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Cauchy-Neumann problem for a class of nondiagonal

parabolic systems with quadratic nonlinearities

II. Local and global solvability results

A. Arkhipova

Abstract. We prove local in time solvability of the nonlinear initial-boundary problem
to nonlinear nondiagonal parabolic systems of equations (multidimensional case). No
growth restrictions are assumed on generating the system functions.
In the case of two spatial variables we construct the global in time solution to the

Cauchy-Neumann problem for a class of nondiagonal parabolic systems. The solution is
smooth almost everywhere and has an at most finite number of singular points.

Keywords: boundary value problem, nonlinear parabolic systems, solvability

Classification: 35J65

This article is a continuation of the author’s work [9]. Here we prove two
independent results. These are local and global in time solvability theorems for a
nonlinear initial boundary-value problem to nondiagonal parabolic systems.
In §1 (Theorem 1) local classical solvability is stated for general situations,

that is, we do not assume any structural restriction and growth conditions on
forming system and boundary condition functions. A related result for quasilinear
parabolic systems under the Dirichlet and Neumann boundary conditions was
proved in [1], [2].
Global in time weak solvability of the Cauchy-Neumann problem for parabolic

systems studied in [9] is proved in §2 (Theorem 2). We consider a variational
structure of an elliptic operator and consider only the case of two spatial variables.
These systems have a nondiagonal main matrix and quadratic nonlinearity in
the gradient. Note that the global solvability result is essentially based on the
extendibility theorem (Theorem 1, [9]) and the local solvability theorem (Theorem
1 of the present paper).
This investigation is a generalization of the author’s results [3], [4] where global

in time weak solvability of the Cauchy-Dirichlet problem was stated for the same
class of parabolic systems.
Here we make use of the notation of the Part I of the paper (see [9]).

1. Local in time classical solvability

Let Ω be a domain in Rn, n ≥ 2, with sufficiently smooth boundary ∂Ω.
For a fixed T1 > 0 and Q = Ω × (0, T1) we consider a solution u : Q → RN ,
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u = (u1, . . . , uN ), N > 1, of the parabolic system

(1.1) uk
t −A

αβ
kl (z, u, ux)u

l
xβxα

+ bk(z, u, ux) = 0, z = (x, t) ∈ Q, k = 1, . . . , N.

The function u satisfies the initial condition

(1.2) u
∣∣
t=0 = 0,

and nonlinear boundary condition

(1.3)
Φk(z, u, ux) + ψ

α
kl(z, u)u

l
xα
+ gk(z, u)

∣∣
Γ = 0,

Γ = ∂Ω× (0, T1), k ≤ N.

We define the sets

(1.4) M = Q× R
N × R

nN , N = Γ× R
N × R

nN , N 0 = Γ× R
N ,

and suppose that the functions A
αβ
kl , b

k, Φk, ψα
kl, g

k are smooth enough on M,
N and N0, respectively. (More exactly, see conditions A1, . . . ,A5 below.)

Suppose that the matrix A = {Aαβ
kl }

α,β≤n
k,l≤N satisfies onM the condition

(1.5) Aαβ
kl (z, u, p)ξ

k
αξ

l
β ≥ ν|ξ|2, ∀ ξ ∈ R

nN , ν = const > 0.

We introduce the functions

Φk(z, u, p)=

1∫

0

∂Φk(z, u, sp)

∂pl
β

ds · pl
β+Φ

k(z, u, 0)≡κ
β
kl(z, u, p)p

l
β+Φ

k(z, u, 0)

and suppose that

(1.6)
(
κ

β
kl(z, u, p) + ψ

β
kl(z, u)

)
cos(n, xβ)η

kηl ≥ ν0|η|
2,

∀ η ∈ R
N , ν0 = const > 0,

where n = n(x) is the outward normal vector to Ω at a point x ∈ ∂Ω, (z, u, p) ∈ N .
We rewrite (1.3) in the form

(1.7)
(
κ

β
kl(z, u, ux) + ψ

β
kl(z, u)

)
ul

xβ
+Gk(z, u)

∣∣
Γ = 0, k ≤ N,

where Gk(x, t, u) = gk(x, t, u) + Φk(x, t, u, 0).
The compatibility condition is written in the following form

(1.8) Gk(x, 0, 0) = 0, x ∈ ∂Ω, k = 1, . . . , N.
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We intend to prove the existence of a smooth solution to (1.1)–(1.3) (or (1.1),
(1.2), (1.7)) on some interval [0, T0), where T0 ≤ T1.
Note that in the case A = A(z, u) and condition (1.7) in the form

A
αβ
kl (z, u)u

l
xβ
cos(n, xα) +G

k(z, u)
∣∣
Γ = 0,

local in time classical solvability of (1.1), (1.2) follows from [1], [2]. To prove the
existence of a solution we use the contraction method.
We introduce the following notation

〈v〉
(α)
x,Q = sup

(x,t),(x′,t)∈Q̄

x 6=x′

|v(x, t) − v(x′, t)|

|x− x′|α
, 〈v〉

(β)
t,Q = sup

(x,t),(x,t′)∈Q̄

t 6=t′

|v(x, t) − v(x, t′)|

|t− t′|β
,

[v]
(α)
Q = 〈v〉

(α)
x,Q + 〈v〉

(α/2)
t,Q , α, β ∈ (0, 1).

‖u‖m,D denotes the norm of u in the space L
m(D), m ∈ [1,∞].

Here and below we write B(Q) instead of B(Q;RN ) for brevity.

Hα,α/2(Q) is the space of all continuous in Q functions with finite norm

‖v‖Hα,α/2(Q̄) = ‖v‖∞,Q + 〈v〉
(α)
x,Q + 〈v〉

(α/2)
t,Q .

(So Hα,α/2(Q) = Cα,α/2(Q)).

H2+α,1+α/2(Q) is the space of functions u continuous on Q with derivatives
ut, ux, uxx and finite norm:

‖u‖H2+α,1+α/2(Q̄) = ‖u‖∞,Q + ‖ux‖∞,Q + ‖uxx‖∞,Q + ‖ut‖∞,Q

+ [ut]
(α)
Q + [uxx]

(α)
Q + 〈ux〉

((1+α)/2)
t,Q .

We also consider the space H1+α,(1+α)/2(Γ) of functions v that are contin-
uous and have continuous derivatives vx on Γ. Here we define this space as

the trace space for H2+α,1+α/2(Q) [5]. Let ∂Ω be a C2+α surface. We de-
note by V1, . . . , Vm ⊂ Rn a system of neighborhoods with the following prop-

erties: (1)
m⋃

j=1
Vj ⊃ ∂Ω, (2) there exists a system of C2+α diffeomorphisms Pj

on Vj , j = 1, . . . ,m, such that Pj(Vj ∩ Ω) = B+1 , Pj(Vj ∩ ∂Ω) = σ. Here

B1 = {x ∈ Rn| |x| < 1}, B+1 = B1 ∩ {xn > 0}, σ = B1 ∩ {xn = 0}.

For a function v ∈ H2+α,1+α/2(Q), x ∈ Vj ∩ ∂Ω, t ∈ [0, T1], we define the

function v(j)(y, t) = v(P−1
j (y), t) on Q

+ = B+1 × [0, T1].

Let y′ = (y1, . . . , yn−1), Σ = σ̄ × [0, T1], we put

(1.9) ‖v‖H1+α,(1+α)/2(Γ̄) = sup
j≤m

‖v(j)(y′, 0, t)‖H1+α,(1+α)/2(Σ),
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where

(1.10) ‖w(y′, t)‖H1+α,(1+α)/2(Σ) = ‖w‖∞,Σ + ‖wy′‖∞,Σ + [wy′ ]
(α)
Σ + 〈w〉

(1+α)/2
t,Σ .

It is obvious that definition (1.9),(1.10) depends on the fixed atlas {Vj , Pj}
m
j=1

but all the norms are equivalent.
Now we fix an α0 > 0 and some T ∈ (0, T1] and introduce the space

XT =
{
v : Q→ R

N , v ∈ H2+α0,1+α0/2(QT )
∣∣ v|t=0 = 0

}
, QT = Ω× (0, T ).

