI choose Ψν a
maximal family of pairwise orthogonal elements such that cν ∈ Ψν . Let us check
that the set of these families is shattering. Let c ∈ L \ I. Since Γ is a splitting
family there is ν and a, b ≤ c such that a ≤ cν and b is orthogonal to cν . By our
construction there is d ∈ Ψν not orthogonal to b. So, Ψν shatters c by cν and d.

�

By ai,pi, . . . we denote the cardinals defined in the case of (L,≤i), i = 1, 2. By
aci ,p

c
i , . . . we denote the cardinals defined in the converse case: (L,�i), i = 1, 2.

Remark. In the case of the lattice (P (ω),∪,∩) and the natural relation of al-
most containedness the set I is the ideal [ω]<ω of all finite subsets of ω. The
cardinals introduced are exactly the cardinals of van Douwen’s diagram. Indeed,
our definitions of aI , rI , sI , hI are formulated as the classical ones in [4]. The
classical t is the least cardinality of a ≤a-decreasing chain in P (ω) without ≤a-
bound. The classical p is defined as follows. We say that a family Γ ⊆ [ω]ω is
≤a-centered if every its finite subset Γ

′ has an infinite pseudointersection: a set
X ∈ [ω]ω almost contained in each element of Γ′. Then the classical p is the
least cardinality of a ≤a-centered family from P (ω) without lower ≤a-bound. So,
there is no assumption on ⊆-centeredness as in the definitions of pI and tI . On
the other hand we do not need such assumptions now because any ≤a-centered
family from P (ω) is centered. So, p = pI and t = tI . �

4.1 The order ≤∗
2.

It has been already mentioned that the classes of partitions into two infinite pieces
are atoms in (((ω)/ =∗

2),≤
∗
2). Therefore the following holds.

Proposition 4.2. p2 = t2 = ω, r2 = 1, a2 = 2
ω, h2 and s2 are undefined.

Proof: The cardinals h2 and s2 are undefined since an atom can be neither
shattered nor splitted.

p2 = t2 = ω. Let X = {Ni : i ∈ ω} be any partition into infinitely many
infinite pieces. For k ∈ ω, put Xk = {

⋃
{Ni : i ≤ k}} ∪ {Ni : i > k}. Obviously,

the family {Xk : k ∈ ω} is centered and decreasing under ≤∗
2. It is also easy to

see that there is no atom bounding the family.

r2 = 1. The family consisting of any atom in (((ω)),≤
∗
2) is a ≤

∗
2-reaping family.

Indeed, let X be an arbitrary atom and Y ∈ (ω)c2. Suppose that X and Y are not
orthogonal. Then X ∧ Y 6=∗

2 0. Hence, X ≤∗
2 Y .
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a2 = 2
ω. The idea of the following proof comes from the Krawczyk’s proof of

a1 = 2
ω (see [3]). Let {Xα : α < κ}, κ > 1, be a maximal family of pairwise

orthogonal partitions (α 6= β → Xα ∧ Xβ ≤∗
2 0). Observe that the maximality

of the family {Xα : α < κ} is equivalent to the property that for every atom
A (a partition into two infinite pieces) there is α < κ such that A ≤ Xα. It is
worth noting that there are 2ω different atoms and they are obviously pairwise
orthogonal.

If each Xα is finite, where α < κ, then κ = 2ω because there are only finitely
many atoms below any finite partition.
So we shall only consider the case when there is α0 < κ such that Xα0 is infinite

and obviously different from 1. We shall use the following

Claim. Let X be an arbitrary infinite partition not equal to 1 and let F ⊆ [ω]ω

be an almost disjoint family of power 2ω. Then there is a family {YA : A ∈ F} of
atoms orthogonal to X such that for any distinct A, B ∈ F , X ∧ (YA ∨ YB) 6=

∗
2 0.

Proof: Let X = {xi : i ∈ ω} ∪ {a} where a is a piece of X having at least two
elements and let a = b ∪ c be any partition of a into two nonempty sets. For
A ∈ F put bA =

⋃
{xi : i ∈ A}∪ b, cA =

⋃
{xi : i ∈ ω \A}∪ c and YA = {bA, cA}.

