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Homomorphism duality for rooted oriented paths

Petra Smoĺıková

Abstract. Let (H, r) be a fixed rooted digraph. The (H, r)-coloring problem is the prob-
lem of deciding for which rooted digraphs (G, s) there is a homomorphism f : G → H

which maps the vertex s to the vertex r. Let (H, r) be a rooted oriented path. In this
case we characterize the nonexistence of such a homomorphism by the existence of a
rooted oriented cycle (C, q), which is homomorphic to (G, s) but not homomorphic to
(H, r). Such a property of the digraph (H, r) is called rooted cycle duality or ∗-cycle
duality. This extends the analogical result for unrooted oriented paths given in [6]. We
also introduce the notion of comprimed tree duality. We show that comprimed tree
duality of a rooted digraph (H, r) implies a polynomial algorithm for the (H, r)-coloring
problem.

Keywords: graph homomorphism, homomorphism duality, rooted oriented path

Classification: 05C99, 05C38

1. Introduction

We make use of standard concepts of graph theory. In addition we introduce
in this section a few more special notions related to digraphs (see [3]). All the
digraphs discussed in this paper are finite.
Let G be a digraph. We denote by V (G) its set of vertices and by E(G) its

set of edges. We say that M ⊆ V (G) is independent if for any x, y ∈ M there
is no edge joining x and y in G. An oriented path P is a digraph given by the
sequence of its vertices [v1, v2 . . . vn] such that for each i ∈ {1, 2 . . . n − 1} either
(vi, vi+1) ∈ E(P ) (a forward edge of P ), or (vi+1, vi) ∈ E(P ) (a backward edge of
P ), and such that P has no other edges. The vertex v1 is called the initial vertex
i(P ) of P , and vn is called the terminal vertex t(P ) of P . We denote by P−1 the
oriented path [vn, vn−1 . . . v1]. If P1 = [v1, v2 . . . vn] and P2 = [w1, w2 . . . wk] are
oriented paths with disjoint vertex sets, the concatenation of P1 and P2 is the
oriented path P obtained by identifying the terminal vertex of P1 with the initial
vertex of P2, i.e. P = [v1, v2 . . . vn = w1, w2 . . . wk]. We write P = P1 + P2, if P
is the concatenation of P1 and P2. (Note that P1 + P2 and P2 + P1 need not be
isomorphic.) The algebraic length al(P ) of an oriented path P is the number of
forward edges minus the number of backward edges of P . The net length nl(P )
of P is the absolute value of al(P ). An oriented path P is minimal if it contains
no proper subpath of net length nl(P ). An arbitrary subpath in a digraph G
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connecting two vertices u and v of G is denoted Puv. The distance between two
vertices u, v in a digraph G is the minimum length of Puv which is taken without
respect to the orientation of the edges. It is denoted by dG(u, v).
An oriented cycle is a digraph obtained from an oriented path by identifying

its initial and terminal vertices. Algebraic and net lengths of oriented cycles are
defined analogously. A balanced cycle is an oriented cycle of net length zero.
A digraph is balanced if it contains no unbalanced cycle as its subgraph. If G is
balanced then for any two vertices u, v of G, all paths Puv have the same algebraic
length. For a balanced digraph G we define its height as the maximum net length
of an oriented subpath of G. We denote it ht(G). The level of a vertex v in a
balanced digraph G is ΛG(v) = max{al(P );P ⊆ G and t(P ) = v}. An oriented
tree is a digraph which contains no oriented cycle as its subgraph.
Let G, H be digraphs. A mapping f : V (G)→ V (H) is called a homomorphism

from G to H if and only if f preserves edges, i.e. (f(u), f(v)) ∈ E(H) for all edges
(u, v) ∈ E(G). If such a homomorphism exists, we say that G is homomorphic to
H and write G → H . Otherwise we write G 6→ H . The following is easy to see.

Observation 1.1. Let G and H be balanced digraphs, f : G → H be a homo-
morphism. Then

(a) ΛH(f(v)) = ΛH(f(u)) + al(Puv) for every two vertices u, v of G,
(b) ht(G) ≤ ht(H),
(c) if ht(G) = ht(H) then f preserves the levels of the vertices, i.e.
ΛH(f(v)) = ΛG(v) for every vertex v of G.