For a fixed v ∈ XT we put

∆Aαβ
kl (x, t, v, vx) = A

αβ
kl (x, t, v, vx)−Aαβ

kl (x, 0, 0, 0),

∆κ
β
kl(x, t, v, vx) = κ

β
kl(x, t, v, vx)− κ

β
kk(x, 0, 0, 0),

∆ψ
β
kl(x, t, v) = ψ

β
kl(x, t, v)− ψ

β
kl(x, 0, 0)

and consider the linear problem
(1.11)

wk
t −Aαβ

kl (x, 0, 0, 0)w
l
xβxα

+bk(x, t, v, vx)+∆A
αβ
kl (x, t, v, vx)v

l
xβxα

=0, (x, t)∈QT ,
(

κ
β
kl(x, 0, 0, 0) + ψ

β
kl(x, 0, 0)

)
wl

xβ
+Gk(x, t, v) +

(
∆κ

β
kl(x, t, v, vx)

+ ∆ψ
β
kl(x, t, v)

)
vl
xβ

∣∣
ΓT = 0, ΓT = ∂Ω× (0, T ), k = 1, . . . , N,

w
∣∣
t=0
= 0.

We write ∆Avxx={∆A
αβ
kl (x, t, v, vx)v

l
xβxα

}k≤N ,

∆ψ · vx = {∆ψβ
kl(x, t, v)v

l
xβ

}k≤N , ∆κvx={∆κ
β
kl(x, t, v, vx)v

l
xβ

}k≤N ,

G = {Gk(x, t, v)}k≤N for brevity.
We assume that the complementing conditions hold for problem (1.11).
If the data are smooth enough then according to the linear theory there exists

a unique solution w ∈ XT of (1.11) [5, Chapter VII, Theorem 10.1] and the
following estimate is valid:

(1.12)

‖w‖XT ≤ c0
{
‖b‖Hα0,α0/2(Q̄T ) + ‖∆A · vxx‖Hα0,α0/2(Q̄T )

+ ‖∆κ · vx‖H1+α0,(1+α0)/2(ΓT ) + ‖∆ψ · vx‖H1+α0,(1+α0)/2(ΓT )

+ ‖G‖H1+α0,(1+α0)/2(ΓT )

}
.

The constant c0 in (1.12) depends on the parameters ν, ν0 from conditions
(1.5), (1.6), ‖A(x, 0, 0, 0)‖Cα0(Ω̄), ‖κ(x, 0, 0, 0)‖C1+α0(∂Ω), ‖ψ(x, 0, 0)‖C1+α0(Ω̄),

C2+α0 characteristics of ∂Ω and T1, but it does not depend on the fixed T and
any characteristic of the function v.
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Thus, problem (1.11) defines the map F :XT → XT ,

(1.13) w = F (v), ∀ v ∈ XT .

We shall prove that if T < T1 is small enough then there exists a fixed point u
of F . The function u ∈ XT is a solution of the problem (1.1)–(1.3).

Now we impose precise conditions on the data.

Let M > 0 be an arbitrary fixed number.

A1. OnMM = {(x, t, u, p) ∈ M| |u|+ |p| ≤M}

• the functions A = {Aαβ
kl }

α,β≤n
k,l≤N are continuous and have continuous deriva-

tives Au, Ap;

• the functionsA, Au, Ap are Hölder continuous in x, t, u, p with the exponents
α0, α0/2, α0, α0, respectively.

A2. OnMM

• the functions b = {bk(x, t, u, p)}k≤N are continuous with derivatives bu and
bp,

• the functions b are Hölder continuous in x, t with the exponents α0, α0/2,
respectively,

• bu, bp are Hölder continuous in x, t, u, p with the exponents α0, α0/2, α0,
α0, respectively.

A3. On NM = {(x, t, u, p) ∈ N| |u|+ |p| ≤M},

• the functions Φ = {Φk(x, t, u, p)}k≤N are continuous with derivatives Φp,

• the functions κ = {κ
β
kl(x, t, u, p)}

β≤n
k,l≤N , κ

β
kl(x, t, u, p) =

∫ 1
0

∂Φk(x,t,u,sp)

∂pl
β

ds

have continuous derivatives κx, κu, κp,

• the functions κ, κu, κp are Hölder continuous in t with the exponent (1 +
α0)/2,

• the derivatives κx are Hölder continuous in x, t with the exponents α0 and
α0/2 correspondently,

• the derivatives κxu, κxp, κuu, κup, κpp exist and are Hölder continuous in
x, t, u, p with the exponents α0, α0/2, α0, α0.

A4. On N 0M = {(x, t, u) ∈ N 0||u| ≤M},

• the function G(x, t, u) = Φ(x, t, u, 0) + g(x, t, u), G = {Gk}k≤N , is contin-
uous with derivatives Gx, Gu, Gxu, Guu,

• the functions G, Gu are Hölder continuous in t with the exponent (1+α0)/2,

• the function Gx is Hölder continuous in x and t with the exponent α0, α0/2,

• Gxu, Guu are Hölder continuous in x, t, u with the exponents α0, α0/2, α0.
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A5. On N 0M ,

• ψ = {ψβ
kl(x, t, u)}

β≤n
k,l≤N are continuous functions with derivatives ψx, ψu,

• the functions ψ are Hölder continuous in t with the exponent (1 + α0)/2,
• ψx, ψu are Hölder continuous in x, t, u with the exponents α0, α0/2, α0,
respectively.

Remark 1. All Hölder constants h in conditions A1–A5 depend on M , i.e., h =
h(M).

We put

(1.14)
H0 = ‖b(x, 0, 0, 0)‖∞,Ω +

[
b(x, t, 0, 0)

](α0)
Q + ‖Gx(x, t, 0)‖Hα0,α0/2(Γ)

+ ‖Gv(x, t, 0)‖Hα0,α0/2(Γ) + 〈G(x, t, o)〉
(1+α0)/2
t,Γ ,

and note that H0 depends on T1 but it does not depend on T and M .

Now we formulate the main local result.

Theorem 1. Let Ω be a bounded domain in Rn, n ≥ 2, with C2+α0 -smooth

boundary ∂Ω, α0 ∈ (0, 1) is a fixed number. Suppose that conditions (1.5), (1.6),
and (1.8) hold and linear problem (1.11) satisfies the complementing conditions.
Then there exist numbersM0 and T0 = T0(M0) ∈ (0, T1] such that if assumptions
A1–A5 hold with M = M0 then problem (1.1)–(1.3) is uniquely solvable in XT
for any fixed T < T0. Numbers M0 and T0(M0) depend on the given problem
data.

We split the proof of Theorem 1 into the following lemmas.

Lemma 1. There exist numbers M0 and T̂ = T̂ (M0) ≤ T1, such that for any

T ≤ T̂ the map F transforms BM0
in BM0

, where BM0
= {v ∈ XT | ‖v‖XT

≤M0}.

The numbers M0 and T̂ depend on H0 (see (1.14)) and on the same values as the
constant c0 in (1.12).

Lemma 2. LetM0 and T̂ be fixed as in Lemma 1. There exists a positive number
θ = θ(M0) such that for every v1, v2 ∈ BM0

⊂ XT , T ≤ T̂ , we have

(1.15)
∥∥F (v1)− F (v2)

∥∥
XT

≤ θ
(
Tα0/2 + T (1−α0)/2

)
‖v1 − v2‖XT

.

Indeed, if these lemmas are proved then we fix T ′ from the condition

θ
[
(T ′)α0/2 + (T ′)(1−α0/2

]
= 1.

For T < T0 = min{T̂ , T
′}, the mapping F is a contraction in BM0

⊂ XT , which
implies the existence of a unique u ∈ BM0

such that u = F (u). Certainly, u is the
solution to (1.1), (1.2), (1.7) or (1.1)–(1.3) and Theorem 1 is proved.
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Proof of Lemma 1: Fix T ≤ T1, M > 0 and v ∈ BM ⊂ XT arbitrary. For all
summands Jk in the braces of (1.12), we shall derive the following inequalities:

(1.16) Jk ≤ hk(M)
(
Tα0/2 + T (1−α0)/2

)
+Hk, k = 1, . . . , 5.