Obviously the family {YA : A ∈ F} consists of pairwise distinct atoms orthog-
onal to X and for any distinct A, B ∈ F we have X ∧ (YA ∨ YB) = {d0, d1, d2}, a
partition into three infinite pieces, where

d0 =
⋃
{xi : i ∈ (A ∩ B ∪ ω \ A ∪ B)} ∪ a;

d1 =
⋃
{xi : i ∈ A \ B};

d2 =
⋃
{xi : i ∈ B \ A}. �

Now to finish the proof of the lemma let {Yζ : ζ < 2ω} be a family of pairwise
distinct atoms satisfying the claim for X = Xα0 . Since the family {Xα : α < κ} is
maximal, for every ζ < 2ω there is exactly one α < κ, say αζ , such that Yζ ≤ Xαζ

.
We claim that for distinct ζ, ξ < 2ω we have αζ 6= αξ . Indeed, if αζ = αξ , then
obviously αζ 6= α0 and X ∧ (Yξ ∨ Yζ) ≤ X ∧Xαζ

. This contradicts orthogonality
of Xα0 and Xαζ

. As a result we have κ = 2ω. �

Remark. Theorem 4.1 of [11] states that the cardinality of a maximal non-trivial
family of partitions where any two members have meet 0 is 2ω. Notice that such
a family Γ is a maximal orthogonal family with respect to ≤∗

2. Indeed, Γ consists
of pairwise orthogonal partitions and for any partition A into two infinite pieces
there is X ∈ Γ such that X ∧ A 6= 0 and then A ≤ X . As above we see that Γ is
maximal.
This shows that a2 is not greater than the cardinality of a maximal non-trivial

family of partitions where any two members have meet 0. So the corresponding
part of the proof of the theorem above provides a new (and easier) proof of
Theorem 4.1 of [11].
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4.2 The order �∗
2.

Recall that (ω)c2 = (ω) \ ([1]2 ∪ [0]2). As we mentioned earlier the ordering ≤
∗
1 is

an extension of ≤∗
2 and they are equal on the set of partitions having only finite

pieces. Therefore [1]1 = [1]2 and the relations of orthogonality ⊤1 and ⊤2 are
the same, where X⊤2Y iff 1 ≤

∗
2 X ∨ Y . This implies that many properties of �∗

1
hold for �∗

2. For example,

Proposition 4.3. For non-trivial X, Y if X 6�∗
2 Y then there is a non-trivial

X ′ � X such that X ′⊤2Y . �

Also, it is a routine to check that the arguments of Lemmas 2.3–2.5 work for
�∗

2. So we have

Proposition 4.4. The following inequalities hold: pc
2 ≤ p, tc2 ≤ t ≤ hc

2 ≤ h,
s ≤ sc2, r

c
2 ≤ r, a ≤ ac2. �

However there is a difference between �∗
1 and �∗

2. Note that by the remark
from Section 3, �∗

1-centeredness does not imply c-centeredness in the sense of
Definition 2.1. On the other hand:

Lemma 4.5. Any �∗
2-centered family is c-centered.

Proof: Let {X1, . . . , Xn} be a family �∗
2-centered by X ∈ (ω)c2. Let Xi ≤

Xdi
, 1 ≤ i ≤ n, where di are finite. Let d =

⋃
di. Then Xi ≤ Xd, 1 ≤ i ≤ n. �

We use this fact in the proposition below. Note that some of the inequalities
from Proposition 4.4 also follow from this proposition.

Proposition 4.6. tc2 is a regular cardinal and the following relations hold: t
c
2 ≤

tc1, a
c
1 = a

c
2, h

c
1 = h

c
2, r

c
1 ≤ rc2, and s

c
2 ≤ sc1.