A rooted digraph (G, s) is a digraph G with a fixed vertex s called the root .
We denote by (G, s1, s2 . . . sk) the rooted digraph with k roots. If (G, s) and
(H, r) are rooted digraphs, then a rooted homomorphism from (G, s) to (H, r)
is a homomorphism from G to H which maps s to r. If such a homomorphism
exists, we say that (G, s) is homomorphic to (H, r) and write (G, s) → (H, r).
Otherwise we write (G, s) 6→ (H, r). The definition of rooted homomorphism can
be extended to digraphs with more then one root as follows: (G, s1, s2 . . . sk) →
(H, r1, r2 . . . rk) if and only if there is a homomorphism f : G → H with f(si) = ri

for all i ∈ {1, 2 . . . k}.
Let G and H be digraphs. A labeling of G with respect to H is a mapping l of

V (G) to the family of subsets of V (H). Such a labeling l is consistent with an edge
e = (x, y) ∈ E(G) if for any p ∈ l(x) there is a q ∈ l(y) such that (p, q) ∈ E(H),
and for any q ∈ l(y) there is a p ∈ l(x) such that (p, q) ∈ E(H). We say that l is
a consistent labeling of G with respect to H if l is consistent with all edges of G.
The size of a labeling l of G with respect to H is the number |l| =

∑
v∈V (G) |l(v)|.

The following theorems about oriented paths motivated this paper.

Theorem 1.2 ([6]). Let P be an oriented path and G be a digraph. Then G 6→ P
if and only if there is an oriented path W such that W → G and W 6→ P .
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Theorem 1.3 ([3]). Let P be a fixed oriented path. The decision problem in
which the instance is a digraph G and the question is whether or not G → P can
be solved in polynomial time.

Theorem 1.2 declares that oriented paths have so called path duality. It is a
particular case of homomorphism duality. Theorem 1.3 is proved in [3] by means
of an elegant algorithm called consistency check .
In this paper we consider the analogous questions for rooted homomorphisms.

In particular we discuss the validity of various modifications of the homomorphism
duality for rooted oriented paths. The following concepts extend the notions for
unrooted digraphs (defined in [4]) to rooted digraphs. Let (H, r) be a fixed rooted
digraph. The (H, r)-coloring problem is the following decision problem:

Instance: A rooted digraph (G, s).

Question: Is there any rooted homomorphism from (G, s) to (H, r)?

The rooted digraph (H, r) has ∗-path duality (∗-cycle or ∗-tree duality respec-
tively), if the following property holds for all rooted digraphs (G, s) : (G, s) 6→
(H, r) if and only if there exists a rooted oriented path (a rooted oriented cycle or
tree respectively) (P, t) such that (P, t)→ (G, s) and (P, t) 6→ (H, r). Thus (H, r)
has not ∗-path duality (∗-cycle or ∗-tree duality respectively) if and only if there
is a rooted digraph (G, s) such that (G, s) 6→ (H, r) and for any rooted oriented
path (cycle or tree respectively) (P, t) the fact that (P, t) → (G, s) implies that
(P, t) → (H, r). Such an oriented graph (P, t) we call counterexample for ∗-path
duality (∗-cycle or ∗-tree duality respectively) of a digraph (H, r).
We will show that the theorem analogous to Theorem 1.2 does not hold for

rooted paths, i.e. there are rooted oriented paths without ∗-path duality. In the
third section of this paper we will show that rooted oriented paths have ∗-cycle
duality. We will take advantage of it to generalize the algorithm given in [3]
(consistency check) to rooted homomorphisms. We also characterize the class of
all rooted digraphs for which this algorithm finds a correct solution. These are
exactly the rooted digraphs with comprimed tree duality.
This paper is based on the diploma thesis at Charles University [9].

2. ∗-tree duality

We will prove that the theorem analogical to Theorem 1.2 does not hold for
rooted oriented paths. Moreover we prove that rooted oriented paths need not
have ∗-tree duality.

Theorem 2.1. There is a rooted oriented path (P, r) and a digraph (G, s) such
that (G, s) 6→ (P, r) and any rooted oriented tree (T, t) homomorphic to (G, s) is
also homomorphic to (P, r).

Proof: Consider the digraph (G, s) depicted in Figure 2.1, where the paths P1,
P2, R1 and R2 have the following properties:
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Figure 2.1. The digraph (G, s).

