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Hopf algebras of smooth functions on compact Lie groups

Eva C. Farkas

Abstract. A C∞-Hopf algebra is a C∞-algebra which is also a convenient Hopf alge-
bra with respect to the structure induced by the evaluations of smooth functions. We
characterize those C∞-Hopf algebras which are given by the algebra C∞(G) of smooth
functions on some compact Lie group G, thus obtaining an anti-isomorphism of the
category of compact Lie groups with a subcategory of convenient Hopf algebras.

Keywords: C∞-Hopf-algebras, algebras of smooth functions on compact Lie groups,

duality theorem

Classification: 16W30, 22D35, 22E15, 46E25

1. Introduction

The model example of a Hopf algebra being associated with a group structure
is the group algebra of a finite group. It is the space F(G) of functions on G with
pointwise multiplication, whereas dualizing the group multiplication µ yields the
comultiplication µ∗ : F(G)→ F(G × G) ∼= F(G)⊗F(G).
If G is not finite, the associated function space F(G) will be infinite dimensional

and the space F(G × G) can no longer be identified with F(G) ⊗ F(G). This is
why in the general case one has to restrict to the subalgebra of representative
functions (see [1]) and thus obtains a functor from the category of groups to
the category of Hopf algebras. The subcategories of the latter corresponding
(by antiequivalence) to particular subcategories of groups such as the finite ones
(cf. [13]), compact topological groups (see [14], [15], [5]), compact Lie groups or
affine algebraic groups, are characterized completely. For the case of compact Lie
groups, this is a consequence of the Tannaka duality theorem (cf. [1]).
In case of a connected Lie group G, one usually considers the universal en-

veloping algebra U(g) (see [2]).
However, if dealing with a smooth group, i.e. a group with additional smooth

structure (among which we will be interested in characterizing the compact Lie
groups of class C∞), there is a very natural alternative. The “right” function
space here is the space C∞(G) of smooth functions on G. We will use the setting
of smooth spaces and convenient vector spaces developed in [4] by Frölicher and
Kriegl. The latter offers a category in which for each smooth space the space
of smooth functions is an object and which is symmetric monoidally closed, i.e.
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admits an appropriate tensor product which coincides with the completed pro-
jective tensor product for Fréchet spaces. We therefore modify the definition of
a Hopf algebra and consider so-called convenient Hopf algebras with the conve-
nient tensor product ⊗̃ replacing the algebraic tensor product in the definition of
comultiplication. Finally, we introduce the notion of a C∞-Hopf algebra, which
reflects the additional C∞-algebra structure of our generic example C∞(G).
In Section 2 we present fundamental aspects and results of the theory of smooth

spaces and convenient vector spaces needed later on. In Section 3, we show
the existence of a functor from the category of convenient Hopf algebras to the
category of smooth groups. A generalization of the notion of a representative
function to arbitrary convenient Hopf algebras is defined via a natural action of
the R-valued convenient algebra homomorphisms.
Section 4 contains our main theorem 4.2 which is a smooth version of the

Tannaka duality theorem: We show that the constructed functor induces an anti-
isomorphism between the category of C∞-Hopf algebras which admit a gauge and
are finitely generated by “representative elements” and the category of compact
Lie groups.
In [3], the duality of compactological groups in terms of formal projective limits

of systems of commutative C∗-algebras with unit is investigated. A characteri-
zation of finite dimensional separable smooth manifolds in terms of C∞-algebras
has been given in [10].

2. Smooth spaces and convenient vector spaces

The notions and methods we shall use in this paper are almost entirely based
on the smooth calculus as developed in [4]. For the latest exposition of this theory,
see [8].

