Commentationes Mathematicae Universitatis Carolinae

Vitalij A. Chatyrko; Konstantin L. Kozlov
On (transfinite) small inductive dimension of products

Commentationes Mathematicae Universitatis Carolinae, Vol. 41 (2000), No. 3, 597--603

Persistent URL: http://dml.cz/dmlcz/119192

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On (transfinite) small inductive dimension of products*

V.A. Chatyrko, K.L. Kozlov ${ }^{\dagger}$

Abstract

In this paper we study the behavior of the (transfinite) small inductive dimension (trind) ind on finite products of topological spaces. In particular we essentially improve Toulmin's estimation [T$]$ of trind for Cartesian products.

Keywords: transfinite dimension
Classification: 54F45

In this paper we study the behavior of the (transfinite) small inductive dimension (trind) ind on finite products of topological spaces. It is known that if the finite sum theorem for ind holds in the factors X, Y then the inequality

$$
\begin{equation*}
i n d(X \times Y) \leq i n d X+i n d Y \tag{1}
\end{equation*}
$$

is true (Pasynkov [9] for completely regular spaces, see also [1] for regular T_{1-} spaces). Similar statements for the transfinite small inductive dimension trind one can find in [11] (the case of regular T_{1}-spaces) and in [2] (the case of normal T_{1}-spaces).
But if the finite sum theorem for $i n d$ fails even in one factor then the inequality (1) is not valid for two compact spaces. Filippov [5] has constructed compact spaces X, Y such that $\operatorname{ind} X=\operatorname{Ind} X=\operatorname{dim} X=1$, ind $Y=\operatorname{Ind} Y=\operatorname{dim} Y=2$ but ind $(X \times Y)=4$ (see also [8]).
In the sequel, $\alpha=\lambda(\alpha)+n(\alpha)$ is the natural decomposition of the ordinal number α into the sum of the limit ordinal number $\lambda(\alpha)$ and the non-negative integer $n(\alpha) \geq 0$.
In [10] Toulmin has given the following estimation of the transfinite small inductive dimension for the product of two spaces $X, Y(X \times Y$ is hereditarily normal). Namely,

$$
\begin{equation*}
\operatorname{trind}(X \times Y) \leq \operatorname{trind} X(+) \operatorname{trind} Y+\psi(n(\operatorname{trind} X), n(\operatorname{trind} Y)) \tag{2}
\end{equation*}
$$

where $(+)$ is the natural sum of Hessenberg [6], $\psi(0, m)=\psi(m, 0)=0$ if m is a non-negative integer and $\psi(n, m)=n+m-1+\max \{\psi(n-1, m), \psi(n, m-1)\}+$ $\psi(n-1, m-1)$ if n, m are positive integers.

[^0]In particular for finite dimensional spaces X, Y the inequality

$$
\begin{equation*}
\operatorname{ind}(X \times Y) \leq \varphi_{T}(\operatorname{ind} X, i n d Y) \tag{3}
\end{equation*}
$$

is valid, where $\varphi_{T}(n, m)=n+m+\psi(n, m)$, n, m are non-negative integers (see Tab. 1).
Observe that formula (2) can be written as follows
$\left(2^{\prime}\right) \quad \operatorname{trind}(X \times Y) \leq \lambda(\operatorname{trind} X)(+) \lambda(\operatorname{trind} Y)+\varphi_{T}(n(\operatorname{trind} X), n(\operatorname{trind} Y))$.
In [9] another estimation of the small inductive dimension ind has been proved. Namely,

$$
\begin{equation*}
i n d(X \times Y) \leq \varphi_{P}(i n d X, i n d Y) \tag{4}
\end{equation*}
$$

where $\varphi_{P}(0, m)=\varphi_{P}(m, 0)=m$ if m is a non-negative integer and $\varphi_{P}(n, m)=$ $\varphi_{P}(n-1, m)+\varphi_{P}(n, m-1)+2$ if n, m are positive integers (see Tab. 2) (X, Y are regular).

