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On (transfinite) small inductive dimension of products∗

V.A. Chatyrko, K.L. Kozlov†

Abstract. In this paper we study the behavior of the (transfinite) small inductive dimen-
sion (trind) ind on finite products of topological spaces. In particular we essentially
improve Toulmin’s estimation [T] of trind for Cartesian products.

Keywords: transfinite dimension

Classification: 54F45

In this paper we study the behavior of the (transfinite) small inductive dimen-
sion (trind) ind on finite products of topological spaces. It is known that if the
finite sum theorem for ind holds in the factors X, Y then the inequality

(1) ind (X × Y ) ≤ indX + indY

is true (Pasynkov [9] for completely regular spaces, see also [1] for regular T1-
spaces). Similar statements for the transfinite small inductive dimension trind
one can find in [11] (the case of regular T1-spaces) and in [2] (the case of normal
T1-spaces).
But if the finite sum theorem for ind fails even in one factor then the inequality (1)
is not valid for two compact spaces. Filippov [5] has constructed compact spaces
X, Y such that indX = IndX = dimX = 1, indY = IndY = dimY = 2 but
ind (X × Y ) = 4 (see also [8]).
In the sequel, α = λ(α)+n(α) is the natural decomposition of the ordinal number
α into the sum of the limit ordinal number λ(α) and the non-negative integer
n(α) ≥ 0.
In [10] Toulmin has given the following estimation of the transfinite small inductive
dimension for the product of two spaces X, Y (X × Y is hereditarily normal).
Namely,

(2) trind (X × Y ) ≤ trindX(+)trindY + ψ(n(trindX), n(trindY ))

where (+) is the natural sum of Hessenberg [6], ψ(0,m) = ψ(m, 0) = 0 if m is a
non-negative integer and ψ(n,m) = n+m− 1+max{ψ(n− 1,m), ψ(n,m− 1)}+
ψ(n− 1,m− 1) if n,m are positive integers.
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In particular for finite dimensional spaces X,Y the inequality

(3) ind (X × Y ) ≤ ϕT (indX, indY )

is valid, where ϕT (n,m) = n +m+ ψ(n,m), n,m are non-negative integers (see
Tab. 1).
Observe that formula (2) can be written as follows

(2′) trind (X × Y ) ≤ λ(trindX)(+)λ(trindY ) + ϕT (n(trindX), n(trindY )).

In [9] another estimation of the small inductive dimension ind has been proved.
Namely,

(4) ind (X × Y ) ≤ ϕP (indX, indY ),

where ϕP (0,m) = ϕP (m, 0) = m if m is a non-negative integer and ϕP (n,m) =
ϕP (n− 1,m) + ϕP (n,m− 1) + 2 if n,m are positive integers (see Tab. 2) (X, Y
are regular).
In this paper we essentially improve the inequalities (2)–(4).

By a space we mean a regular T1-space. We let BdU denote the boundary of
the set U . Our terminology follows [E].

The following lemma is evident.

Lemma 1. Let X = X1∪X2, where Xi is a subset of X . If IntX1∪IntX2 = X
and trindXi ≤ αi, i = 1, 2, then trindX ≤ max{α1, α2}.

Theorem 2. Let X = X1 ∪ X2, where Xi is closed in X , and trindXi ≤ αi,

i = 1, 2. Then

trindX ≤

{

max{α1, α2} if λ(α1) 6= λ(α2)

max{α1, α2}+ 1 if λ(α1) = λ(α2).
In particular, in the finite-dimensional case we have

indX ≤ max{indX1, indX2}+ 1.