2.1 Smooth spaces. A smooth structure on a set X is a set C of curves R → X

(its structure curves) and a set F of functions X → R (its structure functions)
which are maximal sets with the property F ◦ C ⊆ C∞(R, R). A set X together
with a smooth structure is called a smooth space. On R

n (in particular R), the
C∞-curves and C∞-functions in the usual sense give a smooth structure and we
will always refer to this structure, whenever we assume a smooth structure on R

n

to be given. A map between smooth spaces is said to be smooth if it preserves the
structure curves or equivalently the structure functions. Given a set X and a set
F of functions X → R, one obtains a smooth structure on X by saturating F in
an obvious sense. Then F is an initial source in the category C∞ of smooth maps
between smooth spaces with respect to the forgetful functor C∞ → Set and we
say that it generates the smooth structure of X . More generally, given a smooth
space X , a set Y and a map g : Y → X , we obtain the initial smooth structure
on Ywith respect to g by endowing Y with the smooth structure generated by
the family g∗(F), where F denotes the set of structure functions of X . The
embedding U →֒ R

nof an open subset then induces the usual smooth structure.
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The finite cartesian product of smooth spaces together with the smooth struc-
ture induced by the projections yields a product in the category of smooth spaces.
A smooth (semi-)group is a smooth space G together with a compatible

(semi-)group structure on its underlying set, i.e. the respective structure maps are
smooth. The respective categories of smooth (semi-)group homomorphisms be-
tween smooth (semi-)groups are denoted by C∞-Gr (C∞-SemiGr, respectively).

2.2 Convenient vector spaces. A curve c : R → E into a locally convex space
is said to be smooth or C∞ if all derivatives exist. If E is c∞-complete (i.e. locally
complete) then the smooth curves form indeed the structure curves for a smooth
structure on E, namely the one induced by its bounded linear functionals (cf. [4,
4.1]). A locally convex vector space which is c∞-complete is called convenient .
Multilinear mappings between convenient vector spaces are smooth if and only
if they are bounded. In particular the smooth structure of a convenient vector
space determines its locally convex topology up to bornological isomorphism. The
category of smooth linear maps between convenient vector spaces is denoted by
Con. We will denote by E′ the space of all bounded linear functionals on the
convenient vector space E.

2.3 Spaces of smooth mappings. Given smooth spaces X, Y and a convenient
vector space E, the space C∞(Y, E) is again a convenient vector space with the
locally convex topology of convergence of compositions with smooth curves in Y ,
uniformly on compact intervals, in all derivatives separately, and we have the
exponential law

C∞(X, C∞(Y, E)) ∼= C∞(X × Y, E).

For Xan open subset of R
n or more generally a finite dimensional smooth sepa-

rable manifold, the above topology is bornologically isomorphic (and hence Con-
isomorphic) to the usual nuclear Fréchet topology on C∞(X, R).
Another important property is the differentiable uniform boundedness principle

stating that evx : C∞(X, E) → E (x ∈ X) is an initial source with respect to
the forgetful functor Con → V S to the category of vector spaces. Instead of
C∞(X, R), we will write C∞(X).

2.4 Multilinear maps and tensor products. If E1, . . . , En, F are convenient
vector spaces, then the space L(E1, . . . , En;F ) of smooth n-linear maps from
∏n

i=1Ei to F , endowed with the locally convex topology of uniform convergence
on bounded sets, is a convenient vector space. Its smooth structure is the initial
one with respect to the inclusion into C∞(

∏

Ei, F ) and the multilinear versions
of the exponential law and of the uniform bounded principle hold.
The category of smooth linear maps between convenient vector spaces is

symmetric monoidally closed, i.e. it admits a unique tensor product ⊗̃, called
the convenient tensor product and natural isomorphisms of convenient vector
spaces E⊗̃R ∼= E, E⊗̃F ∼= F ⊗̃E, (E⊗̃F )⊗̃G ∼= E⊗̃(F ⊗̃G) and L(E⊗̃F, G) ∼=
L(E, L(F, G)). It can be constructed by c∞-completion of the bornological tensor
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product. For Fréchet spaces convenient and projective tensor product coincide
(see [6, 11.1.6]) and for smooth finite dimensional separable manifolds M we have

C∞(M × M) ∼= C∞(M)⊗̃C∞(M)

as a consequence of the corresponding statement for open subsets of a finite di-
mensional vector space ([6, 21.6]).