In this paper we essentially improve the inequalities (2)-(4).
By a space we mean a regular T_{1}-space. We let $B d U$ denote the boundary of the set U. Our terminology follows [E$]$.

The following lemma is evident.
Lemma 1. Let $X=X_{1} \cup X_{2}$, where X_{i} is a subset of X. If Int $X_{1} \cup$ Int $X_{2}=X$ and trind $X_{i} \leq \alpha_{i}, i=1,2$, then trind $X \leq \max \left\{\alpha_{1}, \alpha_{2}\right\}$.
Theorem 2. Let $X=X_{1} \cup X_{2}$, where X_{i} is closed in X, and trind $X_{i} \leq \alpha_{i}$, $i=1,2$. Then

$$
\operatorname{trind} X \leq \begin{cases}\max \left\{\alpha_{1}, \alpha_{2}\right\} & \text { if } \lambda\left(\alpha_{1}\right) \neq \lambda\left(\alpha_{2}\right) \\ \max \left\{\alpha_{1}, \alpha_{2}\right\}+1 & \text { if } \lambda\left(\alpha_{1}\right)=\lambda\left(\alpha_{2}\right)\end{cases}
$$

In particular, in the finite-dimensional case we have

$$
i n d X \leq \max \left\{i n d X_{1}, \text { ind } X_{2}\right\}+1
$$

Proof: If $\lambda\left(\alpha_{1}\right) \neq \lambda\left(\alpha_{2}\right)$ then the inequality is valid due to [4, Theorem 7.2.6].
Let $\lambda\left(\alpha_{1}\right)=\lambda\left(\alpha_{2}\right)$. If $x \in X_{1} \backslash X_{2}$ or $x \in X_{2} \backslash X_{1}$ then $\operatorname{trind}_{x} X \leq \max \left\{\alpha_{1}, \alpha_{2}\right\}$. Let now $x \in X_{1} \cap X_{2}$ and A be a closed subset of X such that $x \notin A$ and $A \cap X_{i} \neq \emptyset, i=1,2$. Choose a partition C_{1} in X_{1} between the point x and the set $A \cap X_{1}$. Obviously one can choose the partition C_{1} with $\operatorname{trind} C_{1}<$ α_{1}. Let $X_{1} \backslash C_{1}=U_{1} \cup V_{1}$, where U_{1}, V_{1} are open in X_{1} and disjoint, and $x \in U_{1}, A \cap X_{1} \subset V_{1}$. Choose a partition C_{2} in X_{2} between the point x and the closed set $\left(\left(C_{1} \cup V_{1}\right) \cup A\right) \cap X_{2}$. Obviously one can choose the partition C_{2} with trind $C_{2}<\alpha_{2}$. Let $X_{2} \backslash C_{2}=U_{2} \cup V_{2}$, where U_{2}, V_{2} are open in X_{2} and disjoint, and $x \in U_{2},\left(\left(C_{1} \cup V_{1}\right) \cup A\right) \cap X_{2} \subset V_{2}$. Observe that the space $Y=C_{1} \cup C_{2} \cup\left(X_{1} \cap X_{2}\right)$ is equal to the union $Y_{1} \cup Y_{2}$, where $Y_{i}=C_{i} \cup\left(X_{1} \cap X_{2}\right)$ is a subset of Y. Moreover $\operatorname{Int} Y_{1} \cup \operatorname{Int} Y_{2}=Y$, trind $Y_{i} \leq \alpha_{i}$ (recall that $\left.Y_{i} \subset X_{i}\right)$. So by Lemma 1 we have the inequality $\operatorname{trind} Y \leq \max \left\{\alpha_{1}, \alpha_{2}\right\}$. The set $C=X \backslash\left(\left(\left(U_{1} \backslash X_{2}\right) \cup U_{2}\right) \cup\left(V_{1} \cup\left(V_{2} \backslash X_{1}\right)\right)\right)$ is a partition between the point x and the set A. Besides $C \subset Y$. Hence $\operatorname{trind} C \leq \max \left\{\alpha_{1}, \alpha_{2}\right\}$.