In what follows, we denote by hk(M), h(M) different but nondecreasing in M
functions. They may depend on the data and T1 but not on the fixed T . All
parameters Hk and H are independent of M and T .

1. Estimation of J1 = ‖b‖Hα0,α0/2(Q̄T ). We split J1 in

J1 = ‖b‖∞,QT + 〈b〉
(α0)
x,QT + 〈b〉

(α0/2)
t,QT = j1 + j2 + j3.

First of all, note that v
∣∣
t=0 = 0 and

(1.17)
‖v‖∞,QT ≤ ‖vt‖∞,QT T, ‖vx‖∞,QT ≤ 〈vx〉

(1+α0)/2
t,QT T (1+α0)/2,

‖vxx‖∞,QT ≤ 〈vxx〉
(α0/2)
t,QT Tα0/2.

It is evident that

j1 ≤ ‖b(x, t, v, vx)− b(x, 0, 0, 0)‖∞,QT + ‖b(x, 0, 0, 0)‖∞,QT

≤ h(M)
(
Tα0/2 + ‖v‖∞,QT + ‖vx‖∞,QT

)
+H

≤ h(M)
(
Tα0/2 + T + T (1−α0)/2

)
+H.

To estimate j2 = 〈b〉
(α0)
x,QT we write the inequalities

|b(x, t, v(x, t), vx(x, t))− b(x′, t, v(x′, t), vx(x
′, t)|

≤ |b(x, t, 0, 0)− b(x′, t, 0, 0)|+

∣∣∣∣

1∫

0

db(x, t, sv(x, t), svx(x, t))

ds
ds

−

1∫

0

db(x′, t, sv(x′, t), svx(x
′, t))

ds
ds

∣∣∣∣ ≤ H |∆x|α0

+

1∫

0

|bv(x, t, sv(x, t), svx(x, t))− bv(x
′, t, sv(x′, t), svx(x

′, t))| |v(x, t)| ds

+

1∫

0

|bv(x
′, t, sv(x′, t), svx(x

′, t))| ds|v(x, t) − v(x′, t)|
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+

1∫

0

|bp(x, t, sv(x, t), svx(x, t))− bp(x
′, t, sv(x′, t), svx(x

′, t))| ds · |vx(x, t)|

+

1∫

0

|bp(x
′, t, sv(x′, t), svx(x

′, t))| ds|vx(x, t)− vx(x
′, t)| ≤

(∗)
H |∆x|α0

+ h(M)|∆x|α0
(
T + Tα0 + T (1+α0)/2

)
, |∆x| = |x− x′|.

To justify inequality (∗), we have used (1.17) and the following inequalities:

(1.18)
|v(x, t) − v(x′, t)| ≤ 〈vx〉

(1+α0)/2
t,QT T (1+α0)/2|∆x|,

|vx(x, t)− vx(x
′, t)| ≤ 〈vxx〉

α0/2
t,QT T

α0/2|∆x|.

We arrive at the inequality

j2 ≤ H + h(M)
(
Tα0 + T (1+α0)/2

)
.

j3 is estimated in a similar way:

|b(x, t, v(x, t), vx(x, t))− b(x, t′, v(x, t′), vx(x, t
′)| ≤ |b(x, t, 0, 0)− b(x, t′, 0, 0)|

+

∣∣∣∣

1∫

0

[
db(x, t, sv(x, t), svx(x, t))

ds
−
db(x, t′, sv(x, t′), svx(x, t

′))

ds

]
ds

∣∣∣∣

≤ H |∆t|α0/2

+

∣∣∣∣

1∫

0

[
bv(x, t, sv(x, t), svx(x, t))v(x, t) − bv(x, t

′, sv(x, t′), svx(x, t
′))v(x, t′)

]
ds

∣∣∣∣

+

∣∣∣∣

1∫

0

[
bp(x, t, sv(x, t), svx(x, t))vx(x, t)− bp(x, t

′, sv(x, t′), svx(x, t
′))vx(x, t

′)
]
ds

∣∣∣∣

≤ H |∆t|α0/2 + h(M)
(
‖v‖∞,QT + ‖vx‖∞,QT

){
|∆t|α0/2 + |v(x, t)− v(x, t′)|α0

+ |vx(x, t)− vx(x, t
′)|α0

}
+ h(M)

{
|v(x, t) − v(x, t′)|+ |vx(x, t)− vx(x, t

′)|
}

≤ H |∆t|α0/2 + h(M)
(
T + T (1+α0)/2

){
|∆t|α0/2 + |∆t|α0 + |∆t|α0·(1+α0)/2

}

+M{|∆t|+ |∆t|(1+α0)/2}.

It follows that j3 ≤ H + h(M)Tα0/2 and we get (1.16) for k = 1, where H1 is

defined by ‖b(x, 0, 0, 0)‖∞,Ω and [b(x, t, 0, 0)]
(α0)
QT .



II. Local and global solvability results 61

2. Estimation of J2 = ‖∆A · vxx‖Hα0,α0/2(Q̄T ). We have

J2 = ‖∆A · vxx‖∞,QT + 〈∆A · vxx〉
(α0)
x,QT + 〈∆A · vxx〉

(α0/2)
t,QT = i1 + i2 + i3.

It is easy to see that i1 ≤ h(M)‖vxx‖∞,Q ≤ h(M)Tα0/2.
Further,

i2 ≤ 〈∆A〉
(α0)
x,QT ‖vxx‖∞,QT + ‖∆A‖∞,QT 〈vxx〉

(α0)
x,Q ,

where

〈
A

αβ
kl (x, t, v, vx)−A

αβ
kl (x, 0, 0, 0)

〉(α0)
x,QT ≤

〈
A

αβ
kl (x, t, v, vx)

〉(α0)
x,QT +H ≤ h(M)+H,

‖∆A‖∞,Q ≤ h(M)Tα0/2.

Whence,

i2 ≤ h(M)‖vxx‖∞,QT + h(M)Tα0/2 ≤
(1.17)

h(M)Tα0/2.

At last,

i3 ≤ 〈∆A〉
(α0/2)
t,QT ‖vxx‖∞,QT + ‖∆A‖∞,QT 〈vxx〉

(α0/2)
t,QT ≤ h(M)Tα0/2.

Consequently, J2 ≤ h(M)Tα0/2 and (1.18) is proved for k = 2.

3. Estimation of J3=‖∆κvx‖H1+α0,(1+α0)/2(ΓT ) and J4=‖∆ψvx‖H1+α0,(1+α0)/2(ΓT ).

For a fixed atlas {Vj , Pj}
m
j=1 we choose a neighborhood Vj and a mapping Pj

and then express ∆κvx in the local coordinate system (y1, . . . , yn). We shall

write y = y(x) and x = x(y) for y = Pj(x) and x = P−1
j (y), respectively,

v̂(y, t) = v(x(y), t), y ∈ B+1 , t ∈ [0, T ]. In the new coordinates

∆κ
β
kl(x, t, v(x, t), vx(x, t))v

l
xβ
(x, t) =

[
κ

β
kl

(
x(y), t, v̂(y, t), v̂y(y, t)

∂y

∂x

)

− κ
β
kl(x(y), 0, 0, 0)

]
v̂l
yγ
(y, t)

∂yγ
∂xβ

, v̂
∣∣
t=0
= 0 in B+1 .

Putting

κ̂
γ
kl(y, t, v̂(y, t), v̂y(y, t)) = κ

β
kl

(
x(y), t, v̂(y, t), v̂y(y, t)

∂y

∂x

)
∂yγ
∂xβ

,

we have ∆κvx
∣∣
x=x(y)

= ∆κ̂v̂y.
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According to definition (1.9), (1.10), we have to estimate the expression

Ĵ3 = ‖∆κ̂v̂y‖H1+α0,(1+α0)/2(ΣT ) = ‖∆κ̂v̂y‖∞,ΣT + ‖(∆κ̂v̂y)y′‖∞,ΣT

+
[
(∆κ̂v̂y)y′

](α0)
ΣT + 〈∆κ̂v̂y〉

(1+α0)/2
t,ΣT .