3. C∞-Hopf algebras

3.1 (cf. [4, 5.2.1]). A (commutative) convenient algebra A is a convenient vector
space (also denoted by A) together with an associative (and commutative) smooth
linear map m : A⊗̃A → A called multiplication and a smooth linear unit u :
R → A with respect to m. The category ConAlg has as objects the convenient
algebras and the Con-morphisms which preserve multiplication and unit. Given
a convenient algebra A, the convenient vector space A⊗̃A is a convenient algebra
with multiplication (m⊗̃m)◦s23 and unit u⊗̃u, where s23 denotes the map which
commutes the second and the third factor of the tensor product and where we
omit (as we will occasionally do in the sequel) the natural isomorphism R⊗̃R ∼= R.
A convenient coalgebra C is a convenient vector space (also denoted by C)

together with a coassociative smooth linear map ∆ : C → C⊗̃C called comul-
tiplication and a smooth linear counit ε : C → R with respect to ∆. The cor-
responding category is denoted by ConCoAlg. Given a convenient coalgebra C,

the convenient vector space C⊗̃C is a convenient coalgebra with comultiplication
s23 ◦ (∆⊗̃∆) and counit ε⊗̃ε.

3.2. A convenient bialgebra B is a convenient vector space which is both a con-
venient algebra and a convenient coalgebra such that the algebra structure maps
are ConCoAlg-morphisms or equivalently that the coalgebra structure maps are
ConAlg-morphisms. The category of convenient bialgebras and structure pre-
serving Con-morphisms is denoted by ConBiAlg. A convenient bialgebra H

admitting an antipode, i.e. a smooth linear map T : H → H with the property
that

m ◦ (id ⊗̃T ) ◦∆ = m ◦ (T ⊗̃ id) ◦∆ = u ◦ ε,

is called a convenient Hopf algebra. The full subcategory of ConBiAlg consisting
of convenient Hopf algebras is denoted by ConHopfAlg.

3.3. A C∞-algebra A in the sense of [12] is a product preserving functor A from
the category of finite-dimensional real vector spaces and C∞-mappings to the
category Set of sets, where A(R) is said to be the underlying vector space and

identified with A itself. We thus obtain a structure map eA : C∞(Rn, R) ×

An → A given by eA(f, a) = A(f)(a). The simplest example of such a C∞-
algebra is R together with the usual evaluation of C∞-functions. In [7], each C∞-
algebra is endowed with the finest locally convex topology such that all associated
mappings eAa := e

A( , a) : C∞(Rn) → A, a ∈ An, n ∈ N are continuous, where
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C∞(Rn) carries its usual Fréchet topology, as explained in 2.3. This topology on
A is called its natural topology and coincides with the above topology for A =
C∞(Rn) by [7, 3.2]. This is true also for C∞(M), whereM is a finite dimensional
smooth separable manifold: This is a consequence of the open mapping theorem
as the natural topology of a finitely generated C∞-algebra (i.e. the quotient of
the free C∞-algebra C∞(Rn) for some n) is (nuclear) Fréchet by [7, 4.2] and finer
than the usual one, since the structure maps are continuous with respect to the
latter. A convenient C∞-algebra is then a C∞-algebra with the property that the
associated natural topology is separated and c∞-complete. By [7, 2.4 Theorem],
the category of structure map preserving maps between convenient C∞-algebras
is a full subcategory of ConAlg.
A C∞-bialgebra B is a C∞-algebra (also denoted by B) which is also a con-

venient bialgebra with the same underlying convenient algebra structure. A C∞-

Hopf algebra is a C∞-bialgebra with an antipode. A C∞-Hopf algebra is said to
be commutative if its underlying convenient algebra is commutative. Given a fi-
nite dimensional separable smooth Lie group, the convenient vector space C∞(G)
carries its natural topology according to 3.3 and hence is a C∞-Hopf algebra in
a natural way.

3.4 Proposition. The Homfunctor lifts to functors

ConBiAlgop → C∞-SemiGr,

and
ConHopfAlgop → C∞-Gr.