Remark 3. a) Theorem 2 is similar to [3, Theorem 3.9] in the case of regular T_{1}-spaces. The analog of [3, Corollary 3.10] (the finite sum theorem for closed subspaces) in the case of regular T_{1}-spaces is also valid.
b) Recall that there exists a compact space L with $i n d Y=2$ which can be represented as the union of two closed subspaces L_{1} and L_{2} such that ind $L_{1}=$ ind $L_{2}=1$ [4, Lokucievskij's example 2.2.14].
c) Recall also that van Douwen and Przymusinski [4, Problem 4.1.B] defined even a metrizable space Y with $\operatorname{ind} Y=1$ which can be represented as the union of two closed subspaces Y_{1} and Y_{2} such that $i n d Y_{1}=i n d Y_{2}=0$.

Let $P=X \times Y$. Note that for a rectangular open subset $U \times V$ of P we have

$$
\begin{equation*}
B d(U \times V)=(B d(U) \times[V]) \cup([U] \times B d(V)) \tag{*}
\end{equation*}
$$

The following lemma is evident.
Lemma 4. Let trind $X=0$. Then $\operatorname{trind}(X \times Y)=$ trind Y for any space Y.
Observe that in particular Lemma 4 is also valid for ind.
Now let us consider the finite-dimensional case.
Theorem 5. Let $P=X \times Y$. Then

$$
\begin{equation*}
i n d P \leq \varphi_{1}(\operatorname{ind} X, i n d Y) \tag{5}
\end{equation*}
$$

where $\varphi_{1}(0, m)=\varphi_{1}(m, 0)=m$ if m is a non-negative integer, $\varphi_{1}(n, m)=$ $2(n+m)-1$ if n, m are positive integers (see Tab. 3, observe that $\varphi_{1}(n, m)=$ $\max \left\{\varphi_{1}(n-1, m), \varphi_{1}(n, m-1)\right\}+2$ if $\left.n, m \geq 1\right)$.

Proof: If at least one of the factors is zero-dimensional in the sense of ind then the inequality holds due to Lemma 4 . Suppose that $\operatorname{ind} X, \operatorname{ind} Y \geq 1$. Apply an induction on the sum ind $X+\operatorname{ind} Y=k, k \geq 2$.
Let $k=2$. Then for any point $p \in P$ and its any neighborhood W there is a rectangular neighborhood $U \times V \subset W$ of this point with ind $B d U \leq 0$, ind $B d V \leq$ 0 .
By Lemma 4 each element from the right part of equality $(*)$ is not more than one-dimensional. From Theorem 2 it follows that ind $B d(U \times V) \leq 2$. Hence formula (5) is valid.
Let the theorem hold for $k<n, n \geq 3$. Put $k=n$. For any point $p \in P$ and its any neighborhood W there is a rectangular neighborhood $U \times V \subset W$ of this point with ind $B d U \leq$ ind $X-1$, ind $B d V \leq$ ind $Y-1$. By induction assumption the small inductive dimension of each element from the right part of equality $(*)$ is not more than $2(n-1)-1$. From Theorem 2 it follows that $\operatorname{ind} B d(U \times V) \leq 2(n-1)$. Hence $\operatorname{ind} P \leq 2(n-1)+1=2($ ind $X+i n d Y)-1$.

Using induction one can easily obtain the following

Estimations.

(a) $\psi(n, m) \leq \psi(n+1, m), \psi(n, m) \leq \psi(n, m+1)$;
(b) $\varphi_{1}(n, m) \leq \varphi_{T}(n, m) \leq \varphi_{P}(n, m)$, if $n, m \geq 1$ and if at least one of the numbers is >1 then both inequalities are strict.
Remark 6. It is easy to see that $\psi(n, n) \geq 2 n-1+2 \psi(n-1, n-1), n \geq 1$. Moreover, if $n>k$ then $\psi(n, n) \geq 2\left(2^{k}-1\right) n+2^{k} \psi(n-k, n-k)+f(k)$. Hence, for every natural number m the inequality $\varphi_{T}(n, n) \geq m n$ holds for large n.