Proof: If λ(α1) 6= λ(α2) then the inequality is valid due to [4, Theorem 7.2.6].
Let λ(α1) = λ(α2). If x ∈ X1 \X2 or x ∈ X2 \X1 then trindxX ≤ max{α1, α2}.
Let now x ∈ X1 ∩ X2 and A be a closed subset of X such that x /∈ A and
A ∩ Xi 6= ∅, i = 1, 2. Choose a partition C1 in X1 between the point x and
the set A ∩ X1. Obviously one can choose the partition C1 with trindC1 <
α1. Let X1 \ C1 = U1 ∪ V1, where U1, V1 are open in X1 and disjoint, and
x ∈ U1, A ∩ X1 ⊂ V1. Choose a partition C2 in X2 between the point x and
the closed set ((C1 ∪ V1) ∪ A) ∩ X2. Obviously one can choose the partition
C2 with trindC2 < α2. Let X2 \ C2 = U2 ∪ V2, where U2, V2 are open in X2
and disjoint, and x ∈ U2, ((C1 ∪ V1) ∪ A) ∩ X2 ⊂ V2. Observe that the space
Y = C1∪C2 ∪ (X1∩X2) is equal to the union Y1 ∪Y2, where Yi = Ci ∪ (X1∩X2)
is a subset of Y . Moreover Int Y1 ∪ Int Y2 = Y , trindYi ≤ αi (recall that
Yi ⊂ Xi). So by Lemma 1 we have the inequality trindY ≤ max{α1, α2}. The
set C = X \ (((U1 \X2)∪U2)∪ (V1 ∪ (V2 \X1))) is a partition between the point
x and the set A. Besides C ⊂ Y . Hence trindC ≤ max{α1, α2}. �
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Remark 3. a) Theorem 2 is similar to [3, Theorem 3.9] in the case of regular
T1-spaces. The analog of [3, Corollary 3.10] (the finite sum theorem for closed
subspaces) in the case of regular T1-spaces is also valid.
b) Recall that there exists a compact space L with indY = 2 which can be
represented as the union of two closed subspaces L1 and L2 such that indL1 =
indL2 = 1 [4, Lokucievskij’s example 2.2.14].
c) Recall also that van Douwen and Przymusinski [4, Problem 4.1.B] defined even
a metrizable space Y with indY = 1 which can be represented as the union of
two closed subspaces Y1 and Y2 such that indY1 = indY2 = 0.

Let P = X × Y . Note that for a rectangular open subset U × V of P we have

(∗) Bd(U × V ) = (Bd(U) × [V ]) ∪ ([U ]×Bd(V )).

The following lemma is evident.

Lemma 4. Let trindX = 0. Then trind (X × Y ) = trindY for any space Y .

Observe that in particular Lemma 4 is also valid for ind.

Now let us consider the finite-dimensional case.

Theorem 5. Let P = X × Y . Then

(5) indP ≤ ϕ1(indX, indY )

where ϕ1(0,m) = ϕ1(m, 0) = m if m is a non-negative integer, ϕ1(n,m) =
2(n +m) − 1 if n,m are positive integers (see Tab. 3, observe that ϕ1(n,m) =
max{ϕ1(n− 1,m), ϕ1(n,m− 1)}+ 2 if n,m ≥ 1).

Proof: If at least one of the factors is zero-dimensional in the sense of ind then
the inequality holds due to Lemma 4. Suppose that indX, indY ≥ 1. Apply an
induction on the sum indX + indY = k, k ≥ 2.
Let k = 2. Then for any point p ∈ P and its any neighborhood W there is a
rectangular neighborhood U×V ⊂W of this point with indBdU ≤ 0, indBdV ≤
0.
By Lemma 4 each element from the right part of equality (∗) is not more than
one-dimensional. From Theorem 2 it follows that indBd(U × V ) ≤ 2. Hence
formula (5) is valid.
Let the theorem hold for k < n, n ≥ 3. Put k = n. For any point p ∈ P and its
any neighborhoodW there is a rectangular neighborhood U×V ⊂W of this point
with indBdU ≤ indX − 1, indBdV ≤ indY − 1. By induction assumption the
small inductive dimension of each element from the right part of equality (∗) is not
more than 2(n−1)−1. From Theorem 2 it follows that indBd(U×V ) ≤ 2(n−1).
Hence indP ≤ 2(n− 1) + 1 = 2(indX + indY )− 1. �

Using induction one can easily obtain the following
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Estimations.

(a) ψ(n,m) ≤ ψ(n+ 1,m), ψ(n,m) ≤ ψ(n,m+ 1);
(b) ϕ1(n,m) ≤ ϕT (n,m) ≤ ϕP (n,m), if n,m ≥ 1 and if at least one of the
numbers is > 1 then both inequalities are strict.