Given a convenient bialgebra B, the composition of two elements ϕ1, ϕ2 ∈
ConAlg(B, R) given by ϕ1ϕ2 := (ϕ1⊗̃ϕ2) ◦∆ defines an associative smooth map

(with respect to the smooth structure induced by the inclusion ConAlg(B, R)→

B′) ConAlg(B, R)×ConAlg(B, R)→ ConAlg(B, R) with unit element the counit
ε of B. If H is a convenient Hopf algebra with antipode T , then the map T ∗ is

an inversion.

Proof: The composition of ConAlg-morphisms specified above is well defined

since ∆ : B → B⊗̃B is a morphism of convenient algebras and so is

ϕ1⊗̃ϕ2 : B⊗̃B → R⊗̃R ∼= R,

for any two ConAlg-morphisms ϕ1, ϕ2 : B → R. The composition may be viewed

as restriction of the smooth map ∆∗◦( ⊗̃ ) : B′×B′ → B′, where ( ⊗̃ ) : B′×B′ →
L2(B, B;R) is the canonical bilinear inclusion associated with the functor ⊗̃. It
is smooth by the uniform boundedness principle 2.4 since its composition with
evaluation ev(b1,b2) in an arbitrary element (b1, b2) ∈ B1 × B2 is smooth.

In order to show associativity, consider ϕ1, ϕ2, ϕ3 ∈ ConAlg(B, R): Then

(ϕ1ϕ2)ϕ3 =
[(

(ϕ1⊗̃ϕ2) ◦∆
)

⊗̃ϕ3
]

◦∆ = (ϕ1⊗̃ϕ2⊗̃ϕ3) ◦ (∆⊗̃ idB) ◦∆

= (ϕ1⊗̃ϕ2⊗̃ϕ3) ◦ (idB ⊗̃∆) ◦∆ =
[

ϕ1⊗̃
(

(ϕ2⊗̃ϕ3) ◦∆
)]

◦∆ = ϕ1(ϕ2ϕ3),
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by coassociativity of ∆. Further, if ϕ ∈ ConAlg(B, R) and ε the counit of B, then

ε⊗̃ϕ = ϕ ◦ (ε⊗̃ idB) by linearity and hence εϕ = ϕ ◦ (ε⊗̃ idB) ◦∆ = ϕ. Similarly,
ϕε = ϕ. As ϕ was arbitrary, ε is a unit. Finally, given a convenient Hopf algebra
H with antipode T : H → H , we obtain

(ϕ ◦ T )ϕ = ((ϕ ◦ T )⊗̃ϕ) ◦∆ = (ϕ⊗̃ϕ) ◦ (T ⊗̃ idH) ◦∆ = ϕ ◦ u ◦ ε = ε,

where u : R → H denotes the unit of H . In the same manner it follows that
ϕ ◦ (ϕ ◦ T ) = ε so that T ∗ is indeed the inversion map. In particular it is smooth
as restriction of the bounded linear map T ∗ : H ′ → H ′ and we are done. �

In the following, we will denote by ConAlg(H, R) the set ConAlg(H, R) of
ConAlg-morphisms from the convenient Hopf algebra H to R together with the
smooth group structure specified in Proposition 3.4.

3.5 Proposition. Given a convenient Hopf algebra H and a pair

(ϕ, h) ∈ ConAlg(H, R)× H,

the assignment
λ : (ϕ, h) 7→ (idH ⊗̃ϕ)(∆(h))

defines a smooth left action ConAlg(H, R) × H → H . Similarly, H becomes

a smooth right (and even a smooth two-sided) ConAlg(H, R)-module via the
smooth right action ρ(h, ϕ) := (ϕ⊗̃ idH)(∆(h)).

Proof: Let ϕ1, ϕ2 ∈ ConAlg(H, R) and h ∈ H . Then

λ((ϕ1ϕ2), h) = (idH ⊗̃ϕ1ϕ2) ◦∆ =
(

idH ⊗̃((ϕ1⊗̃ϕ2) ◦∆)
)

◦∆

= (idH ⊗̃ϕ1⊗̃ idR) ◦ (idH ⊗̃ idH ⊗̃ϕ2) ◦ (idH ⊗̃∆) ◦∆

= (idH ⊗̃ϕ1⊗̃ idR) ◦ (idH ⊗̃ idH ⊗̃ϕ2) ◦ (∆⊗̃ idH) ◦∆

= (idH ⊗̃ϕ1⊗̃ idR) ◦ (∆⊗̃ idR) ◦ (idH ⊗̃ϕ2) ◦∆ = λ(ϕ1, λ(ϕ2, h)).