(1) P1, P2, R1 and R2 are minimal oriented paths of algebraic length n
(2) Pi 6→ Pj for any i, j ∈ {1, 2}, i 6= j
(3) Pi → Ri, Pi 6→ Rj for any i, j ∈ {1, 2}, i 6= j
(4) Ri 6→ Pj for any i, j ∈ {1, 2}.

We claim that (G, s) is a counterexample for ∗-tree duality of the path (P, r)
depicted in Figure 2.2. To see it assume without loss of generality that n > 0.
The denoted vertices of the digraph (G, s) and of the path (P, r) satisfy:

(i) ΛG(s) = ΛG(x3) = 0 and ΛP (r) = ΛP (z1) = ΛP (z2) = 0;
(ii) ΛG(x1) = ΛG(x2) = n a ΛP (t1) = ΛP (t2) = ΛP (y1) = ΛP (y2) = n;
(iii) no other vertex of the digraph (G, s) or of the path (P, r) has level 0 or n.

Moreover ht(G) = ht(P ) = n.
We have to show that: (a) (G, s) 6→ (P, r),
(b) any rooted oriented tree (T, t) homomorphic to (G, s) is also homomorphic
to (P, r).

Suppose to the contrary that (a) fails. Let h : (G, s) → (P, r) be a rooted
homomorphism. The digraphs (G, s) and (P, r) are balanced. Thus by Observa-
tion 1.1. h preserves the levels of the vertices. Thus ΛP (h(x3)) = 0. We must
have h(x3) = r, h(x3) = z1 or h(x3) = z2. Let us discuss these three possibilities:
Since Ri 6→ Pj for any i, j ∈ {1, 2}, then h(x3) 6= r. If h(x3) = z1, then

h(x2) = y1 because R2 6→ R1. Necessarily h(s) = z1. This contradicts the
assumption that h is a rooted homomorphism from (G, s) to (P, r). The case
h(x3) = z2 is similar. Thus (a) holds.
In order to prove (b) it suffices to consider rooted oriented trees whose root is a

leaf. In the other case we can decompose a tree (T, t) into the branches with root
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t1 t2
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R2 R1

Z1 Z2

Figure 2.2. The path (P, r).

t as a leaf. If we find the homomorphism fB : (B, t) → (P, r) for every branch
(B, t) we can construct a new homomorphism f : (T, t)→ (P, r) according to the
rule f(v) = fB(v) for every v ∈ V (B). The only vertex included in more then
one branch is the root t and every fB maps t to r. It is easy to see that f is a
homomorphism from (T, t) to (P, r).

Thus let (T, t) be a rooted oriented tree with root as a leaf, let h : (T, t)→ (G, s)
be a rooted homomorphism. We will construct a homomorphism f : (T, t) →
(P, r). Let us mention that there is only one path Puv for every two vertices u, v
of the tree T . First we define the sets A, A1, A2, B1, B2 of vertices of T in the
following way (see Figure 2.3).

A = {v ∈ V (T ); each vertex w, w 6= v, which is in Ptv satisfies h(w) /∈ {x1, x2}},

Ai = {v ∈ A;h(v) = xi} for i = 1, 2,

Bi = {v ∈ V (T ); there is a vertex w ∈ Ai, w 6= v, which is in Ptv} for i = 1, 2.

Denote by Z1, Z2 the paths marked with bold line in Figure 2.2. Let gi be a
homomorphism from G to Zi, i ∈ {1, 2}. The fact that such a homomorphism
exists follows from properties of paths P1, P2, R1, R2. Certainly gi(xi) = ti,
gi(xj) = yi and gi(x3) = gi(s) = zi for i, j ∈ {1, 2}, i 6= j. Let id be an identical

homomorphism which maps P−1
1 +P2 taken as a subgraph of G onto the copy of

this path in P . We have id(xi) = ti for i ∈ {1, 2} and id(s) = r.

Define a mapping f : V (T )→ V (P ) by

f(v) = id(h(v)) for any v ∈ A, f(v) = gi(h(v)) for any v ∈ Bi, i = 1, 2.

We will show now that the mapping f is a homomorphism from (T, t) to (P, r).
It suffices to prove:
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Figure 2.3. To the definition of the sets A, A1, A2, B1, B2.

(1) f is correctly defined, i.e. there is exactly one value of f(v) for every vertex
v ∈ V (T ),

(2) (f(u), f(v)) ∈ E(P ) for every edge (u, v) ∈ E(T ),
(3) f(t) = r.
It is clear that A1, A2 ⊆ A and that the sets A, B1, B2 are mutually disjoint.