Remark 6. It is easy to see that ψ(n, n) ≥ 2n − 1 + 2ψ(n − 1, n − 1), n ≥ 1.
Moreover, if n > k then ψ(n, n) ≥ 2(2k − 1)n+ 2kψ(n− k, n− k) + f(k). Hence,
for every natural number m the inequality ϕT (n, n) ≥ mn holds for large n.

Estimation from Theorem 5 can be improved for the class of completely para-
compact spaces.
Let us recall [12] that a topological space X is completely paracompact if, for

any open cover λ of X , there exist open star-finite covers µi of X , i ∈ N, such
that, for any x ∈ X there exist O ∈ λ, i ∈ N and V ∈ µi for which x ∈ V ⊂ O.
It is known ([12]) that:

(a) any Fσ subset of a completely paracompact space is completely
paracompact;

(b) any regular completely paracompact space is paracompact and any
strongly paracompact space is completely paracompact;

(c) dimX ≤ indX for any completely paracompact space.

Lemma 7. Let Z be a completely paracompact space and Z = Z1 ∪ Z2, where
Zi is closed, indZi ≤ 1, i = 1, 2, and ind (Z1 ∩ Z2) ≤ 0. Then indZ ≤ 1.

Proof: If x ∈ Z1 \Z2 or x ∈ Z2 \Z1 then indxZ ≤ 1. Let now x ∈ Z1 ∩Z2 and
A be a closed subset of Z such that x /∈ A. Then from the proof of Theorem 2
it follows that there exists a partition C between x and A such that C ⊂ Y =
(Z1∩Z2)∪C1∪C2, where indCi ≤ 0, i = 1, 2. By property (c) and the finite sum
theorem for dim it follows that dim Y ≤ 0. From (b) it follows that indY ≤ 0.
Hence indZ ≤ 1. �

Theorem 8. Let P = X × Y be completely paracompact. Then

(6) indP ≤ ϕ2(indX, indY ),

where ϕ2(0,m) = ϕ2(m, 0) = m if m is a non-negative integer, ϕ2(n,m) =
2(n +m) − 2 if n,m are positive integers (see Tab. 4, observe that ϕ2(n,m) =
max{ϕ2(n− 1,m), ϕ2(n,m− 1)}+ 2 if n,m ≥ 1 and (n,m) 6= (1, 1)).

Proof: If at least one of the factors is zero-dimensional in the sense of ind then
the inequality holds due to Lemma 4. Suppose that indX, indY ≥ 1. Apply an
induction on the sum indX + indY = k, k ≥ 2.
Let k = 2. Then for any point p ∈ P and its any neighborhood W there is a
rectangular neighborhood U×V ⊂W of this point with indBdU ≤ 0, indBdV ≤
0.
Put Z = Bd(U×V ), Z1 = Bd(U)× [V ], Z2 = [U ]×Bd(V ) then Z = Z1∪Z2, Z1∩
Z2 = Bd(U)×Bd(V ). By Lemma 7 and property (a) we have indZ ≤ 1. Hence
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formula (6) is valid.
Let the theorem hold for k < n, n ≥ 3. Put k = n. For any point p ∈ P
and any its neighborhood W there is a rectangular neighborhood U × V ⊂ W
of this point with indBdU ≤ indX − 1, indBdV ≤ indY − 1. By induction
assumption the small inductive dimension of each element from the right part
of equality (∗) is not more than 2(n − 1) − 2. From Theorem 2 it follows that
indBd(U × V ) ≤ 2(n− 1)− 1. Hence indP ≤ 2(n− 1) = 2(indX + indY )− 2.

�

Corollary 9. Let P = X×Y , where X, Y are compact spaces, and indX, indY
≥ 1. Then

(7) indP ≤ 2(indX + indY )− 2.

Observe that estimation (7) is exact (i.e. it cannot be improved) for indX =
indY = 1 (it is evident) and for indX = 1, indY = 2 (the named earlier
Filippov’s result [5]).

Question A. Is estimation (7) exact for all situations?

Question B. Are there spaces X,Y such that indX = indY = 1 and
indX × Y = 3?