Here ΣT = σ × (0, T ), σ = {y′ ∈ Rn−1| |y′| < 1}.
We have the following estimates for v̂:

(1.19)

‖v̂‖∞,ΣT ≤MT, [v̂]
(α0)
ΣT ≤ h(M)

(
T 1−α0/2 + T (1+α0)/2

)
,

‖v̂y‖∞,ΣT ≤ h(M)T (1+α0)/2,
[
v̂y
](α0)
ΣT ≤ h(M)Tα0/2,

〈v̂y〉
(1+α0)/2
t,ΣT ≤ h(M), ‖(v̂y)y′‖∞,ΣT ≤ h(M)

(
T (1+α0)/2 + Tα0/2

)
,

[(
v̂y
)
y′

](α0)
ΣT

≤ h(M),

where h(M) depends on the same parameters as in (1.17), (1.18) and C2+α0

characteristics of the maps y = y(x) and x = x(y).

Now for Ĵ3 we deduce the estimate

Ĵ3 ≤ h(M)T (1+α0)/2 + h(M)Tα0/2
(
‖∆κ̂‖∞,ΣT + ‖(∆κ)y′‖∞,ΣT

)

+ ‖∆κ̂‖∞,ΣT h(M)Tα0/2 +
[
(∆κ̂)y′ v̂y

](α0)
ΣT
+
[
∆κ̂(v̂y)y′

](α0)
ΣT

+ 〈∆κ〉
(1+α0)/2
t,ΣT h(M)T (1+α0)/2 + h(M)‖∆κ̂‖∞,ΣT .

Here

‖∆κ̂‖∞,ΣT ≤ h(M)
(
Tα0/2 + ‖v̂‖∞,Σ + ‖v̂y‖∞,ΣT

)
≤
(1.19)

h(M)Tα0/2 ;

‖(∆κ̂)y′‖∞,ΣT ≤ h(M)Tα0/2 + h(M)[‖v̂y′‖∞,ΣT + ‖(v̂y)y′‖∞,ΣT ]

≤
(1.19)

h(M)Tα0/2 ;

[∆κ̂]
(α0)
ΣT + [(∆κ̂)y′ ]

(α0)
ΣT + 〈∆κ̂〉

(1+α0)/2
t,ΣT ≤

(1.19)
h(M) +H.

From the above it follows that Ĵ3 ≤ h(M)Tα0/2. This implies (1.16) for k = 3.
The expression J4 is estimated in the same way as J3.

4. Estimation of J5 = ‖G‖H1+α0,(1+α0)/2(ΓT ).

In the local coordinates system we estimate Ĵ5 = ‖Ĝ‖H1+α0,(1+α0)/2(ΣT ), where

Ĝ(y′, t, v̂(y′, 0, t)) = G(x(y′, 0), t, v(x(y′, 0), t)), y′ ∈ σ, t ∈ [0, T ].
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From the compatibility condition (1.8) it follows that Ĝ
∣∣
t=0 = Ĝy′

∣∣
t=0 = 0.

It is easy to see that

(1.20)

Ĵ5 ≤ ‖Ĝ‖∞,ΣT + ‖Ĝy′‖∞,ΣT + ‖Ĝv̂‖∞,ΣT ‖v̂y′‖∞,ΣT

+ [Ĝy′ ]
(α0)
ΣT + [Ĝv̂]

(α0)
ΣT ‖vy‖∞,ΣT + ‖Ĝv̂‖∞,ΣT [v̂y ]

(α0
ΣT

+ 〈Ĝ〉
(1+α0)/2
t,ΣT ≤

(1.19)
h(M)Tα0/2 + [Ĝy′ ]

(α0)
ΣT + 〈Ĝ〉

(1+α0)/2
t,ΣT .

To estimate [Ĝy′ ]
(α0)
ΣT we consider the expression

〈Ĝy′ 〉
(α0)
y′,ΣT = sup(

y′,y′′∈σ
t∈[0,T ],
y′ 6=y′′

) |Ĝy′(y′, t, v̂(y′, 0, t))− Ĝy′ (y′′, t, v̂(y′′, 0, t))|

|∆y′|α0

≤ sup
{... }

∣∣∣∣
∫ 1

0

[
d

ds
Ĝy′ (y′, t, sv̂(y′, 0, t))−

d

ds
Ĝy′(y′′, t, sv̂(y′′, 0, t))

]
ds

∣∣∣∣
|∆y′|α0

+ 〈Ĝy′(y′, t, 0)〉
(α0)
y′,ΣT

≤ h
(
‖v̂‖∞,ΣT+〈v̂〉

(α0)
y′,ΣT

)
+H≤h(M)

(
T+T (1+α0)/2

)
+H.

In the same way we derive that

〈Ĝy′ 〉
(α0/2)
t,ΣT ≤ h(M)

(
T + T 1−α0/2

)
+H.

This implies

(1.21) [Ĝy′ ]
(α0)
ΣT ≤ h(M)

(
T 1−α0/2 + T (1+α0)/2

)
+H.

To estimate [Ĝv̂]
(α0)
ΣT we argue in the same way.

At last, we shall derive

(1.22) 〈Ĝ〉
(1+α0)/2
t,ΣT ≤ h(M)

(
T + T (1−α0)/2

)
+H.
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Indeed,

|Ĝ(y′, t′, v̂(y′, 0, t′))− Ĝ(y′, t′′, v̂(y′, 0, t′′))|

≤

∣∣∣∣

1∫

0

[
dĜ(y′, t′, sv̂(y′, 0, t′)

ds
−
dĜ(y′, t′′, sv̂(y′, 0, t′′)

ds

]
ds

∣∣∣∣

+ |Ĝ(y′, t′, 0)− Ĝ(y′, t′′, 0)| ≤

1∫

0

∣∣Ĝv̂(y
′, t′, sv̂(y′, 0, t′)

− Ĝv̂(y
′, t′′, sv̂(y′, 0, t′′))

∣∣ ds‖v̂‖∞,ΣT

+

1∫

0

∣∣Ĝv̂(y
′, t′′, sv̂(y′, 0, t′′))

∣∣ ds‖v̂t‖∞,ΣT |∆t|

+H |∆t|(1+α0)/2 ≤ h(M)T
{
|∆t|(1+α0)/2 + |∆t|

}
+ h(M)|∆t|+H |∆t|(1+α0)/2

≤
(
h(M)T (1−α0)/2 +H

)
|∆t|(1+α0)/2.

This proves (1.22). Now from (1.20)–(1.22) it follows that

Ĵ5 ≤ h(M)
(
Tα0/2 + T (1−α0)/2

)
+H,

verifying (1.16) for J5.
Thus, by (1.12), (1.16), we obtain that

(1.23) ‖w‖XT ≤ c0h(M)
(
Tα0/2 + T (1−α0)/2

)
+ c0H0,

where c0 is the constant from (1.12) and H0 is defined in (1.14).

Now we put M0 = 2c0H0 and fix T̂ ≤ T1 from the condition

c0h(M0)
(
T̂α0/2 + T̂ (1−α0)/2

)
≤ c0H0.

Then from (1.23) it follows that for any T ≤ T̂ and v ∈ BM0
⊂ XT , ‖w‖XT

=
‖F (v)‖XT

≤M0. Lemma 1 is proved. �

Proof of Lemma 2: Let M and T̂ (M) be fixed as pointed in the statement

of Lemma 1. For any T ≤ T̂ we fix v′ and v′′ ∈ BM ⊂ XT . Put w
′ = F (v′),

w′′ = F (v′′), ŵ = w′−w′′, v̂ = v′−v′′. According to (1.14) we have the following
system:

ŵk
t −A

αβ
kl (x, 0, 0, 0)ŵ

l
xβxα

+
[
bk(z, v′, v′x)− bk(z, v′′, v′′x)

]

+
[
∆Aαβ

kl (z, v
′, v′x)(v

′l)xβxα −∆Aαβ
kl (z, v

′′, v′′x)(v
′′l)xβxα

]
= 0,

z ∈ QT , k ≤ N,
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(1.24)

(
κ

β
kl(x, 0, 0, 0) + ψ

β
kl(x, 0, 0)

)
ŵl

xβ
+
[
Gk(z, v′)−Gk(z, v′′)

]

+

[ (
∆κ

β
kl(z, v

′, v′x) + ∆ψ
β
kl(z, v

′)
)
(v′

l
)xβ −

(
∆κ

β
kl(z, v

′′, v′′x)

+∆ψ
β
kl(z, v

′′)
)
(v′′

l
)xβ

]
= 0 on ΓT ,

ŵ
∣∣
t=0 = 0.