Thus (1) holds. Suppose that (u, v) ∈ E(T ). It is clear that (f(u), f(v)) ∈ E(P )
if u, v are elements of the same set among A, B1, B2. If u ∈ A and v ∈ Bi for
some i ∈ {1, 2}, then u ∈ Ai by the definition of the sets A, A1, A2, B1, B2. Thus
h(u) = xi.
We have (f(u), f(v)) = (id(h(u)), gi(h(v))) = (id(xi), gi(h(v))) = (ti, gi(h(v)))

= (gi(xi), gi(h(v))) = (gi(h(u)), gi(h(v))). Since gi ◦h is a homomorphism from T
to P , we obtain (gi(h(u)), gi(h(v))) ∈ E(P ). The case u ∈ Bi for some i ∈ {1, 2}
and v ∈ A is similar. The case u ∈ B1, v ∈ B2 cannot happen according to the
definition of A, B1, B2. This proves (2).
It remains to show (3). The path Ptt in T contains only one vertex, namely t.

Hence t ∈ A. According to the definition of f we must have f(t) = id(h(t)) =
id(s) = r. �

Remark. ∗-tree duality is a weaker property than ∗-path duality. Hence if a path
(P, r) does not have ∗-tree duality then it does not have ∗-path duality either.

3. ∗-cycle duality

We proved in Section 2 that there are rooted oriented paths without ∗-tree
duality. This is as far as we can go. We will prove that every rooted oriented
path has ∗-cycle duality.
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Theorem 3.1. Suppose that (G, s) is a rooted digraph and (P, r) is a rooted
oriented path. Then (G, s)→ (P, r) if and only if for every rooted oriented cycle
(C, q) such that (C, q)→ (G, s), we have (C, q)→ (P, r).

Proof: The proof is based on the proof of Theorem 1.2 given in [6]. Let (P, r) be a
rooted oriented path and (G, s) be an arbitrary rooted digraph. If (G, s)→ (P, r)
and (C, q) is a rooted oriented cycle such that (C, q) → (G, s), then of course
(C, q) → (P, r) by composition. Thus the first implication holds. To verify the
other implication is more difficult.

Let (P, r) be a rooted oriented path. Without loss of generality we may suppose
that [1, 2 . . . n] are the vertices of P (1 is the initial and n is the terminal vertex
of P ). We consider the root r as the respective integer. Let (G, s) be an arbitrary
rooted digraph such that for every rooted oriented cycle (C, q), the existence of
a homomorphism from (C, q) to (G, s) implies the existence of a homomorphism
from (C, q) to (P, r). We will construct a homomorphism f : (G, s)→ (P, r).

Denote by W the set of all rooted oriented paths (W, z) with i(W ) = z and
such that (W, z)→ (G, s). For (W, z) ∈ W we set

T (W, z) = {v ∈ V (G); there is a homomorphism g : (W, z)→ (G, s) such that
g(t(W )) = v} and

Φ(W, z) = max{h(t(W ));h : (W, z)→ (P, r)}.

We will show that Φ : W → V (P ) is well defined. Let (W, z) ∈ W . Consider
two copies of (W, z) and identify their initial vertices (i.e. the roots) and their
terminal vertices. Denote by q the vertex arising from the two identified roots.
The resulting cycle (C, q) satisfies (C, q)→ (G, s). Thus (C, q)→ (P, r) according
to the premise. Obviously then (W, z)→ (P, r). Thus Φ(W, z) is defined for every
path (W, z) ∈ W .

Finally, define a mapping f : V (G)→ V (P ) by

f(v) = min{Φ(W, z); (W, z) ∈ W and v ∈ T (W, z)} for all v ∈ V (G).

It is easy to see that the mapping f is well defined. It remains to show that f
is a homomorphism from (G, s) to (P, r). We shall proceed in the following steps:

(1) If (u, v) ∈ E(G), then |dG(u, s)− dG(v, s)| = 1.
(2) If u ∈ V (G), then |f(u)− r| and dG(u, s) have the same parity.
(3) If (u, v) ∈ E(G), then f(u) 6= f(v).
(4) If (u, v) ∈ E(G), then (f(u), f(v)) ∈ E(P ).
(5) f(s) = r.