Smoothness is clear (e.g. by the exponential law). That left and right action
commute follows again by coassociativity. �

3.6 Proposition. Let Hbe a convenient Hopf algebra. Then the evaluation map

ev constitutes a ConAlg-morphism

H → C∞(ConAlg(H, R)),

if we endow C∞(ConAlg(H, R)) with pointwise multiplication. Composition with
elements of C∞(R) gives the only possible C∞-algebra structure on the algebra

C∞(ConAlg(H, R)) (cf. [7, 6.7. Lemma]) and makes ev into a C∞-algebra mor-

phism if H is a C∞-Hopf algebra.

Proof: The map ev : H → C∞(ConAlg(H, R)) is smooth by the differentiable
uniform boundedness principle 2.3. It remains to show that ev is a morphism of
C∞-algebras. For (h1, . . . , hn) ∈ Hn consider the structure map

eH(h1,...,hn)
: C∞(Rn)→ H.
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We have to show that

ev ◦ eH(h1,...,hn)
= e

C∞(ConAlg(H,R))
(ev(h1),...,ev(hn))

.

For f ∈ C∞(Rn) and ϕ ∈ ConAlg(H, R) arbitrary, we have

(ev ◦ eH(h1,...,hn)
)(f)(ϕ) = ϕ(eH(h1,...,hn)

(f)) = eR(ϕ(h1),...,ϕ(hn))
(f)

= f(ϕ(h1), . . . ϕ(hn)) = e
C∞(ConAlg(H,R))
(ev(h1),...,ev(hn))

(f)(ϕ),

where the second identity holds again by [7, 2.4 Theorem] as any ConAlg-mor-
phism between C∞-Hopf algebras is a C∞-algebra morphism.

�

3.7 Definition. A convenient Hopf algebra H is said to be reduced if ev : H →
C∞(ConAlg(H, R)) is an injection.

Clearly, each reduced convenient Hopf algebra is commutative.
If G is a smooth semigroup, then the convenient C∞-algebra C∞(G) admits

a twosided smooth action of G via (xfy)(z) = f(yzx). Thus a reduced conve-
nient Hopf algebra H may be viewed as an algebraic ConAlg(H, R)-submodule
of C∞(ConAlg(H, R)). The following version of Theorem 2.2.6 from [1] will be
useful. We sketch its proof for the sake of completeness:

3.8 Proposition and Definition. Let G be a smooth semigroup with multipli-

cation µ and identity e. Then for f ∈ C∞(G) the following are equivalent:

(1) µ∗(f) ∈ C∞(G) ⊗ C∞(G) ⊆ C∞(G × G).
(2) The left G-submodule of C∞(G) generated by f is finite-dimensional.

(3) The right G-submodule of C∞(G) generated by f is finite-dimensional.

(4) The two-sided G-submodule of C∞(G) generated by f is finite-dimen-

sional.

An element f ∈ C∞(G) satisfying the above equivalent conditions is called a
representative function.

Proof: The implications (1) ⇒ (2), (3) being trivial, we proceed to show the
implication (2) ⇒ (3): Let {f1, . . . , fn} be a basis for the left G-submodule
generated by f . Then xf =

∑n
i=1 gi(x)fi with gi(x) ∈ R for all x ∈ G. Choose

lj ∈ C∞(G)′ with the property that lj(fi) = δij . As the action ofG is smooth, the
function gj : x 7→ lj(xf) is smooth so that fy =

∑n
i=1 fi(y)gi with gi ∈ C∞(G),

which is (3). The converse implication (3) ⇒ (2) is shown in the same manner.
Note that in particular f(xy) =

∑n
i=1 fi(x)gi(y) so that we have shown (2)⇒ (1).