Proof: To prove regularity of tc2 suppose that for some κ with cof(κ) < tc2 the
family F = {Xα : α < κ} is c-centered and well-ordered by ≤∗

2. Let (αξ)ξ<cof(κ)

be any sequence of ordinals cofinal in κ. Then F ′ = {Xαξ
: ξ < cof(κ)} is

a c-centered and well-ordered by ≤∗
2 family of power less than t

c
2. So, there is

X ∈ (ω)c2 such that for each ξ < cof(κ), X �∗
2 Xαξ

and F ′ ∪ {X} is c-centered.
By Lemma 4.5, X is a c-bound of {Xα : α < κ} too.

ac2 = a
c
1 and h

c
2 = h

c
1 are obvious.

rc1 ≤ rc2. Let {Xα : α < κ} ⊂ (ω)c2 be a c-reaping family for �
∗
2. Notice that if

for each α < κ we have Xα ≤ X ′
α then the family {X

′
α : α < κ} is also c-reaping.

So we may assume that {Xα : α < κ} ⊆ (ω)c1. If X is non-trivial then there
exists α < κ such that Xα⊤2X or Xα �∗

2 X . Then for this α we have Xα⊤1X
or Xα �∗

1 X .
sc2 ≤ sc1. Let {Xα : α < κ} be a family c-splitting with respect to �∗

1. Let X be
non-trivial. Then there exists α < κ such that none of the relationsX⊤1Xα, X �∗

1
Xα holds. Then ¬(X⊤2Xα ∨ X �∗

2 Xα).
To prove tc2 ≤ tc1 we need the following lemma.
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Lemma 4.7. Let κ be an uncountable regular cardinal and {Xα : α < κ} ⊂
(ω)<ω be a family well-ordered by ≤∗

2. Then there is a non-trivial X such that
X �∗

2 Xα for each α < κ.

Proof: By the definition of �∗
2 we may assume that for each α < κ, Xα has only

infinite pieces. Let nα be the corresponding number of pieces. For any α < β < κ
we have:

y ∈ Xβ → (∃x ∈ Xα)(y ⊆∗ x),(i)

nα ≤ nβ .(ii)

Since κ is regular, there is a natural number n such that |{α < κ : nα = n}| = κ.
Thus, by (i) and (ii) we may assume that for each α < κ, nα = n. This guarantees
that for each α < β < κ, Xα =

∗
2 Xβ . �

To finish the proposition let {Xα : α < κ} be a c-tower family for �∗
2, where

κ is regular. Then, there is no non-trivial X such that X �∗
2 Xα, for each α < κ.

The family is c-centered and well-ordered by ≤∗
1 either. We claim that there is

no non-trivial X such that X �∗
1 Xα for all α < κ.

Suppose the contrary. Then we may assume that X consists of at most two-
element pieces. Put X ′ = {x ∈ X : |x| = 2}, Since X is not a �∗

2-bound of the
family, there is α0 < κ and an infinite X ′′ ⊆ X ′ such that each element of X ′′ is
not contained in a piece of Xα0 . Let N =

⋃
X ′′. We may assume that α0 = 0.

Then for each α < κ, each, except finitely many elements of X ′′, is not contained
in any piece of Xα. On the other hand the condition (∀α < κ)(X �∗

1 Xα) implies
that for each α < κ the set {x ∈ Xα : x ∩ N 6= ∅} is finite. Thus, for each α < κ,
the set {x∩N : x ∈ Xα} \ {∅} is a finite partition of N . By Lemma 4.7 we obtain
a contradiction. �

In general the van Douwen’s diagram for �∗
2 looks as in the case of �

∗
1 (the

same proofs work). So, it remains to find possible values of these cardinals in
models of ZFC. As we noted above the orderings �∗

1 and �∗
2 are the same on

the set of partitions having only finite pieces and the sets {X ∈ (ω) : X �∗
1 1}

and {X ∈ (ω) : X �∗
2 1} are the same. On the other hand each notion of forcing

defined in Section 2.2 for ((ω),�∗
1) adds a partition having only finite pieces. Now

it is easy to verify that all those notions of forcing work for �∗
2. As a result we

have

Theorem 4.8. (a) Under Martin’s Axiom, ac2 = r
c
2 = p

c
2 = 2

ω.

(b) Con(ZFC + ¬CH+ ac2 = r
c
2 = s

c
2 = ω1).
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