Estimation from Theorem 5 can be improved for the class of completely paracompact spaces.

Let us recall [12] that a topological space X is completely paracompact if, for any open cover λ of X, there exist open star-finite covers μ_{i} of $X, i \in \mathbb{N}$, such that, for any $x \in X$ there exist $O \in \lambda, i \in \mathbb{N}$ and $V \in \mu_{i}$ for which $x \in V \subset O$.

It is known ([12]) that:
(a) any F_{σ} subset of a completely paracompact space is completely paracompact;
(b) any regular completely paracompact space is paracompact and any strongly paracompact space is completely paracompact;
(c) $\operatorname{dim} X \leq \operatorname{ind} X$ for any completely paracompact space.

Lemma 7. Let Z be a completely paracompact space and $Z=Z_{1} \cup Z_{2}$, where Z_{i} is closed, ind $Z_{i} \leq 1, i=1,2$, and $\operatorname{ind}\left(Z_{1} \cap Z_{2}\right) \leq 0$. Then ind $Z \leq 1$.
Proof: If $x \in Z_{1} \backslash Z_{2}$ or $x \in Z_{2} \backslash Z_{1}$ then $\operatorname{ind}_{x} Z \leq 1$. Let now $x \in Z_{1} \cap Z_{2}$ and A be a closed subset of Z such that $x \notin A$. Then from the proof of Theorem 2 it follows that there exists a partition C between x and A such that $C \subset Y=$ $\left(Z_{1} \cap Z_{2}\right) \cup C_{1} \cup C_{2}$, where ind $C_{i} \leq 0, i=1,2$. By property (c) and the finite sum theorem for dim it follows that $\operatorname{dim} Y \leq 0$. From (b) it follows that ind $Y \leq 0$. Hence $i n d Z \leq 1$.
Theorem 8. Let $P=X \times Y$ be completely paracompact. Then

$$
\begin{equation*}
i n d P \leq \varphi_{2}(i n d X, i n d Y) \tag{6}
\end{equation*}
$$

where $\varphi_{2}(0, m)=\varphi_{2}(m, 0)=m$ if m is a non-negative integer, $\varphi_{2}(n, m)=$ $2(n+m)-2$ if n, m are positive integers (see Tab. 4, observe that $\varphi_{2}(n, m)=$ $\max \left\{\varphi_{2}(n-1, m), \varphi_{2}(n, m-1)\right\}+2$ if $n, m \geq 1$ and $\left.(n, m) \neq(1,1)\right)$.
Proof: If at least one of the factors is zero-dimensional in the sense of ind then the inequality holds due to Lemma 4 . Suppose that $\operatorname{ind} X$, ind $Y \geq 1$. Apply an induction on the sum ind $X+\operatorname{ind} Y=k, k \geq 2$.
Let $k=2$. Then for any point $p \in P$ and its any neighborhood W there is a rectangular neighborhood $U \times V \subset W$ of this point with ind $B d U \leq 0$, ind $B d V \leq$ 0.

Put $Z=B d(U \times V), Z_{1}=B d(U) \times[V], Z_{2}=[U] \times B d(V)$ then $Z=Z_{1} \cup Z_{2}, Z_{1} \cap$ $Z_{2}=B d(U) \times B d(V)$. By Lemma 7 and property (a) we have $i n d Z \leq 1$. Hence
formula (6) is valid.
Let the theorem hold for $k<n, n \geq 3$. Put $k=n$. For any point $p \in P$ and any its neighborhood W there is a rectangular neighborhood $U \times V \subset W$ of this point with $i n d B d U \leq i n d X-1$, ind $B d V \leq i n d Y-1$. By induction assumption the small inductive dimension of each element from the right part of equality $(*)$ is not more than $2(n-1)-2$. From Theorem 2 it follows that ind $B d(U \times V) \leq 2(n-1)-1$. Hence $\operatorname{ind} P \leq 2(n-1)=2(\operatorname{ind} X+\operatorname{ind} Y)-2$.