Problem (1.24) can be written in the short form:

(1.240)
ŵk

t −A
αβ
kl (x, 0, 0, 0)ŵ

l
xβxα

+Dk(z) + Ek(z) = 0, z ∈ QT , k ≤ N,
(
κ

β
kl(x, 0, 0, 0) + ψ

β
kl(x, 0, 0)

)
ŵl

xβ
+ Zk(z) + Y k(z)

∣∣
ΓT
= 0,

where D, E, Z, Y denote the correspondent expressions in the square brackets
of (1.24). For example, D = {Dk}k≤N ,

Dk(z) = bk(z, v′(z), v′x(z))− bk(z, v′′(z), v′′x(z)) and so on.

For the linear problem (1.240), the following estimate holds:

(1.25)

‖ŵ‖XT
≤ c0

{
‖D‖Hα0,α0/2(Q̄T ) + ‖E‖Hα0,α0/2(Q̄T )

+ ‖Z‖H1+α0,(1+α0)/2(Γ̄T ) + ‖Y ‖H1+α0,(1+α0)/2(Γ̄T )

}
.

We shall prove that every term on the right-hand side of (1.25) is estimated by

h(M)(Tα0/2 + T (1−α0)/2)‖v̂‖XT
with some nondecreasing function h(M) > 0.

1) Estimation of ‖D‖
Hα0,α0/2(QT )

.

First of all we note that v̂|t=0 = 0 and

(1.26)

‖v̂‖∞,QT ≤ ‖v̂‖XT T, [v̂]
(α0)
QT ≤ c(Ω)‖v̂‖XT

(
T (1+α0)/2 + T 1−α0/2

)
,

‖v̂x‖∞,QT ≤ ‖v̂‖XT T (1+α0)/2, [v̂x]
(α0)
QT ≤ c(Ω, T1)‖v̂‖XT Tα0/2,

‖v̂xx‖∞,QT ≤ ‖v̂‖XT Tα0/2.

We write Dk in the form:

Dk(z) =

1∫

0

∂bk(z, ṽ, ṽx)

∂vm ds v̂m(z) +

1∫

0

∂bk(z, ṽ, ṽx)

∂vm
xγ

ds v̂m
xγ
(z),
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where ṽ = v′′ + sv̂, ṽx = v
′′
x + sv̂x. By condition A2, we obtain the inequality

‖D‖Hα0,α0/2(Q̄T )≤ h(M)
(
‖v̂‖∞,QT + ‖v̂x‖∞,QT

)
+

[ 1∫

0

bv(. . . ) ds

](α0)

Q
T

‖v̂‖∞,QT

+

∥∥∥∥

1∫

0

bv(. . . ) ds

∥∥∥∥
∞,QT

[v̂]
(α0)
QT +

[ 1∫

0

bp(. . . ) ds

](α0)

Q̄T

‖v̂x‖∞,QT

+

∥∥∥∥

1∫

0

bp(. . . ) ds

∥∥∥∥
∞,QT

[v̂x]
(α0)
QT ≤ h1(M)‖v̂‖XT Tα0/2.

Here and below, we denote by h(M) different positive nondecreasing on M func-
tions. They do not depend on T but may be depend on T1.

2) Estimation of ‖E‖Hα0,α0/2(Q̄T ).

Ek(z) can be written in the form

Ek(z) = ∆A
αβ
kl (z, v

′, v′x)v̂
l
xβxα

+ [A
αβ
kl (z, v

′, v′x) − A
αβ
kl (z, v

′′, v′′x)](v
′′l)xβxα , then

by condition A1 and inequalities (1.26), we obtain the estimate

‖E‖Hα0,α0/2(Q̄T ) ≤ ‖∆A(z, v′, v′x)‖∞,QT ‖v̂xx‖∞,QT

+M

(∥∥∥∥

1∫

0

Av(. . . ) ds

∥∥∥∥
∞,QT

‖v̂‖∞,QT +

∥∥∥∥

1∫

0

Ap(. . . ) ds

∥∥∥∥
∞,QT

‖v̂x‖∞,QT

+ ‖∆A‖∞,QT [v̂xx]
(α0)
QT + [∆A]

(α0)
QT ‖v̂xx‖∞,QT+

+

[ 1∫

0

Av(. . . ) ds

](α0)

QT

‖v̂‖∞,QTM +

∥∥∥∥

1∫

0

Av(. . . ) ds

]

∞,QT

[v̂v̂xx]
(α0)
QT

+

[ 1∫

0

Ap(. . . ) ds

](α0)

QT

‖v̂x‖∞,QTM +

[ 1∫

0

Ap(. . . ) ds

](α0)

QT

[v̂xv̂xx]
α0
QT

≤ h(M)‖v̂‖XT Tα0/2.

3) Estimation of ‖Y ‖H1+α0,(1+α0)/2(ΓT ).

To estimate this expression we straighten a part of ∂Ω and obtain the corre-
sponding local estimate of the norm as it was done in the proof of Lemma 1. Using
the same notation we introduce an atlas {Vj , Pj}j≤m for Ω, where Pj :Vj ∩ Ω →

B+1 , Pj(Vj ∩ ∂Ω) = σ, ΣT = σ × (0, T ).
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For some fixed j ≤ m, we write y = y(x) for y = Pj(x) and x = x(y) for

x = P−1
j (y).

Note that Y k(z) = [∆κ
β
kl(z, v

′, v′x)v
′
xβ

l −∆κ
β
kl(z, v

′′, v′′x)v
′′
xβ

l]+

[∆ψβ
kl(z, v

′)v′xβ

l−∆ψβ
kl(z, v

′′)v′′xβ

l] ≡ Y k
I (z)+Y

k
II(z). It is sufficient to prove that

(1.27) ‖YI‖H1+α0,(1+α0)/2(ΓT )
≤ h(M)‖v̂‖XT

(
Tα0/2 + T (1−α0)/2

)
.

An analogous estimate for YII is more easily derived in the same way.
In the local coordinates y ∈ B+1 , y = (y

′, yn), y
′ ∈ σ, we have

(1.28)

Ŷ k
I (y

′, t) ≡ ∆κ
β
kl

(
x(y), t, v′(x(y), t), v′y(x(y), t) ·

∂y

∂x

)
v̂l
yγ

·
∂yγ
∂xβ

+

[
κ

β
kl

(
x(y), t, v′(x(y), t), v′y(x(y), t) ·

∂y

∂x

)
− κ

β
kl

(
x(y), t, v′′(x(y), t),

v′′y (x(y), t) ·
∂y

∂x

)]
v′′yγ

l ∂yγ
∂xβ

∣∣∣∣ y′∈σ
yn=0

≡ ∆κ̂
γ
kl(y

′, t, v′, v′y)v̂
l
yγ

+
(
κ̂

γ
kl(y

′, t, v′, v′y)− κ̂
γ
kl(y

′, t, v′′, v′′y )
)
v′′yγ

l
,

where in the last equality we set v = v(x(y′, 0), t).

We shall estimate ‖ŶI‖H1+α0,(1+α0)/2(ΣT )
according to definition (1.9), (1.10).

In the local coordinates

(1.29)

‖v̂‖∞,ΣT
≤ ‖v̂‖XT

· T ; ‖v̂y‖∞,ΣT
≤ K1‖v̂‖XT

· Tα0/2;

[v̂]
(α0)
ΣT
+ [v̂y ]

(α0)
ΣT

≤ K2‖v̂‖XT
· Tα0/2;

‖(v̂y)y′‖∞,ΣT
≤ K3‖v̂‖XT

· Tα0/2; [(v̂y)y′‖
(α0)
ΣT

≤ K4,

where constants Ki depend on T1 and C
2+α0 characteristics of x(y) and y(x).