(1) If (u, v) ∈ E(G), then |dG(u, s)− dG(v, s)| ≤ 1 according to the definition
of the distance dG(u, v). It suffices to prove that |dG(u, s)− dG(v, s)| 6= 0.

Assume to the contrary that (u, v) ∈ E(G) and dG(u, s) = dG(v, s). Let Psu,
Pvs have the minimum length, i.e. their length is dG(u, s). Denote by P* the path
Pvs + Psu and denote by q the terminal vertex of Pvs in P*. Add the edge (u, v)



638 P. Smoĺıková

to P*. The resulting digraph (C, q) is an odd cycle such that (C, q) → (G, s).
Certainly (C, q) 6→ (P, r), which is a contradiction.

(2) Suppose that u ∈ V (G) and (W, z) ∈ W such that Φ(W, z) = f(u), W =
[z = w1, w2 . . . wm]. Necessarily u ∈ T (W, z). Let g : (W, z)→ (G, s) be a homo-
morphism satisfying g(wm) = u. Let i ∈ {1, 2 . . .m−1}. Then (g(wi), g(wi+1)) ∈
E(G) or (g(wi+1), g(wi)) ∈ E(G). We have |dG(g(wi), s) − dG(g(wi+1), s)| = 1
according to (1). Thus dG(g(wi), s) and dG(g(wi+1), s) have the opposite parity.
Since dG(g(w1), s) = dG(g(z), s) = dG(s, s) = 0, i.e. dG(g(w1), s) is even, we have
for all i ∈ {1, 2 . . .m} : dG(g(wi), s) is even if and only if i is odd. In particular,
dG(u, s) is even if and only if m is odd.

Let h : (W, z) → (P, r) be a homomorphism satisfying h(wm) = Φ(W, z). Let
i ∈ {1, 2 . . .m−1}. Then |h(wi)−h(wi+1)| = 1 and |dG(h(wi), r)−dG(h(wi+1), r)|
= 1. It follows that dG(h(wi), r) and dG(h(wi+1), r) have the opposite parity.
Since dG(h(w1), r) = dG(h(z), r) = dG(r, r) = 0, we have for all i ∈ {1, 2 . . .m}:
dG(h(wi), r) is even if and only if i is odd.

In particular, dG(h(wm), r) = dG(f(u), r) = |f(u)− r| is even if and only if m
is odd. We know that m is odd if and only if dG(u, s) is even. Thus dG(u, s) and
|f(u)− r| are either both even or both odd. That is what we wanted to prove.
(3) Suppose that (u, v) ∈ E(G). Then |dG(u, s) − dG(v, s)| = 1 according to

(1). Therefore dG(u, s) and dG(v, s) have the opposite parity. Then |f(u) − r|
and |f(v)− r| have the opposite parity according to (2). Thus f(u) 6= f(v).

(4) Suppose that (u, v) ∈ E(G). By (3) we have f(u) 6= f(v). We can assume
that f(u) < f(v), as the other case is similar. Find (Wu, zu) ∈ W such that
Φ(Wu, zu) = f(u). Denote Wu = [zu = w1, w2 . . . wm]. Transform (Wu, zu) into
the path (Wv , zv) by adding a new vertex wm+1 and a new edge (wm, wm+1),
with zv as its initial vertex. Then (Wv , zv) ∈ W and v ∈ T (Wv, zv). Thus
Φ(Wv , zv) ≥ f(v) according to the definition of f .

Let h : (Wv, zv)→ (P, r) be a homomorphism such that h(wm+1) = Φ(Wv , zv).
Since h restricted to (Wu, zu) is a homomorphism from (Wu, zu) to (P, r), we
have h(wm) ≤ Φ(Wu, zu). Since (wm, wm+1) ∈ E(Wv) and h is a homomor-
phism, we have (h(wm), h(wm+1)) ∈ E(P ). Therefore h(wm) − 1 ≤ h(wm+1) ≤
h(wm) + 1 and h(wm) 6= h(wm+1). We get h(wm) ≤ Φ(Wu, zu) = f(u) < f(v) ≤
Φ(Wv , zv) = h(wm+1) ≤ h(wm) + 1. Hence h(wm) = f(u), h(wm+1) = f(v).
Since (h(wm), h(wm+1)) ∈ E(P ), it follows that (f(u), f(v)) ∈ E(P ).