It remains to prove (2) ⇒ (4): Let again {f1, . . . , fn} be a basis for the left G-
submodule generated by f . Then for each i = 1, . . . , n the left and, by what
has been already proved, also the right G-submodule generated by fi is finite-
dimensional. But the two sided G-submodule generated by f is the linear span of
the union of the finitely many rightG-submodules generated by the basis elements
fi and hence itself finite-dimensional. �
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Corollary. Let H be a reduced convenient Hopf algebra and ConAlg(H, R) the
smooth group of its R-valued ConAlg-morphisms. Then for an arbitrary element

h ∈ H the following are equivalent:

(1) ev(h) is a representative function on ConAlg(H, R).
(2) The left ConAlg(H, R)-submodule of H generated by h is finite dimen-

sional.

(3) The right ConAlg(H, R)-submodule of H generated by h is finite dimen-

sional.

(4) The two-sided ConAlg(H, R)-submodule of H generated by h is finite

dimensional.

We will denote by HR the subset of H consisting of elements satisfying the
above equivalent conditions. Clearly, any element h ∈ H with the property that
∆(h) ∈ H ⊗ H ⊆ H⊗̃H belongs to HR.

4. A smooth duality theorem

4.1 Definition. A gauge on a convenient Hopf algebra over R is an element
I ∈ H ′ such that

(1) (I⊗̃ idH) ◦∆ = u ◦ I,
(2) I(h2) > 0 for each h ∈ H, h 6= 0.

4.2 Theorem. Let Hbe a reduced C∞-Hopf algebra with gauge, finitely genera-

ted as a C∞-algebra by elements of HR. Then the smooth group ConAlg(H, R)
carries the structure of a compact Lie group in a natural way and ev induces an
isomorphism of C∞-Hopf algebras

H ∼= C∞(ConAlg(H, R)).

4.3 Lemma. Let Hbe a C∞-Hopf algebra admitting a gauge and generated as a

C∞-algebra by HR. Then the topology induced on ConAlg(H, R) by the family

ev(HR) is compact.

Proof: Note first that, for ϕ ∈ ConAlg(H, R), we have

I ◦ (idH ⊗̃ϕ) ◦∆ = (I⊗̃ϕ) ◦∆ = ϕ ◦ (I⊗̃ idH) ◦∆ = ϕ ◦ u ◦ I = I,

i.e., I is ConAlg(H, R)-invariant. For h ∈ HR, the linear subspace V of H

generated by {λ(ϕ, h) : ϕ ∈ ConAlg(H, R)} is finite dimensional by definition
of HR. Let {h1, . . . , hn} be an orthonormal base of V with respect to the inner
product given on H by the smooth positive definite bilinear form I ◦ m. Then
λ(ϕ, h) =

∑n
i=1 ϕihi with real coefficients ϕi depending on ϕ. Furthermore,

I(h2) = I((λ(ϕ, h))2) =
∑n

i=1 ϕ2n so that the latter sum is independent of ϕ. On
the other hand,

ϕ = εϕ = (ε⊗̃ϕ) ◦∆ = ε ◦ (idH ⊗̃ϕ) ◦∆
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and hence ϕ(h) = ε(λ(ϕ, h)) =
∑n

i=1 ϕiε(hi). It follows that ConAlg(H, R) is
ev(HR)-bounding, i.e. the image of ConAlg(H, R) under its canonical inclusion
into

∏

HR
R given by ϕ 7→ (ϕ(h))his relatively compact. It is closed as by [7,

2.4] for convenient C∞-algebras ConAlg-morphisms are the same as C∞-algebra
morphisms and pointwise limits of C∞-algebra morphisms are again C∞-algebra
morphisms, as can be easily verified. Since HR generates the C∞-algebra H and
the trace of

∏

HR
R on ConAlg(H, R) is Hausdorff. �

Proof of 4.2: Let Λ ⊆ HR be a (finite) set of generators for H and {h1, . . . , hn}
be base of the ConAlg(H, R)-submodule generated by Λ, orthonormal with re-
spect to I ◦ m. Then the assignment ϕ 7→ (I(hiλ(ϕ, hj)))ij gives a faithful rep-
resentation of ConAlg(H, R) onto a subgroup of O(n). It is continuous with

respect to the initial topology induced on ConAlg(H, R) by the family ev(HR):