Remark 10. Let P =
n
∏

i=1
Xi, where Xi is a compact space with indXi ≥ 1,

i = 1, . . . , n. Then indP ≤ n(
n
∑

i=1
indXi − n+1). In the case when all spaces are

one-dimensional in the sense of ind the formula coincides with Lifanov’s result [7].

Now let us consider the transfinite case.

Theorem 11. Let P = X × Y and trindX ≤ α, trindY ≤ β. Then

(8) trindP ≤

{

α(+)β + n(α) + n(β)− 1 if n(α), n(β) ≥ 1;

α(+)β otherwise.

(Observe that formula (8) can be written as follows

(8′) trind (X × Y ) ≤ λ(α)(+)λ(β) + ϕ1(n(α), n(β)). )

Proof: Use induction on α(+)β = γ. If γ < ω then the inequality holds due to
Theorem 5.
Let the theorem be valid for γ < ν ≥ ω. Put γ = ν. Then for any point p ∈ P
and its any neighborhood W there is a rectangular neighbourhood U × V ⊂ W
of this point with trindBdU < α, trindBdV < β.
If ν is limit then ν = λ(ν) and λ(α) = α, λ(β) = β. We can assume that
λ(α) ≥ ω and λ(β) ≥ ω (otherwise apply Lemma 4). By induction assumption
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the transfinite small inductive dimension of each element from the right part of
equality (∗) is less than ν. From Theorem 2 it follows that trindBd(U × V ) < ν.
So the theorem holds in this case.
Let now n(ν) ≥ 1. Observe that λ(ν) = λ(α)(+)λ(β) and n(ν) = n(α) + n(β).
Let n(α) = 0 (analogously with n(β) = 0). Then trindBdU = α′ < λ(α) and
trindBdV ≤ λ(β) + n(β) − 1. By induction assumption we have trindBd(U) ×
[V ] ≤ λ(α′)(+)λ(β) + ϕ1(n(α

′), n(β)) and trind [U ] × Bd(V ) ≤ λ(α)(+)λ(β) +
n(β)− 1. Observe that λ(α′)(+)λ(β) < λ(α)(+)λ(β). From Theorem 2 it follows
that trindBd(U × V ) ≤ λ(α)(+)λ(β) + n(β) − 1. So the theorem also holds in
the case.
Let n(α) ≥ 1 and n(β) ≥ 1. By induction assumption the transfinite small
inductive dimension of each element from the right part of equality (∗) is not
more than λ(α)(+)λ(β) + max{ϕ1(n(α) − 1, n(β)), ϕ1(n(α), n(β) − 1)}. From
Theorem 2 it follows that

trindBd(U×V ) ≤ λ(α)(+)λ(β)+max{ϕ1(n(α)−1, n(β)), ϕ1(n(α), n(β)−1)}+1.

Hence

trindP ≤ λ(α)(+)λ(β) + max{ϕ1(n(α)− 1, n(β)), ϕ1(n(α), n(β) − 1)}+ 2

= λ(α)(+)λ(β) + ϕ1(n(α), n(β)).

The theorem is proved. �

Tab 1., ϕT (n,m) :

0 1 2 3 . . . n

0 0 1 2 3 . . .
1 1 3 6 10 . . .
2 2 6 11 19 . . .
3 3 10 19 32 . . .
. . . . . . . . . . . . . . . . . .
m

Tab 2., ϕP (n,m) :

0 1 2 3 . . . n

0 0 1 2 3 . . .
1 1 4 8 13 . . .
2 2 8 18 33 . . .
3 3 13 33 68 . . .
. . . . . . . . . . . . . . . . . .
m
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Tab 3., ϕ1(n,m) :

0 1 2 3 . . . n

0 0 1 2 3 . . .
1 1 3 5 7 . . .
2 2 5 7 9 . . .
3 3 7 9 11 . . .
. . . . . . . . . . . . . . . . . .
m

Tab 4., ϕ2(n,m) :

0 1 2 3 . . . n

0 0 1 2 3 . . .
1 1 2 4 6 . . .
2 2 4 6 8 . . .
3 3 6 8 10 . . .
. . . . . . . . . . . . . . . . . .
m
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