(5) Any path (W, z) ∈ W such that s ∈ T (W, z) can be transformed to a
cycle (C, q) by identifying the initial and the terminal vertex of W and calling
this new vertex q. Then (C, q) → (G, s). According to the premise there is a
homomorphism g : (C, q) → (P, r). Then a mapping g′ : (W, z) → (P, r) defined
by g′(w) = g(w) for any w ∈ V (W ), w 6= z, w 6= t(W ), g′(z) = g′(t(W )) = r, is
a homomorphism. Therefore Φ(W, z) ≥ r for every path (W, z) ∈ W such that
s ∈ T (W, z). We have f(s) ≥ r.

It remains to show that f(s) ≤ r. Let (W, z) be the path consisting of a single
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vertex z. Thus (W, z) ∈ W , s ∈ T (W, z) and Φ(W, z) = r. We have f(s) ≤ r
according to the definition of f . �

4. An algorithm for the (H, r)-coloring problem

We describe a polynomial algorithm which is a rooted digraph modification
of a procedure given in [3] (called consistency check). We call our algorithm ∗-
consistency check and use an abbreviation (∗-CC) for it. We consider only the
connected rooted digraphs in this section. For the components of connectivity
which do not contain the root, the procedure described for unrooted digraphs
in [3] can be used. Let (H, r) be a fixed rooted digraph.

Algorithm 4.1.(∗-consistency check)

Input data: A digraph (G, s).

Question: Is there a homomorphism from (G, s) to (H, r) ?

1. Put l(s) = {r} and l(v) = V (H) for all v ∈ V (G), v 6= s. Put L = |l|.
2. For all e ∈ E(G) consecutively, check if labeling l is consistent with the
edge e = (u, v). If not, then:

(a) remove from l(v) those q for which there is no p ∈ l(u) with (p, q) ∈
E(H);

(b) remove from l(u) those p for which there is no q ∈ l(v) with (p, q) ∈
E(H).

3. If |l| < L, then put L = |l| and return to step 2, else continue to step 4.
4. If l(s) 6= ∅ then answer YES, else answer NO.

Remarks. If the size of l does not decrease in step 2, then l is consistent with all
edges. In the end of the algorithm l is a maximal (with respect to coordinate-wise
inclusion) consistent labeling of G with respect to H which satisfies l(s) ⊆ {r}. It
is clear that l(s) 6= ∅ if and only if l(v) 6= ∅ for all v ∈ V (G), because the digraph
G is connected.

Let n = |V (G)|, k = |E(G)|. It is easy to see that the running time of (∗-CC)
is O(n · k) in the worst case. However (∗-CC) need not solve the (H, r)-coloring
problem for all digraphs (H, r). We will give a condition for a digraph (H, r)
which is necessary and sufficient for correctness of (∗-CC).

Definition 4.2. A rooted digraph (G, m) is called a comprimed tree if there
exist an oriented tree S and an independent subsetM of V (S) such that V (G) =
(V (S) − M) ∪ {m}, m /∈ V (S), E(G) = {(x, y); (x, y) ∈ E(S) and x, y /∈ M} ∪
{(m, y); there is x ∈ M such that (x, y) ∈ E(S)} ∪ {(x, m); there is y ∈ M such
that (x, y) ∈ E(S)}.
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Remark. In other words, a comprimed tree is a homomorphism image of an
oriented tree in the case that the homomorphism maps a subset of vertices to one
vertex, which becomes the root, and is 1− 1 on the remaining vertices.

Definition 4.3. We say that a rooted digraph (H, r) has comprimed tree duality
if the following property holds for all digraphs (G, s): (G, s) → (H, r) if and
only if for every comprimed tree (T, t) which satisfies (T, t) → (G, s), we have
(T, t)→ (H, r).

We will first show that comprimed tree duality of a rooted digraph (H, r)
is sufficient for correctness of the algorithm (∗-CC) for solving (H, r)-coloring
problem.

Theorem 4.4. Suppose that a rooted digraph (H, r) has comprimed tree duality.
Then the following statements are equivalent:

(1) (G, s)→ (H, r),
(2) the algorithm (∗-CC) for (G, s) with respect to (H, r) will answer YES,
(3) for every comprimed tree (T, t) which satisfies (T, t) → (G, s), we have
(T, t)→ (H, r).