The compact Lie group O(n) is a submanifold of R
n2 and hence its topology is

induced by the functions prij , i, j = 1, . . . n. The restriction of the smooth linear

functional on H ′ given by h′ 7→ I(hi((idH ⊗̃h′)(∆hj))) to ConAlg(H, R) gives an
element of ev(HR), by reflexivity of the nuclear Fréchet space H (see 3.3), which
corresponds to the restriction of the function prij to the image. Hence the image

of ConAlg(H, R) is a compact Lie subgroup and a submanifold of O(n), which
we will denote by G.
The identity ConAlg(H, R) → G is obviously smooth and hence induces an

injective C∞-algebra morphism id∗ : C∞(G) → C∞(ConAlg(H, R)). We claim
that id∗(C∞(G)) = ev(H): The C∞-algebra C∞(G) is generated by the subset
{prij : i, j = 1, . . . , n} so that id∗(C∞(G)) ⊆ ev(H) by what we have already

shown. For the converse, let h ∈ Λ and ϕ ∈ ConAlg(H, R). Then h =
∑n

i=1 λihi

and

ϕ(h) = ε(λ(ϕ, h)) =
n

∑

i=1

λiI(hjλ(ϕ, hi))ε(hj),

which corresponds to the function
∑n

i=1 λiε(hj) prji ∈ C∞(G). Hence C∞(G) ∼=
H as convenientC∞-algebras and, by definition of the comultiplication onC∞(G),
also as C∞-Hopf algebras. But then also G → ConAlg(H, R) is smooth since
elements of ev(H) are smooth on G, i.e. G is diffeomorphic with ConAlg(H, R).

�

4.4 Corollary. The functor ConHopfop → C∞-Gr explained in 3.4 induces
an anti-isomorphism between the category of reduced C∞-Hopf algebras H with

gauge, which are finitely generated by HR and the category of compact smooth

Lie groups.

Proof: The claim follows by Milnor and Stasheff’s exercise for finite dimensional
separable smooth manifolds (see [11]). �

Open question. Is it true that a C∞-Hopf algebra satisfying the conditions of
Theorem 4.2 except for existence of a gauge is given by the algebra of smooth
functions on a finite dimensional separable smooth Lie group?
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4.5 Compact smooth groups which are not Lie groups. The following
example was pointed out to me by Peter Michor: Consider the “infinite dimen-
sional torus” T , which is the countable product of copies of the unit circle S1,
endowed with the product smooth structure, i.e. the initial smooth structure with
respect to the projections (see 2.1). The topology induced on T by the smooth
functions is the product topology and as such compact. However, it is not an
infinite dimensional Lie group. By [9] T is smoothly realcompact, in particular
each convenient algebra homomorphism C∞(T ) → R is given by evaluations in
T . Moreover, each smooth function on T factors over a finite number of coordi-
nates so that the convenient C∞-algebra C∞(T ) is the strict regular inductive
limit of its complemented subalgebras C∞((S1)n) for each n ∈ N. This is the
natural topology defined in 3.3 of the C∞-algebra C∞(T ). As the bornological
tensor product preserves colimits, we obtain that C∞(T ) is a convenient C∞-Hopf
algebra in a natural way.
We do not know whether this can be generalized to arbitrary smoothly compact

groups, that is, smooth groups which are compact with respect to the initial
topology induced on them by their smooth functions: Does the functor given in
4.3 induce an anti-isomorphism between the category of smoothly compact groups
and the category of C∞-Hopf algebras H which admit a gauge and are generated
by HF ?
Note that the functor C∞ does not give a functor C∞-Gr → ConHopfop:

Consider e.g. the convenient vector space R
N with its smooth additive group

structure. Then C∞(RN × R
N) 6∼= C∞(RN)⊗̃C∞(RN) (see [4, 7.4.5]).
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