Corollary 9. Let $P=X \times Y$, where X, Y are compact spaces, and ind X, ind Y ≥ 1. Then

$$
\begin{equation*}
i n d P \leq 2(i n d X+i n d Y)-2 \tag{7}
\end{equation*}
$$

Observe that estimation (7) is exact (i.e. it cannot be improved) for ind $X=$ ind $Y=1$ (it is evident) and for ind $X=1$, ind $Y=2$ (the named earlier Filippov's result [5]).
Question A. Is estimation (7) exact for all situations?
Question B. Are there spaces X, Y such that $\operatorname{ind} X=i n d Y=1$ and ind $X \times Y=3$?

Remark 10. Let $P=\prod_{i=1}^{n} X_{i}$, where X_{i} is a compact space with $\operatorname{ind} X_{i} \geq 1$, $i=1, \ldots, n$. Then $i n d P \leq n\left(\sum_{i=1}^{n} i n d X_{i}-n+1\right)$. In the case when all spaces are one-dimensional in the sense of ind the formula coincides with Lifanov's result [7].

Now let us consider the transfinite case.
Theorem 11. Let $P=X \times Y$ and $\operatorname{trind} X \leq \alpha$, $\operatorname{trind} Y \leq \beta$. Then

$$
\operatorname{trind} P \leq \begin{cases}\alpha(+) \beta+n(\alpha)+n(\beta)-1 & \text { if } n(\alpha), n(\beta) \geq 1 \tag{8}\\ \alpha(+) \beta & \text { otherwise }\end{cases}
$$

(Observe that formula (8) can be written as follows

$$
\operatorname{trind}(X \times Y) \leq \lambda(\alpha)(+) \lambda(\beta)+\varphi_{1}(n(\alpha), n(\beta))
$$

Proof: Use induction on $\alpha(+) \beta=\gamma$. If $\gamma<\omega$ then the inequality holds due to Theorem 5.
Let the theorem be valid for $\gamma<\nu \geq \omega$. Put $\gamma=\nu$. Then for any point $p \in P$ and its any neighborhood W there is a rectangular neighbourhood $U \times V \subset W$ of this point with trind $B d U<\alpha$, trind $B d V<\beta$.
If ν is limit then $\nu=\lambda(\nu)$ and $\lambda(\alpha)=\alpha, \lambda(\beta)=\beta$. We can assume that $\lambda(\alpha) \geq \omega$ and $\lambda(\beta) \geq \omega$ (otherwise apply Lemma 4). By induction assumption
the transfinite small inductive dimension of each element from the right part of equality $(*)$ is less than ν. From Theorem 2 it follows that $\operatorname{trind} B d(U \times V)<\nu$. So the theorem holds in this case.
Let now $n(\nu) \geq 1$. Observe that $\lambda(\nu)=\lambda(\alpha)(+) \lambda(\beta)$ and $n(\nu)=n(\alpha)+n(\beta)$. Let $n(\alpha)=0$ (analogously with $n(\beta)=0$). Then trind $B d U=\alpha^{\prime}<\lambda(\alpha)$ and trind $B d V \leq \lambda(\beta)+n(\beta)-1$. By induction assumption we have trind $B d(U) \times$ $[V] \leq \lambda\left(\alpha^{\prime}\right)(+) \lambda(\beta)+\varphi_{1}\left(n\left(\alpha^{\prime}\right), n(\beta)\right)$ and trind $[U] \times B d(V) \leq \lambda(\alpha)(+) \lambda(\beta)+$ $n(\beta)-1$. Observe that $\lambda\left(\alpha^{\prime}\right)(+) \lambda(\beta)<\lambda(\alpha)(+) \lambda(\beta)$. From Theorem 2 it follows that trind $B d(U \times V) \leq \lambda(\alpha)(+) \lambda(\beta)+n(\beta)-1$. So the theorem also holds in the case.
Let $n(\alpha) \geq 1$ and $n(\beta) \geq 1$. By induction assumption the transfinite small inductive dimension of each element from the right part of equality $(*)$ is not more than $\lambda(\alpha)(+) \lambda(\beta)+\max \left\{\varphi_{1}(n(\alpha)-1, n(\beta)), \varphi_{1}(n(\alpha), n(\beta)-1)\right\}$. From Theorem 2 it follows that
trind $B d(U \times V) \leq \lambda(\alpha)(+) \lambda(\beta)+\max \left\{\varphi_{1}(n(\alpha)-1, n(\beta)), \varphi_{1}(n(\alpha), n(\beta)-1)\right\}+1$.
Hence