Proof: Obviously (3)⇒ (1). We will first prove that (1)⇒ (2). Let h : (G, s)→
(H, r) be a homomorphism. Let l be the labeling of (G, s) with respect to (H, r)
arising in the course of the algorithm (∗-CC). After the first step of (∗-CC) we
have h(v) ∈ l(v) for every v ∈ V (G). Namely h(s) = r ∈ l(s). For every edge
(u, v) ∈ E(G) we have (h(u), h(v)) ∈ E(P ). That is why a vertex h(v) cannot
be removed from l(v) in the course of the algorithm (∗-CC) for every vertex
v ∈ V (G). Thus l(v) 6= ∅ for every vertex v ∈ V (G) in the end of the algorithm
and (∗-CC) will answer YES.
It remains to prove that (2)⇒ (3). Let l be the labeling of (G, s) with respect

to (H, r) obtained in the end of the algorithm (∗-CC). We have l(v) 6= ∅ for every
vertex v ∈ V (G) because (∗-CC) answers YES. Let (T, t) be a comprimed tree
such that (T, t)→ (G, s). We shall call this homomorphism h.
We will construct a homomorphism f : (T, t) → (H, r). The case V (T ) = {t}

is trivial. We will suppose that V (T )−{t} 6= ∅. Let us choose v ∈ V (T )−{t} and
p ∈ l(h(v)). Put f(v) = p. Choose a neighbor u of v in T , u 6= t. The mapping
h is a homomorphism, then we have (h(u), h(v)) ∈ E(G), (h(v), h(u)) ∈ E(G)
respectively. The labeling l is consistent, thus there is an element q ∈ l(h(u)) such
that (p, q) ∈ E(H), (q, p) ∈ E(H) respectively. Put f(u) = q. We can proceed in
such a way to the neighbors of the vertices discussed which are different of t and
define the mapping f on these neighbors. Since the subgraph T ′ of T induced by
the vertex set V (T ′) = V (T ) − {t} is a tree, the mapping f is a homomorphism
from T ′ to H . Put f(t) = r. For any vertex w ∈ V (T ) such that (t, w) ∈ E(T )
and any q ∈ l(h(w)), we have (r, q) ∈ E(H). It is guaranteed by the fact that
l(s) = {r} and that l is consistent. Thus (f(t), f(w)) ∈ E(H). Similarly for
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any vertex u ∈ V (T ) such that (u, t) ∈ E(T ) and any q ∈ l(h(u)), we have
(q, r) ∈ E(H). It follows that (f(u), f(t)) ∈ E(H) in this case. Now it is clear
that f is a homomorphism from (T, t) to (H, r). �

It remains to show that the comprimed tree duality of (H, r) is necessary for
the algorithm (∗-CC) to work correctly. We will start by proving the following
lemma.

Lemma 4.5. Let (G, s), (H, r) be rooted digraphs. Let l be the labeling of (G, s)
with respect to (H, r) obtained in any step of the algorithm (∗-CC). Let l(s) 6= ∅
in this step. Let v ∈ V (G), w ∈ V (H) such that v 6= s and w /∈ l(v). Then there
is a comprimed tree (T, p) and a vertex t ∈ V (T ) such that (T, p, t) → (G, s, v)
and (T, p, t) 6→ (H, r, w).

Proof: Suppose to the contrary that there are v ∈ V (G) and w ∈ V (H) with
v 6= s, w /∈ l(v), such that for any comprimed tree (T, p) and any vertex t ∈ V (T )
satisfying (T, p, t) → (G, s, v), we have (T, p, t) → (H, r, w). The vertex w was
removed from l(v) in the j-th step of the algorithm (∗-CC). We choose the vertices
v a w so that the assumptions are satisfied and j is minimal. Suppose that in the
j-th step an edge (u, v) ∈ E(G) was checked. The other case (in the j-th step
an edge (v, u) ∈ E(G) was checked) is similar. We have to consider two different
cases.
Let first u = s. Then (s, v) ∈ E(G). Neccesarily (r, w) /∈ E(H), because

w was removed from l(v) in this step. Let (T, p, t) be a tree with only two
vertices, namely p, t, and with the only edge (p, t). Then (T, p, t)→ (G, s, v) and
(T, p, t) 6→ (H, r, w). This is a contradiction with the choice of v, w.
Now we will consider the case u 6= s. If w was removed from l(v), then there is