It is easy to see that l1 = ‖ŶI‖∞,ΣT
≤ h(M)‖v̂‖XT

Tα0/2.
For the next step we omit indexes of functions and write

(
ŶI

)

y′
= ∆κ̂y′ v̂y +∆κ̂(v̂y)y′ +

1∫

0

∂2κ(. . . )

∂v∂y′
ds v̂v′′y

(1.30)

+

1∫

0

∂2κ̂(. . . )

∂v∂v
ṽy′ds v̂v′′y +

1∫

0

∂2κ̂(. . . )

∂v∂p
ṽyy′ds v̂v′′y

+

1∫

0

∂κ̂(. . . )

∂v
ds (v̂y′v′′y + v̂(v

′′
y )y′) +

1∫

0

∂2κ̂(. . . )

∂p∂v
ṽy′ ds v̂y′v′′y
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+

1∫

0

∂2κ̂(. . . )

∂p∂p
(ṽy)y′ ds v̂y′v′′y +

1∫

0

∂2κ(. . . )

∂p∂y′
ds v̂yv

′′
y

+

1∫

0

∂κ̂(. . . )

∂p
ds ((v̂y)y′v′′y + v̂y(v

′′
y )y′).

Now we apply definition (1.28), conditions A3, estimates (1.29) and equality
(1.30) to deduce that

l2 = ‖(ŶI)y′‖∞,ΣT
≤ h(M)‖v̂‖XT

Tα0/2.

Further,

l3 =

[(
ŶI

)

y′

](α0)

ΣT

≤

{
[∆κy′ ]

(α0
ΣT

‖v̂y‖∞,ΣT
+ ‖∆κ̂y′‖∞,ΣT

[v̂y ]
(α0)
ΣT

+ [∆κ̂]
(α0)
ΣT

‖(v̂y)y′‖∞,ΣT
+ ‖∆κ̂‖∞,ΣT

[(v̂y)y′ ]
(α0)
ΣT
+ . . .

. . .+

∥∥∥∥

1∫

0

∂κ̂(. . . )

∂p
ds · (v̂′′y )y′

∥∥∥∥
∞,ΣT

· [v̂y]
(α0)
ΣT

}
,

where there are twenty two terms in the braces. We have not enough place to
write and calculate all of them. Note only that all the terms are estimated by

h(M)‖v̂‖XT
Tα0/2 by using A3 and inequalities (1.29).

At last,

l4 =
〈
ŶI

〉� 1+α0
2

�
t,ΣT

≤
〈
∆κ̂(y′, t, v′, v′y)v̂y

〉
�
1+α0
2

�
t,ΣT

+

〈 1∫

0

∂κ̂(y′, t, ṽ, ṽy)

∂v
ds v′′y

〉� 1+α0
2

�
t,ΣT

‖v̂‖∞,ΣT

+

∥∥∥∥

1∫

0

∂κ̂(. . . )

∂v
ds v′′y

∥∥∥∥
∞,ΣT

〈v̂〉

�
1+α0
2

�
t,ΣT

+

〈 1∫

0

∂κ̂(. . . )

∂p
ds v′′y

〉� 1+α0
2

�
t,ΣT

‖v̂y‖∞,ΣT

+

∥∥∥∥

1∫

0

∂κ̂(. . . )

∂p
ds v′′y

∥∥∥∥
∞,ΣT

〈v̂y〉

�
1+α0
2

�
t,ΣT

= j1 + j2 + j3 + j4 + j5.
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For example, we estimate j1:

j1 ≤ 〈∆κ̂〉

�
1+α0
2

�
t,ΣT

‖v̂y‖∞,ΣT
+ ‖∆κ̂‖∞,ΣT

〈v̂y〉

�
1+α0
2

�
t,ΣT

.

Here 〈∆κ̂〉

�
1+α0
2

�
t,ΣT

= 〈∆κ̂(y′, t, v′(y′, t), v′y(y
′, t))〉

�
1+α0
2

�
t,ΣT

≤ h(M), ‖∆κ̂‖∞,ΣT
≤

h(M)T (1+α0)/2. Now j1 is estimated by h(M)‖v̂‖XT
Tα0/2 with the help of (1.29).

All other jk’s are estimated in the same way (about the arguments (. . . ) see

(1.28)). Summarizing, we have estimated l1–l4 and ‖ŶI‖H1+α0,(1+α0)/2(ΣT )
by

h(M)‖v̂‖XT
Tα0/2 with some h(M) > 0, hence (1.27) follows.

4) Estimation of ‖Z‖H1+α0,(1+α0)/2(ΓT )
.

We write Zk in the form Zk(z) =
1∫

0

∂Gk(z,ṽ(z))
∂vm ds v̂m(z), ṽ = v′′+ sv̂ and put

Ẑ(y′, t) = Z(x(y′, 0), t), y′ ∈ σ, t ∈ (0, T ).
To deduce the estimate

(1.31) ‖Ẑ‖H1+α0,(1+α0)/2(ΣT )
≤ h(M)‖v̂‖XT

(
Tα0/2 + T (1−α0)/2

)

we make use of conditions A4, inequalities (1.29) and argue in the same way as
at the previous step. From (1.31) and definition (1.9), (1.10), the estimate of
‖Z‖H1+α0,(1+α0)/2(ΓT )

follows.

Now we go back to estimate (1.25) and obtain that for some h(M) > 0

(1.32) ‖ŵ‖XT
≤ c0h(M)‖v̂‖XT

(
Tα0/2 + T (1−α0)/2

)
.

Here c0 depends on the same data as in the statement of Theorem 1. By inequality
(1.32) with θ = c0h(M), (1.17) follows. Lemma 2 is proved. �

2. Weak global in time solvability

Using M. Struwe’s idea [6], we shall construct a global solution of the Cauchy-
Neumann problem to the class of parabolic systems studied in [9].
Suppose that Ω is a bounded domain in R2 and T > 0 is fixed arbitrarily,

Q = Ω× (0, T ). For some functions f : Ω×RN ×R2N → R1 and G: Ω×RN → R1,

N > 1, we consider a solution u:Q→ RN , u = (u1, . . . , uN ), of the problem

(2.1)

uk
t −

d

dxα
fpk

α
(x, u, ux) + fuk(x, u, ux) = 0, z = (x, t) ∈ Q,

fpk
α
(x, u, ux) cos(n, xα) + g

k(x, u)
∣∣
Γ = 0, Γ = ∂Ω× (0, T ), k ≤ N,

u
∣∣
t=0 = ϕ(x),
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where g = ∇uG, ϕ:Ω → RN is a given function, n = n(x) is the outward to Ω
normal vector at a point x ∈ ∂Ω.
It is easy to see that the corresponding to (2.1) stationary problem describes

stationary points of the functional

(2.2) E [u] =

∫

Ω

f(x, u, ux) dx+

∫

∂Ω

G(x, u) ds.

Now we fix a number α0 ∈ (0, 1) and formulate all assumptions on ∂Ω, ϕ, f ,
G and g.

D1. ∂Ω ∈ C
3+α0 , ϕ ∈ W 12 (Ω).

D2. f is defined on the setM = ∂Ω×RN×R2N with the derivatives mentioned
below and satisfies the following conditions:

(1)
ν0|p|

2 ≤ f ≤ µ1 + µ0|p|
2,

|fu|+ |fux|+ |fuu| ≤ µ2(1 + |p|2), |fp|+ |fpx|+ |fpu| ≤ µ2(1 + |p|),(2.3)

|fpp|+ |fppx| ≤ µ2, 〈fpp(x, u, p)ξ, ξ〉 ≥ ν|ξ|2, ∀ ξ ∈ R
2N ,

with positive constants ν0, µ0, µ2, ν and µ1 ≥ 0.

(2) Derivatives fpx, fppx are continuous onM and are Hölder continuous in x
with the exponent α0 on any compact set ofM.

(3) ψ(x, u, p) = fup(x, u, p) is continuously differentiable in x, u, p on the setM.

(4) On any compact subset ofM, the function Λ(x, u, p) = fpp(x, u, p) is twice
continuously differentiable in all arguments and Λxu, Λxp, Λuu, Λup, Λpp are
Hölder continuous in all arguments with the exponent α0.