$$
\begin{aligned}
\operatorname{trind} P & \leq \lambda(\alpha)(+) \lambda(\beta)+\max \left\{\varphi_{1}(n(\alpha)-1, n(\beta)), \varphi_{1}(n(\alpha), n(\beta)-1)\right\}+2 \\
& =\lambda(\alpha)(+) \lambda(\beta)+\varphi_{1}(n(\alpha), n(\beta)) .
\end{aligned}
$$

The theorem is proved.

Tab 1., $\varphi_{T}(n, m)$:

	0	1	2	3	\ldots	n
0	0	1	2	3	\ldots	
1	1	3	6	10	\ldots	
2	2	6	11	19	\ldots	
3	3	10	19	32	\ldots	
\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	
m						

Tab 2., $\varphi_{P}(n, m)$:

	0	1	2	3	\ldots	n
0	0	1	2	3	\ldots	
1	1	4	8	13	\ldots	
2	2	8	18	33	\ldots	
3	3	13	33	68	\ldots	
\ldots	\cdots	\ldots	\ldots	\ldots	\cdots	
m						

Tab 3., $\varphi_{1}(n, m):$

	0	1	2	3	\ldots	n
0	0	1	2	3	\ldots	
1	1	3	5	7	\ldots	
2	2	5	7	9	\ldots	
3	3	7	9	11	\ldots	
\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	
m						

Tab 4., $\varphi_{2}(n, m)$:

	0	1	2	3	\ldots	n
0	0	1	2	3	\ldots	
1	1	2	4	6	\ldots	
2	2	4	6	8	\ldots	
3	3	6	8	10	\ldots	
\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	
m						

References

[1] Basmanov V.N., On inductive dimensions of products of spaces, Moscow Univ. Math. Bull. 36 (1981), no. 1, 19-22.
[2] Chatyrko V.A., Ordinal products of topological spaces, Fund. Math. 144 (1994), 95-117.
[3] Chatyrko V.A., On finite sum theorems for transfinite inductive dimensions, Fund. Math., to appear.
[4] Engelking R., Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Lemgo, 1995.
[5] Filippov V.V., On the inductive dimension of the product of bicompacta, Soviet Math. Dokl. 13 (1972), 250-254.
[6] Hessenberg G., Grundbegriffe der Mengenlehre, Göttingen, 1906.
[7] Lifanov I.K., On the dimension of the product of one-dimensional bicompacta, Soviet Math. Dokl. 9 (1968), 648-651.
[8] Malyhin D.V., Some properties of topological products (in Russian), Moscow State University, Dissertation, 1999.
[9] Pasynkov B.A., On inductive dimensions, Soviet Math. Dokl. 10 (1969), 1402-1406.
[10] Toulmin G.H., Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195.
[11] Vinogradov R.N., On transfinite dimension, Moscow Univ. Math. Bull. 48 (1993), no. 5, 15-17.
[12] Zarelua A.V., On a theorem of Hurewicz, Amer. Math. Soc. Transl. 55 (1966), no. 2, 141152.

Department of Mathematics, Linköping University, S-581 83 Linköping, Sweden
E-mail: vitja@mai.liu.se
Department of Mechanics and Mathematics, Moscow State University, 119899 Moscow, Russia

E-mail: kkozlov@nw.math.msu.su

[^0]: *Supported by Kungliga Vetenskapsakademien, project 12529.
 ${ }^{\dagger}$ Supported by RFFI, grant 99-01-00128.