not a vertex x ∈ l(u) with (x, w) ∈ E(H). According to the assumption for every
vertex y, y /∈ l(u), there is a comprimed tree (Ty, py) and a vertex ty ∈ V (T ) such
that (Ty , py, ty)→ (G, s, u) and (Ty , py, ty) 6→ (H, r, y). Otherwise we would have
chosen u, y instead of v, w. In addition if u 6= s, then py 6= ty for every y /∈ l(u).
Construct a rooted digraph (T, p) by identifying all vertices ty for y /∈ l(u)

and calling the new vertex t and by identifying all vertices py for y /∈ l(u) and
calling the new vertex p. Construct a rooted digraph (T *, p) by adding a new
vertex t* and a new edge (t, t*) to the digraph (T, p). The set {py; y ∈ V (H)
and y /∈ l(u)} is independent in T and T *. It follows that (T, p) and (T *, p) are
comprimed trees. We have (T *, p, t*) → (G, s, v). According to the assumption
there is a homomorphism h : (T *, p, t*) → (H, r, w). Let x = h(t). If x /∈ l(u),
then there is a comprimed tree (Tx, px) and a vertex tx ∈ V (Tx) with (Tx, px, tx)
which is a subgraph of (T, p, t) and which is not homomorphic to (H, r, x). Hence
(T *, p, t) 6→ (H, r, x). This contradicts the existence of the homomorphism h.
Thus x ∈ l(u) and (x, w) = (h(t), h(t*)) ∈ E(H). This is a contradiction with
the assumption that w was removed from l(v) in this situation in the course of
(∗-CC). �
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Theorem 4.6. Let (G, s), (H, r) be rooted digraphs. Let l be the labeling of
(G, s) with respect to (H, r) obtained in the end of the algorithm (∗-CC). Let
l(s) = ∅. Then there is a comprimed tree (T, p) with (T, p)→ (G, s) and (T, p) 6→
(H, r).

Proof: Suppose that the vertex r was removed from l(s) by checking an edge
(s, v). The other case (the vertex r was removed from l(s) by checking an edge
(s, v)) is similar. Let l* be the labeling in the respective step. Then (r, w) /∈ E(H)
for all w ∈ l*(v). According to Lemma 4.5 there is a comprimed tree (Tw, pw)
and a vertex tw ∈ V (Tw) such that (Tw, pw, tw) → (G, s, v) and (Tw, pw, tw) 6→
(H, r, w), for all vertices w /∈ l*(v). We know that tw 6= pw for all w /∈ l*(v)
because s 6= v.
Construct the rooted digraph (T, p, t) as follows: first, identify all vertices pw

for w ∈ V (H), w /∈ l*(v), and call the new vertex p; next, identify all vertices tw
for w ∈ V (H), w /∈ l*(v), and call the new vertex t; in the end add the edge (p, t)
if it is not in E(T ) yet. The digraph (T, p, t) clearly satisfies (T, p, t)→ (G, s, v),
(T, p, t) 6→ (H, r, w) for all w ∈ V (H). It is easy to see that (T, p) is a comprimed
tree with (T, p)→ (G, s) and (T, p) 6→ (H, r). �

Corollary 4.7. Let (H, r) be a rooted digraph. Then the following statements
are equivalent:

(1) (H, r) has comprimed tree duality,
(2) for any rooted digraph (G, s) is true that (∗-CC) for (G, s) with respect
to (H, r) answers YES if and only if (G, s)→ (H, r).

Proof: The implication (1) ⇒ (2) was proved as a part of Theorem 4.4. It
remains to show (2) ⇒ (1). Let (H, r) be a digraph without comprimed tree
duality, for contradiction. Then there is a counterexample which guarantees this
property, i.e. there is a digraph (G, s) such that (G, s) 6→ (H, r) and for any
comprimed tree (T, p) with (T, p) → (G, s), we have (T, p) → (H, r). Suppose
that the algorithm (∗-CC) for (G, s) with respect to (H, r) answers NO. Let l be
the labeling of (G, s) with respect to (H, r) obtained by the algorithm (∗-CC).
Then l(s) = ∅.
Then by Theorem 4.6 there is a comprimed tree (T, p) such that (T, p) →

(G, s) and (T, p) 6→ (H, r). This contradicts the assumption that (G, s) is the
counterexample for comprimed tree duality of (H, r). �
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[8] Nešeťril J., Zhu X., On bounded tree width duality of graphs, J. Graph Theory 23.2 (1996),
151–162.
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