D3. (1) G(x, u) is a continuous function on the set M0 = Ω × RN , it has
continuous derivative Gx and satisfies

(2.4) G ≥ h0|u|
2 − h1, |G|+ |Gx| ≤ h2(1 + |u|2),

h0, h1 = const ≥ 0, h2 = const > 0.

(2) The function g(x, u) = ∇uG(x, u) and its derivatives g, gx, gxx, gu, gux,
guu are continuous onM0 and

(2.5) |g|+ |gx|+ |gxx| ≤ h3(1 + |u|), |gu|+ |gux|+ |guu| ≤ h3,

h3 = const > 0.

(3) On any compact subset of M0, gx is Hölder continuous in x with the
exponent α0 and gxu, gu are Hölder continuous in x, u with the exponent α0.
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It is evident that under assumptions D1–D3, the parabolic system (2.1) has
nondiagonal main matrix and quadratic nonlinearity in the gradient. In general,
the weak global solvability for such a type systems was not proved yet.

If we put f(x, u, p) = 12 A
αβ
kl (x, u)p

l
αp

k
β , G(x, u) =

1
2 h(x)|u|

2+(u, r(x)), where

Aαβ
kl are C

2+α0 smooth functions on Ω× RN and Aαβ
kl = A

βα
lk ,

A
αβ
kl (x, u)ξ

k
αξ

l
β ≥ ν|ξ|2, ∀ ξ ∈ R

2N , ν = const > 0,

h, r ∈ C2(Ω), h(x) ≥ 0, then conditions D2, D3 hold. In this case we have the
quasilinear problem (2.1) in the form

uk
t − (Aαβ

kl (x, u)u
l
xβ
)xα +

1

2
(Aαβ

ml (x, u))
′
uku

m
xβ
ul

xα
= 0, (x, t) ∈ Q,

(2.6)

(
∂u

∂nA

)(k) ∣∣∣∣
Γ
≡ Aαβ

kl (x, u)u
l
xβ
cos(n, xα) + h(x)u

k + rk(x)
∣∣
Γ = 0, k ≤ N,

u
∣∣
t=0 = ϕ.

We shall construct a weak global solution to (2.1) (and, in particular, to (2.6))
in five steps.

Step 1. First of all, we “smooth” the initial function ϕ.

Proposition 1. Under conditions D1–D3 there exists a sequence {ϕm(x)}m∈N ,

ϕm ∈ C2+α0(Ω), with ϕm → ϕ in W 12 (Ω) and such that every function ϕm

satisfies the compatibility condition:

(2.7) l[k][ϕm] = fpk
α
(x, ϕm(x), (ϕm(x))x) cos(n, xα) + g

k(x, ϕm(x))
∣∣
x∈∂Ω = 0,

k ≤ N.

As ∂Ω ∈ C3+α0 , there exists a sequence {ψm}, ψm ∈ C3+α0(Ω), ψm → ϕ in
W 12 (Ω). If some function ψm does not satisfy (2.7) then we can “correct” it in a
boundary layer with the help of the distance function. The function belongs to
C2+α0(Ω) and the new sequence tends to ϕ in W 12 (Ω). To save place we omit the
proof of Proposition 1.

Step 2. Now we study problem (2.1) with the initial condition u
∣∣
t=0 = ϕm, ϕm

satisfies (2.7). To apply Theorem 1 we introduce the problem in the nondivergence
form, û = u− ϕm:

(2.8)

ûk
t −Aαβ

kl (x, û, ûx)û
l
xβxα

+ bk(x, û, ûx) = 0, (x, t) ∈ Q,

κ
β
kl(x, û, ûx)û

l
xβ
+ ĝk(x, û)

∣∣
Γ = 0, k = 1, . . . , N,

û
∣∣
t=0 = 0,
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where

Aαβ
kl (x, û, p̂) = fpk

αpl
β
(x, û+ ϕm(x), p̂+ (ϕm(x))x),

bk(x, û, p̂) = fuk(x, û+ ϕm(x), p̂+ (ϕm(x))x)− fpk
αum(. . . )(p̂m

α +

+ (ϕm(x))xα )− fpk
αxα
(. . . )− fpk

αpl
β
(. . . )ϕm

xαxβ

(by (. . . ) we denote the same arguments as function fuk has);

κ
β
kl(x, û, p̂) =

1∫

0

fpk
αpl

β
(x, û + ϕm(x), (ϕm(x))x + sp̂) ds · cos(n, xα),

ĝk(x, û) = gk(x, û+ ϕm(x)) + fpk
α
(x, û+ ϕm(x), (ϕm(x))x) cos(n, xα).

Conditions D1–D3 and (2.7) imply the validity of the assumptions of Theo-
rem 1. Thus, for some Tm > 0 there exists a unique smooth solution ûm to (2.8)

in a cylinder Q̂m = Ω × [0, Tm), ûm ∈ H2+α0,1+α0/2(Q̂m). It implies the exis-
tence of a solution um to problem (2.1). We suppose that Tm defines the maximal
interval of the smooth solution.

Step 3. We put E[u(t)] = ‖ux(·, t)‖22,Ω + ‖u(·, t)‖22,∂Ω,

E[u(t); Ωr(x
0)] = ‖ux(·, t)‖

2
2,Ωr(x0)

+ ‖u(·, t)‖22,γr(x0)
,

γr(x
0) = ∂Ω ∩Br(x

0).

The functions um, m ∈ N , satisfy the following inequalities

(2.9)
‖um

t ‖22,Ω×(0,t) + E[um(t)] ≤ c1 + c2E[ϕm]

≤ c1 + ĉ2E[ϕ] ≡ e0, ∀ t ∈ [0, Tm),

(2.10)

E[um(t
′′); ΩR(x

0)] ≤ c3
(
R+ (t′′ − t′)

)
+ c4E[um(t

′); Ω2R(x
0)]

+
c5(t

′′ − t′)e0
R2

, ∀ t′ ≤ t′′ < Tm, ∀x
0 ∈ Ω, R < min{1, diamΩ/2}.

Inequalities (2.9), (2.10) follow from (13), (14) [9]. By Remark 13 [9], the
constants c1, . . . , c5, do not depend on Tm.
Now we fix R0 > 0 such that

E[ϕ; Ω2R0(x
0)] <

ε0
8c4

, ∀x0 ∈ Ω, and R0 < min

{
1,

ε0
8c3

}
,

where ε0 is as in Theorem 1 [9]; it depends on the data from conditions D1–D3.
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Then there exists some number m0 ∈ N such that

(2.11) E[ϕm[Ω2R0(x
0)] <

ε0
4c4

, ∀m ≥ m0.

We put T̂ = θR20, where θ <
ε0

4(c3+c5e0)
and derive from (2.10) (with t′ = 0,

t′′ = t, R = R0) and (2.11) the inequality

sup
0≤t≤min{T̂ ,Tm}

sup
x0∈Ω

E[um(t); ΩR0(x)] < ε0, ∀m ≥ m0.

If Tm < T̂ then all assumptions of Theorem 1 [9] are valid and it is possible to
extend the solution um up to t = Tm. This contradicts the definition of Tm.
Thus, Tm > T̂ > 0 and

(2.12) sup
[0,T̂ ]

sup
x∈Ω

E[um(t),ΩR0(x)] < ε0.

All functions um(t), m ≥ m0, are smooth on Ω× [0, T̂ ]. According to Lemma 2
and Remark 7 [9], (2.12) guarantees that

(2.13) ‖(um)xx‖
2
2,Q̂

≤ c+ cϕ

(
1 + T̂ +

T̂

R20

)
, Q̂ = Ω× (0, T̂ ),

where the constants c and cϕ are defined by parameters from conditions (2.3)–

(2.5) and C1+1 characteristics of ∂Ω, cϕ also depends on ‖ϕ‖W 1
2 (Ω)
.

By (2.9), (2.13), it follows that

(2.14) sup
[0,T̂ ]

‖um(·, t)‖W 1
2 (Ω)

+ ‖um‖
W 2,1
2 (Q̂)

≤ c, ∀m ≥ m0.

Whence, um → u weakly in W
2,1
2 (Q̂), (um)x → ux in L

2(Q̂) for some sequence

of m → +∞. The limit function u is a solution to (2.1), u ∈ Y (Q̂) = W
2,1
2 (Q̂) ∩

L∞((0, T̂ ),W 12 (Ω)). From Theorem 2
′ [9] it follows that u is a unique solution in

this class. Applying Theorem 2 [9], we find that u ∈ H2+α0,1+α0/2(Ω × (0, T̂ ])

and uxt ∈ L2,2+2α0(Ω× (δ, T̂ )), ∀ δ > 0.

Suppose that T1 > T̂ defines the maximal interval of the existence of smooth
solution u. According to Theorem 3 and Remark 12 [9], u admits a smooth
extension to the set Ω × (0, T1] \ ΣT1 , where the singular set ΣT1 consists of at

most a finite number (M1) points, ΣT1 = {(x1, T1) ∪ . . . ∪ (x
M1 , T1)}. Analyzing

the proof of Theorem 3 [9] and using (2.10) one can easy derive that M1 ≤
4c5e0

ε0
.

Moreover, u(·, t) →
t→T1

u(·, T1) weakly inW
1
2 (Ω) and inW

1
2,loc(Ω\{x

1∪. . .∪xM1}).
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If h0 > 0 in (2.4) or G = 0 on ∂Ω then the dominating constant M1 does not
depend on T1 (see Remark 13).

Step 4. We denote ϕ(1)(x) = u(x, T1) ∈W 12 (Ω) and deduce that

(2.15) E [ϕ(1)] ≤ E [ϕ]−
ν0ε0
4c4

M1,

in the same way as in [6]. Now we consider problem (2.1) for t > T1 with initial

function ϕ(1)(x). We argue precisely as we did at the previous step. As a result,

we deduce the existence of a smooth solution u(1)(x, t) on some interval (T1, T2),

u(1)(·, t)→ u(1)(·, T2) weakly in W
1
2 (Ω), t→ T2.

We construct a sequence of intervals (Tm, Tm+1) ⊂ (0, T ) and of solutions

u(m)(·, t), m = 0, 1, 2, . . . , (T0 = 0, u
(0) = u, ϕ(0) = ϕ). Taking in consideration

(2.15), we deduce that

E [ϕ(m+1)] ≤ E [ϕ(0)]−

(m+1∑

j=1

Mj

)
ν0ε0
4c4

and arrive at

(2.16) M =

m+1∑

j=1

Mj ≤
E [ϕ] · 4c4
ν0ε0

= m0.

In the case when h0 > 0 in (2.4) or G = 0 on ∂Ω, m0 in (2.16) does not depend
on T .
Joining all the functions u(m), we obtain a solution u (2.1). The solution is

smooth on Ω̂×(0, T ], except of at most finitely many points. Further, ut ∈ L2(Q),
sup E [u(t)] ≤ E [ϕ], u(·, t) → ϕ weakly in W 12 (Ω) (indeed, one can prove that

u(·, t) → ϕ in the norm of W 12 (Ω)). The uniqueness of u with the mentioned
properties follows from Theorem 2′ [9] when applying the result to each interval

[Tj , Tj+1),
M⋃

j=0
[Tj , Tj+1) = [0, T ).

We have proved the following result.

Theorem 1. Let conditions D1–D3 hold. Then for a fixed number T > 0 and
any function ϕ ∈W 12 (Ω) there exists a global solution u : Ω× (0, T )→ RN to the

problem (2.1) such that u is H2+α0,1+α0/2 smooth function in Ω× (0, T ]\Σ. The
singular set Σ consists of at most finitely many points {(xj , tj)}M

j=1. The number

M is estimated by the data from assumptions D1–D3 and T . If h0 6= 0 in (2.4)
or G = 0 on ∂Ω then M is estimated by the data from D1–D3 only.

Every point (xj , tj) ∈ Σ is characterized by the condition

lim
tրtj

‖ux(·, t)‖
2
2,ΩR(xj) ≥ ε0, ∀R > 0,
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(number ε0 > 0 is taken from Theorem 1 [9]). Furthermore,

(1) u ∈ L∞((0, T );W 12 (Ω)), ut ∈ L2(Q), sup[0,T ] E [u(t)] ≤ E [ϕ];

(2) u is a unique solution with the above properties;
(3) u satisfies the integral identity
∫

Q

uk
t h

k + fpk
α
(x, u, ux)h

k
xα
+ fuk(x, u, ux)h

k) dQ

+

∫

Γ

gk(x, u)hk dΓ = 0, ∀h ∈ L2((0, T );W 12 (Ω)) ∩ L
1((0, T );L∞(Ω)),

u(·, t) →
t→0

ϕ in W 12 (Ω).

On the behavior of the solution at infinity

Here we suppose that h0 6= 0 in (2.4) or G = 0 on ∂Ω. In this case, the number
m0 in (2.16) does not depend on T . As T > 0 was fixed arbitrarily we may discuss
the behavior of u(·, t) when t → +∞.
First, we assume that all singularities in Ω are developed in a finite time inter-

val. Then for some T > 0 and R > 0 we have the inequality

sup
t>T

sup
x∈Ω̄

‖ux(·, t)‖
2
2,ΩR(x)

< ε0.

Whence, (see [7, Chapter III]]) along a certain sequence of indices j → ∞
the sequence u(·, tj) weakly converges in W

2
2 (Ω) to a function u

∞ ∈ W 22 (Ω),

ut(·, tj) → 0 in L
2(Ω). By the imbedding theorem, ux(·, tj) → (u

∞)x in L
s(Ω),

s <∞. To justify these facts note that for any t > T the following estimates are
valid:

t+1∫

t

‖uxx(·, τ)‖
2
2,Ωdτ ≤ c+ cϕ

(
1 +

1

R20

)
;

t+1∫

t

‖ut(·, τ)‖
2
2,Ωdτ −→

t→∞
0.

Furthermore, uxx(·, tj) →
tj→∞

u∞xx in the L
2(Ω) norm. To prove this assertion

we treat the local setting of (2.1) (see (24) [9]). In such a case, the functions

u(·, tj), u
∞ transform to v(·, tj), v

∞ in B+1 . From the integral identity for v(·, tj)
and v∞ we derive that ‖(v(·, tj) − v∞)yy‖2,B+1

→ 0. Returning to the functions

u(·, t) and u∞, we deduce that ‖uxx(·, tj)− u∞xx‖2,Ω −→
tj→∞

0.

Known results on the smoothness of weak solutions of nonlinear elliptic systems
guarantee that u∞ ∈ C2+α0(Ω), u∞ is an extremal point of the functional E [u] =∫

Ω
f(x, u, ux) dx +

∫

∂Ω
G(x, u) ds.
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In particular, if E [ϕ] < ε0/ν (ε0 > 0 is defined in Theorem 1 [9] and ν is
the constant from (2.3)), then from the monotonicity of E [u(t)] it follows that
sup[0,∞) ‖ux(·, t)‖

2
2,Ω < ε0. In this case Theorem 1 [9] yields that solution u(·, t)

to (2.1) is a smooth transformation of ϕ to an extremal point u∞ when t ∈ (0,∞].
Suppose now that there exist singular points at the infinity. In this case u∞ is

a smooth in Ω \ {x1 ∪ . . . ∪ xM} solution to the problem

−
d

dxα
fpk

α
(x, u, ux) + fuk(x, u, ux) = 0, x ∈ Ω,

fpk
α
(x, u, ux) cos(n, xα) + g

k(x, u)
∣∣
x∈∂Ω = 0.

According to De Giorgi’s lemma [8, Chapter II, Lemma 3.1], u∞ satisfies the
identity∫

Ω

(fpk
α
ηk
xα
+ fukηk) dx+

∫

∂Ω

gkηk ds = 0, ∀ η ∈W 12 (Ω) ∩ L
∞(Ω).

Concluding, note that the boundedness of the solution constructed was not
stated. The estimate sup[0,T ] ‖ux(·, t)‖2,Ω ≤ const guarantees only that

sup[0,T ) ‖u(·, t)‖L2,n(Ω) ≤ const, n = 2.
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